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 A B S T R A C T 

The present study considers the numerical examination of an unsteady thermo-solutal 

mixed convection when the extra mass and heat diffusions, called as Soret and Dufour 

effects, were not neglected. The numerical simulations were performed in a lid-driven 

cavity, where the horizontal walls were kept in constant temperatures and 

concentrations. The vertical walls were well insulated. A finite volume method based 

on SIMPLE algorithm was utilized to solve the coupled governing equations. 

Numerical simulations are performed for wide combinations of Soret and Duofour 

coefficients and are given by streamlines, isotherms, isoconcentrations, fluid 

velocities, average Nusselt and Sherwood numbers. The influences of pertinent 

parameters on the various heat transfer modes, i.e. convective and conductive modes, 

as well as the total kinematic energy of the studied thermo-solutal system are also 

analyzed.  

Results demonstrate that Soret and Dufour effects insignificantly influence the fluid 

flow and transport phenomena when flow is affected to some extent by the forced 

convection. It is also achieved that the extra heat diffusion, Dufour effect, affects heat 

transfer by creating thermal eddies especially when flow is dominated by the natural 

convection. Besides, the conductive mode of heat transfer is attenuated by Dufour 

coefficient. 
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1. Introduction 

 The convection simultaneously driven by 

temperature and concentration gradients are often 

called either double-diffusive or thermo-solutal 

convection. Double-diffusive convection is an 

attractive subject due to its wide scientific 

applications such as oceanography, astrophysics, 

geology, biology and chemical processes [1]. This 

aspect of fluid dynamics has been gained 

considerable attentions from the both of theoretical 

and experimental researchers because of its 

importance and wide practical applications such as 

electronic device cooling, multi-shield structures 

used for nuclear reactors, float gas production, 

crystal growth, drying processes, chemical reactors, 

and many others [2-6]. Based on that, wide 

advanced models as well as research methods have 

been developed to better understand the physical 

phenomena in involved in double-diffusive 

convection. Among the literature published on this 

subject, Lee & Hyun [8], and Hyun & Lee [9], 

numerically studied the double-diffusive convection 

in a rectangular enclosure with aiding and opposing 

temperature and concentration gradients. Their 

solution was significantly satisfied the experimental 

results. Oztop & Dagatekin numerically investigated 

the steady mixed convection in a two-sided lid-

driven enclosure [10]. Results elucidate that the heat 
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transfer enhances as Richardson number 𝑅𝑖 value 

decreases. Al-Amiri et al., utilized numerical 

simulations to look through the steady double-

diffusive convection in a square lid-driven cavity 

[11]. Results demonstrate that heat transfer enhances 

as the buoyancy ratio increases. Thermo-solutal 

convection with temperature and concentration 

gradients at the same time in a rectangular enclosure 

was studied by Qin et al, [12]. They used a high-

order compact scheme in their study. Jena et al., 

researched on the transient process of buoyancy-

opposed thermo-solutal convection of micropolar 

fluids [13]. Bhattacharya and Das also used 

numerical techniques to investigate the steady 

thermo-solutal natural convection flow inside a 

usual lid-driven cavity [14]. It has been shown that 

Rayleigh number is an important parameter in the 

heat transfer variation. Wang et al., performed 

regularized Lattice Boltzmann method (LBM) to 

study thermo-solutal convection in the vertical 

cavity [15]. It has been shown that heat and mass 

transfer are attenuated as the cavity aspect ratio 

enhances. 

It is well known that the fluid flow is simultaneously 

affected by temperature and concentration gradients 

as well in the double-diffusive convection flow. In 

some cases, the extra thermal and mass diffusivity 

called Dufour and Soret effects, respectively, affect 

on the thermo-solutal flow characteristics to some 

extent. Soret effect is the extra mass diffusivity 

caused by the temperature gradient, while Dufour 

effect refers to the energy flux created by the 

concentration gradient. The Soret and Dufour effects 

are called SD-effects hereinafter for the sake of 

brevity. SD-effects are ignored in many cases due to 

their order of magnitude respect to the effects 

described by Fourier’s and Fick’s laws. Moreover, 

they have usually considered as the second-order 

phenomena. Nevertheless, in some engineering and 

industrial applications such as chemical reactors, 

solidification of binary alloys, groundwater 

pollutant migration, hydrology and geosciences, 

when temperature and concentration gradients are 

large enough, the SD-effects could not be ignored 

and should be taken into account to complete the 

accurate simulation. In those cases, the temperature 

and concentration equations become coupled with 

each other. Recently, some investigators have been 

conducted numerical and analytical studies to study 

double-diffusive convection when SD-effects were 

not neglected. 

Malashetty & Gaikward studied numerically the 

influence of SD-effects on thermo-solutal 

convection in an unbounded vertically stratified 

system [16]. Rebai et al., investigate double-

diffusive convection in a square cavity filled with 

binary fluid mixture using the both numerical and 

analytical methods [17]. Soret effect was just 

considered by them. Bhuvaneswari et al., performed 

numerical simulations to investigate mixed 

convection flow with just Soret effect in a regular 

two-sided lid-driven square enclosure [18]. They 

looked into the relation of the lid's movement 

direction and transport phenomena, and found that 

both of heat and mass transfer are attenuated if the 

walls move in the same directions. Actually, they 

did not consider the influence of Soret effect alone, 

because all of their numerical simulations performed 

at a constant Soret coefficient. Wang et al., used an 

unsteady numerical model to research on the 

influence of SD-effects on thermo-solutal 

convection in a horizontal rectangular enclosure 

[19]. Results show that heat and mass transfer 

increase as the aspect ratio decreases. Their 

simulations performed in a stable cavity with no 

moving lid(s) and so they did not study the effects 

of shear forces on the double-diffusive convection. 

Recently, Ren & Chen utilized the LBM to study 

double-diffusive convection in a vertical enclosure 

with SD-effects [20]. They found that the average 

Nusselt and Sherwood numbers were increased with 

increasing Rayleigh number, Prandtl number, Lewis 

number, Soret and Dufour coefficients. Kefayati 

also used the LBM to examine double-diffusive 

convection with SD-effects in an inclined porous 

cavity [21]. The results prove that heat and mass 

transfer are sensitive greatly to the inclination angle. 

Wang et al., utilized an accurate finite volume 

method based on SIMPLE algorithm to investigate 

numerically an oscillatory double-diffusive 

convection in a horizontal cavity with SD-effects 

[22]. They found that double-diffusive convection 

develops from steady state convection dominated to 

chaotic flow as buoyancy ratio increases. 

In all of the above studies, a constant set of Soret and 

Dufour coefficients was assumed during the 

simulations. On the other hand, to the author's best 

knowledge, the effect of SD-effects on the various 

modes of heat transfer has not been analysed yet. To 

be more precise, the contribution of each modes of 

heat transfer and in particular, the influence of extra 

mass and heat diffusions on those contributions have 

not been studied yet. In addition, although the 



O. Ghaffarpasand / JHMTR 5 (2018) 51-68                                                                           53  

 

kinetic energy is a key factor in the design and 

optimization of thermal systems, the influence of 

SD-effects on the total energy of the thermo-solutal 

systems has not been considered, yet. Based on the 

above story, the main purpose of the present study is 

to characterize the unsteady thermo-solutal 

convection with SD-effects in one hand, and analyse 

the influence of SD-effects on the various modes of 

heat transfer as well as the total energy of the system 

in the other hand.  

2. Model Description  

The physical model configuration which consists of 

a square enclosure with just top moving wall in its 

own plane at constant velocity 𝑈0, is displayed in 

Fig. 1. The top and bottom walls are maintained 

isothermally at uniform temperatures 𝑇𝑙  and 𝑇ℎ  

respectively, 𝑇ℎ > 𝑇𝑙. The opposite boundary 

conditions are assumed for concentration at top and 

bottom walls, when those are maintained at 

concentrations 𝐶ℎ and 𝐶𝑙 correspondingly, 𝐶ℎ > 𝐶𝑙 . 

The vertical walls are assumed adiabatic and 

impermeable. This illustration creates a 

gravitationally-unstable temperature and 

concentration gradients and results in a thermo-

solutal/double-diffusive convection.  

 

Fig.  1: Schematic diagram of the computational model. 

 

The enclosure has an aspect ratio of unity (𝐴 =  1) 

and dry air is assumed as the working fluid, 𝑃𝑟 =

 0.71. Fluid is also assumed Newtonian and 

incompressible except for the density in the 

buoyancy term of the momentum equation in the 

vertical direction, according to the Bousinesq 

approximation. Accordingly, the density variation 

due to both temperature and concentration gradients 

can be written as: 

𝜌 = 𝜌0(1 − 𝛽𝑇(𝑇 − 𝑇0) − 𝛽𝐶(𝐶 − 𝐶0)) 

where 𝛽𝑇 =
1

𝜌
(

𝜕𝜌

𝜕𝑇
)(𝐶,𝑝) and, 𝛽𝐶 =

1

𝜌
(

𝜕𝜌

𝜕𝑇
)(𝑇,𝑝) are the 

thermal and concentration expansion coefficients, 

respectively. With these assumptions, the 

fundamental governing equations, including 

continuity, momentum, energy, and concentration 

(mass) equations can be expressed as: 
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where  , g , m , mD , TC  , CT  are kinematic 

viscosity, gravity acceleration, thermal diffusivity, 

diffusion coefficient, Soret and Dufour coefficients, 

respectively. The governing equations are then non-

dimensionalized using the following dimensionless 

variables: 
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where 𝑡0 is the characteristic time 𝑡0 = 𝐿/𝑈, 𝑝0 is 

the characteristic pressure 𝑝0 = 𝜌𝑈0
2, 𝑇0 is the 

characteristic temperature, and 𝐶0 is the 

characteristic particle concentration. Following 

Barletta &  Zanchini [23], the characteristic 

temperature and concentration are assumed as 𝑇0 =

(𝑇ℎ + 𝑇𝑙)/2 and 𝐶0 = (𝐶ℎ + 𝐶𝑙)/2, respectively. 

Therefore, the dimensionless form of governing 

equations are:  
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The buoyancy ratio 𝐵, Lewis number 𝐿𝑒, 

Richardson number 𝑅𝑖, Dufour coefficient 𝐷𝑓, and 

Soret coefficient 𝑆𝑟, are defined as:  

2

( )
= = , = , =

( )

C h l C T

T h l T

C C Gr GrSc
B Le Ri

T T Gr Pr Re








 

( ) ( )
= , =

( ) ( )

TC h l CT h l

m h l m h l

C C T T
Df Sr

T T D C C

 



 

 
 

Richardson number value ususally illustrates the 

importance of natural convection relative to the 

forced convection, whereby the flow is dominated 

by forced and natural convction when 𝑅𝑖 ≪ 1 and 

𝑅𝑖 ≪ 1, respectively. However, the boundary 

conditions in the dimensionless form are so:  
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To examine the heat and mass transfer within the 

enclosure, the average Nusslet and Sherwood 

numbers on the horizontal walls with maximum 

temperature and concentration are examined. For 

this purpose, the local Nusselt and Sherwood 

numbers along the horizontal bottom and top walls, 

respectively, are defined as:  
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The average Nusselt and Sherwood numbers then 

can be calculated as: 
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= ( ) , = ( )Nu Nu X dX Sh Sh X dX         (13) 

 It should be noted that the different boundary 

conditions are implied for temperature and 

concentration to better understand the influence of 

the extra available diffusions on the fluid 

characteristics and transport phenomena. To better 

understand and discuss the heat transport processes, 

the different modes of heat transfer, i.e. conductive 

and convective modes,  across the enclosure are also 

examined by the relation proposed by Cheng [24]. 

For this purpose, Nusselt number along the vertical 

mid-plane of the enclosure is evaluated by the 

following equation:
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where the first and second terms of this equation 

represent the contributions of heat transfer because 

of the conductive and convective modes, 

respectively. Further examination of the total kinetic 

energy is also implemented in this study. It is 

calculated using the expression proposed before by 

Goyan through [25]: 
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This equation is calculated on all of the grid nodes 

and averaged during final 1000 final time steps. The 

temporal variation of total kinetic energy is also 

analyzed in further to better examine the stationary 

state conditions.  

3. Numerical Approach 

The dimensionless governing equations, Eqs. (6)-

(10), are firstly discretized on a staggered grid by a 

finite volume method developed by Patankar [26]. 

The convection terms are  discretized using the 

QUICK scheme, while a second-order Adams-

Bashforth explicit scheme is implemented for the 

unsteady terms. The SIMPLE algorithm is then 

employed to solve the discretized equations. The 

effect of concentration is also taken into account by 
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using pressure correction method to obtain the real 

velocity field. The averaged Sherwood and Nusselt 

numbers are calculated using Simpson's integration 

rule. 

 The validation procedure of the utilized method had 

to be done in order to check the code credibility. 

This is imposed as well as the convergence and grid 

independency tests in further steps. The time step is 

set close to ∆𝜏 = 0.005 during all simulations 

similar to the study of Ouertatani et al. [27]. The heat 

and mass transfer characteristics in addition to the 

fluid flow patterns have been reported when the 

steady state conditions are achieved. The unsetady 

patterns of the studied thermo-solutal system are 

illustrated in Fig. 2, where the temporal variations of 

isotherm and isoconcentration contours are 

presented. It can be seen that after 𝜏 = 1000, steady 

state conditions are achieved.  The steady state 

conditions are also examined by the investigation of 

typical temporal variations of total kinetic energy in 

Fig. 3. It is observed that after an initial 

unsteadiness, double-diffusive convection in 

various regimes become as steady as the total kinetic 

energy attains a canstant value. The convergence of 

the numericall results is also employed and the 

following criterion is satisfied on each time step.  

61
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Here, the generic variable Π illustrates the set of 𝑈, 

𝑉, Θ, or Φ, while 𝑛 represents the iteration number 

in each individual time step. The subscript sequence 

(𝑖, 𝑗) represents the space coordinates of the grid 

node. The simulations were performed for three 

various uniform grids, i.e. 80 × 80, 90 × 90, and 

110 × 110, for an especific case when 𝑅𝑒 =  100, 

and 𝑅𝑖 =  0.01, and then the results were compared 

to gether in order to sure on grid independency. The 

obtained results have an excellent agreement and so, 

90 × 90 grid was used in according to the proper 

accuracy as well as CPU consuming time. 

considering simulated accuracy and CPU time in the 

range of variables adequate, results are obtained 

using node points 90 × 90. 

The utilized method was validated against published 

results of Al-Amiri et al., [11] and Teamah & El-

Maghlany [28] to sure on the accuracy of the future 

obtained results. Hence, numerical simulations in 

the absence of SD-effects, 𝑆𝑟 = 𝐷𝑓 = 0, were 

performed for double-diffusive mixed convection 

flow in a vertical square enclosure with the 

uniformly imposed high and low temperature as well 

as concentration along the lower and upper walls, 

respectively. Fig. 4 shows the streamlines, 

isotherms, and isoconcentration distributions with, 

𝑃𝑟 =  1, 𝐿𝑒 =  10, 𝐴 =  1, and 𝑅𝑖 =  0.01, 

obtained by (a) present code, (b) Teamah & El-

Maghlany [28], and (c) Al-Amiri et al. [11]. The 

figures show a good agreement between the results 

obtained by the present code and the others. Another 

test is conducted to check the accuracy of the 

utilized method, whereby the stream function values 

at the primary vortex location were computed for 

two different Reynolds number, i.e. 100 and 400, 

and are compared with the results obtained by Al-

Amiri et al. [11] and Screibr & Keller [29] in Table 

1. It can be seen that an excellent agreemnt was 

achieved between registered data results. 

Furtheremore, the average Nusselt number obtained 

by the present method and the results achieved by 

Sharif [30] and Malleswaran & Sivasankaran [31] 

are compared in Table 2. The results obtained by the 

present method have an acceptable aggreement with 

the available results, especially at the larger 𝑅𝑒 and 

𝐺𝑟𝑇  values. 

Table 1. Comparison of primary vortex stream function. 

Re  Present work   Ref. [11]    Ref. [29]  

100  -0.1031   -0.1033   -0.1033  

400  -0.1137   -0.1139   -0.1138  
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Fig. 2. Time traces of the isotherms and isoconcentrations when Ri = 10, and Sr=Df=0.25. 

 

4. Results and Discussion 

As was mentioned before, the main aim of the 

present work is to characterize the thermo-

solutal/double-diffusive convection flow, heat and 

mass transfer in a square enclosure and in the 

presence of Soret and Dufour effects. For this 

purpose, numerical simulations are carried out with 

the validated method for different Richardson 

numbers (𝑅𝑖 = 0.01, 0.1, 1, 10), when 𝐺𝑟𝑇  is kept 

constant at 104 and Re is varied between 31.6 to 

1000. Besides, Soret and Dufour effects are 

employed where 𝑆𝑟 is kept constant at 0.25, and 𝐷𝑓 

is varied between 0 to 3. Schmidt number sets equal 

to Prandtl number, and so 𝐿𝑒 =  𝑆𝑐/𝑃𝑟 =  1. The 

assumed value of Lewis number represents a same 

contribution for both of heat and mass transfer, 

whereby it makes an upportunity to stduy the 

influence of Richardson number individually. 

Buoyancy ratio 𝐵, is also set to unity to consider 

similar effects for mass and thermal diffusions. 

Streamlines, isotherms, and isoconcentrations of the 

cases with different 𝑅𝑖 and various sets of 𝑆𝑟&𝐷𝑓 

coefficients are displayed in Fig. 5. As can be seen 

that an unicellular clockwise primary vortex almost 

occupies whole the cavity in all the studied cases.  

 
Fig. 3. Temporal variations of total kinetic energies for 

various Richardson numbers when 𝑆𝑟 = 𝐷𝑓 = 0.25. 

 

In fact, the fluid rises up from the heated bottom wall 

due to the thermal buoyancy forces and flows down 

along the cold side. The competition between forced 

flow introduced by top moving wall, solutal and 

thermal buoyancy forces have been formed a 

primary rotating cell. If the isotherm patterns of the 

cases with 𝐷𝑓 = 0 are compared together, it can be 

seen that the concentration of thermal boundary 

layers near the heated wall reduces as Richardson 

number enhances. To help to better understand, the 

isotherm patterns of the cases with 𝐷𝑓 = 0 are 

represented in Fig. 6. When Richardson number has 

its lowest value (Fig. 6(a)), Reynolds number is kept 

constant at 1000, the flow was dominated by forced 

convection introduced by top moving lid and the 

convection circulation was developed greatly. In the 

other words, shear forces push the convection to 

penetrate much deeper into the enclosure. A similar 

observation was reported before in the studies of Al-

Amiri et al. [11], and Teamah & El-Maghlany [28], 

where the double diffusive mixed convection in the 

absence of SD-effects was investigated numerically. 

However, with either decreasing Reynolds number 

or increasing Richardson number (Figs. 6(b)&(c)), 

the opposing action of thermal buoyancy forces 

against forced flow was pronounced, whereby the 

concentration of the thermal boundary layers in the 

vicinity of the hot wall was reduced. When 𝑅𝑖 = 10 

(Fig. 6(d)), the entire isotherm lines were became 

parallel to the horizontal walls. This configuration 

demonstrate that heat was transferred mostly by 

conduction mode, whereby the enclosure could be 

assumed as a quasi-conduction domain. It should be 

noted that the isotherm and isoconcentration 

patterns in the cases with 𝐷𝑓 =  0 are almost 

similar due to the value of Lewis number, i.e. 𝐿𝑒 =

1. This fact is not repeated when either the extra 

mass or thermal diffusion is introduced. 
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Table 2. Comparison of the average Nusselt numbers. 

  Average Nusselt number 

𝑹𝒆 𝑮𝒓 Present study Ref. [30] Ref. [31] 

 102 3.94 4.05 4.08 

400 104 3.72 3.82 3.84 

 106 1.22 1.17 1.10 

 102 6.35 6.55 6.48 

1000 104 6.31 6.50 6.47 

 106 1.78 1.81 1.66 
 

 Fig. 5 also depicts that at the lower and moderate 

values of Dufour coefficient, i.e. 𝐷𝑓 = 0.25 and 1, 

the influence of SD-effects on fluid flow, isotherms, 

and isoconcentrations seems to be insignificant. In 

addition, the influence of SD-effects on even fluid 

flow can be ignored when Richardson number is 

large enough. Nevertheless, Figs. 5(c)&(d) show 

that the enhancement of Dufour coefficient could 

develop fluid flow and transport phenomena when 

flow is in the mixed or natural convection regime. 

The extra thermal diffusion within the enclosure, 

which was increased by increasing Dufour 

coefficient, is in the direction of concentration 

gradient, and so has an aiding and opposing action 

on the shear forces and thermal buoyancy forces, 

respectively. As it was mentioned earlier, the shear 

forces introduced by top moving wall, have a 

tendency to push the convection into the enclosure, 

whereby the thermal boundary layers are 

concentrated greatly near the hot wall with further 

decreasing of Richardson number. Therefore, the 

competition between forced convection on one side 

and thermal buoyancy forces as well as extra 

thermal diffusion introduced by SD-effects on the 

other side, forms thermal eddies near the heated 

wall. Those thermal eddies cause a distortion in the 

thermal boundary layers even if when the enclosure 

is a quasi-conductive domain. In addition, the extra 

thermal diffusion disturbs the equilibrium between 

mass and thermal diffusing, assumed before by 

implying  𝐿𝑒 =  1, and so isotherms and 

isoconcentrations are not the same here. 

Figs. 5(c)&(d) represents that when Richardson 

number was increased and so forced convection was 

ground by natural flow, the extra thermal diffusion 

along with the thermal buoyancy forces have formed 

the secondary eddies at the left bottom of the 

enclosure. It can be seen that the secondary eddy 

formation is augmented with increasing either 

Richardson number or Dufour coefficient. On the 

other hand, it seems that the variation of Dufour 

coefficient was also affected to some extent on the 

isoconcentration contours. This is attributed to the 

fact that the mass transfer rate was affected to some 

extent by convection activities. 

 

 

Fig. 4. Streamlines, isotherms, and isoconcentrations for Pr = 1, Le = 10, A = 1, and Ri = 0.01, obtained by (a) present 

method, (b) Teamah & El-Maghlany [28], and (c) Al-Amiri et al. [11]. 
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Fig.  5: Streamlines (left column), isotherms (middle column), and isoconcentrations (right column) for (a) 𝑅𝑖 =  0.01, (b) 

𝑅𝑖 =  0.1, (c) 𝑅𝑖 =  1, and (d) 𝑅𝑖 =  10, when 𝑆𝑟 =  0.25 and 𝐺𝑟𝑇 = 104. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig.  6: Isotherm patterns for (a) 𝑅𝑖 =  0.01, (b) 𝑅𝑖 =  0.1, (c) 𝑅𝑖 =  1, and (d) 𝑅𝑖 =  10, when 𝐷𝑓 =  0 and 𝑆𝑟 =  0.25. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig.  7: Isotherm patterns for (a) 𝑅𝑖 =  0.01, (b) 𝑅𝑖 =  0.1, (c) 𝑅𝑖 =  1, and (d) 𝑅𝑖 =  10, when 𝐷𝑓 =  3 and 𝑆𝑟 =  0.25. 
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(a) 

 
(b) 

 
(c) 

 
(d)  

Fig.  8: Isoconcentration patterns for (a) 𝑅𝑖 =  0.01, (b) 𝑅𝑖 =  0.1, (c) 𝑅𝑖 =  1, and (d) 𝑅𝑖 =  10, when 𝐷𝑓 =  3 and 𝑆𝑟 =

 0.25. 

 
(a)  

(b) 

 
(c) 

 
(d) 

Fig.  9: Horizontal mid-velocity profiles for (a) 𝑅𝑖 =  0.01, (b) 𝑅𝑖 =  0.1, (c) 𝑅𝑖 =  1, and (d) 𝑅𝑖 =  10. In all of cases 

𝑆𝑟 =  0.25. 

 



62                                                                     O. Ghaffarpasand / JHMTR 5 (2018) 51-68 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.  10: Vertical mid-velocity profiles for (a) 𝑅𝑖 =  0.01, (b) 𝑅𝑖 =  0.1, (c) 𝑅𝑖 =  1, and (d) 𝑅𝑖 =  10. In all of cases 

𝑆𝑟 =  0.25. 

 

 
(a) 

 

(b) 

Fig. 11: Average (a) Nusselt, and (b) Sherwood numbers, when 𝑆𝑟 =  0.25 for all cases. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig.  12: The vertical distributions of conduction mode of heat transfer along the mid-plane of the square enclosure for  (a) 

𝑅𝑖 =  0.01, (b) 𝑅𝑖 =  0.1, (c) 𝑅𝑖 =  1, and (d) 𝑅𝑖 = 10, and the vertical distributions of convection mode of heat transfer 

along the mid-plane of the square enclosure for (a) 𝑅𝑖 =  0.01, (b) 𝑅𝑖 =  0.1, (c) 𝑅𝑖 =  1, and (d) 𝑅𝑖 = 10, where 𝑆𝑟 =

 0.25  in all of cases 
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To better examine the behavior of transport 

phenomena in the presence of SD-effects, the 

isotherm and isoconcentration patterns for the cases 

with largest 𝐷𝑓 value (𝐷𝑓 = 3) are represented in 

Figs. 7&8, respectively. Figs. 7(a)-(d) show that the 

thermal boundary layers form upper than the bottom 

heated wall, whereby the thermal eddies separate 

those boundary layers from the wall. It can also be 

seen that the intensity of those thermal eddies was 

augmented by increasing Richardson number. In 

other words, the thermal eddies due to the extra 

thermal diffusion were intensified when flow was 

dominated by natural convection. On the other hand, 

the value of isotherm lines increases as Richardson 

number enhances. This fact show that temperature 

gradient within the cavity increases as the 

Richardson number enhances. Meanwhile, the 

negative value of isotherm line represents the loss of 

buoyancy forces across the enclosure. Figs. 8(a)-(d) 

depict that isoconcentration patterns were affected 

by Richardson number variation when Dufour 

coefficient is a large value, i.e. 𝐷𝑓 ≥ 1. This feature 

may be due to the non-zero value of the Soret 

coefficient. As was observed before in Figs. 7(a)-

(d), the temperature gradient across the enclosure 

enhances with increasing Richardson number and 

Dufour coefficient simultaneously. The large 

temperature gradient in according to the non-zero 

value of Soret coefficient produces extra mass 

diffusion which affects to some extent on 

isoconcentration patterns.  

The horizontal and vertical velocity profiles along 

the mid-plane of the enclosure are displayed in Figs. 

9&10, respectively. As can be seen that when𝑅𝑖 <

1, the influence of SD-effects on velocity profiles 

seems to be insignificant in spite of some observed 

minor deviations. This fact again demonstrates that 

the influence of SD-effects on fluid characteristics 

can be ignored when flow was dominated by forced 

convection. In addition, Figs. 9(b)-(d) show that the 

cases with largest Dufour coefficient have largest 

horizontal velocity components near the heated wall. 

This feature was also pronounced with increasing 

Richardson number. The formation of thermal 

eddies in cases with largest Dufour coefficient 

which was explained before can be recognized as the 

main reason of this feature. However, it was denoted 

earlier that the Dufour effect has an opposite effect 

on the thermal buoyancy forces provoked by the 

heated wall. This fact is observed again in Figs. 

10(a)&(b), whereby the vertical component of the 

velocity at the bottom half of the enclosure was 

reduced by increasing Dufour coefficient. In order 

to assess the convective heat and mass transfer 

within the enclosure, the variations of the average 

Nusselt and Sherwood numbers as a function of 

Dufour coefficient for all of the studied cases are 

elucidated in Fig. 11. The joint effect of varying 𝑅𝑖 

and 𝐷𝑓 upon the heat and mass transfer processes is 

undoubtedly noticeable in these plots. Fig. 11(a) 

shows that the average Nusselt number variations 

are in good agreement with isotherm plots, 

previously commented. For instance, for either 

larger Richardson number or smaller Dufour 

coefficients, the average Nusselt numbers are small 

to some extent. This fact represents that the 

conduction is the dominant mechanism of transport 

phenomena here. Furthermore, Fig. 11(b) shows that 

the average Sherwood number was enhanced with 

increasing either Dufour coefficient or Richardson 

number. In according to the non-zero value of Soret 

coefficient and implemented boundary conditions, it 

seems that the augmentation of temperature gradient 

caused by increasing either heat diffusion or thermal 

buoyancy forces, causes an enhancement in mass 

transfer through the enclosure. The influence of 

pertinent parameters on the various heat transfer 

modes are illustrated in Fig. 12. In particular, Figs. 

12(a)-(d) show the variations of convective mode of 

heat transfer within the enclosure. First, it can be 

observed that the convective mode of heat transfer 

at the bottom half of the enclosure and especially in 

the vicinity of the heated wall was augmented by 

further increasing of Richardson number, whereby 

the bottom peak of the figures was moved from the 

negative side towards the positive side with an 

enhancement of 𝑅𝑖 value. When 𝑅𝑖 =  0.01, the 

aiding action of Dufour effect against the shear 

forces, increases convective mode of heat transfer at 

the core of the enclosure. In contrast, the opposite 

action of the extra heat diffusion against the thermal 

buoyancy forces reduces the convective mode of 

heat transfer near the heated wall. With an 

enhancement of Richardson number, the influence 

of thermal buoyancy forces was expanded from near 

the heated wall towards the core of the enclosure. 

This fact causes that the competition of Dufour 

effect and thermal buoyancy forces moves towards 

the upper half of the enclosure. With further 

increasing of Richardson number and when flow 

was dominated by natural convection, the extra heat 

diffusion has an aiding effect on the convection 

recirculation of the enclosure, whereby the 

convective mode of heat transfer at the core of the 



O. Ghaffarpasand / JHMTR 5 (2018) 51-68                                                                           65  

 

cavity was improved when Dufour coefficient 

enhances. 

The effect of pertinent parameters on the conductive 

mode of heat transfer is shown in Figs. 12(e)-(h). In 

here, the variation of the normal temperature 

variations along the vertical mid-plane of the 

enclosure is illustrated. When 𝑅𝑖 was decreased to 

0.01, the forced convection invigorates and heat 

transfer penetrates much deeper into the enclosure. 

This fact causes that the conductive mode of heat 

transfer in forced convection regime is submerged at 

the core of the enclosure and tended towards a zero 

value. However, it can be seen that the absolute 

value of the normal temperature variations near the 

heated wall was enhanced by decreasing Richardson 

number. This fact represents the concentrated 

thermal boundary layers in that region which 

observed before in Fig. 5. In addition, the extra heat 

diffusion has an opposing action with respect to the 

conductive mode of heat transfer near the heated 

wall. The thermal eddies which was formed by 

increasing Dufour coefficient, observed before in 

Fig. 7, can be recognized as the main reason of the 

behaviour of conductive mode of heat transfer near 

the heated wall. 

This work is wrapped by the investigation of the 

total kinetic energy variation across the enclosure. 

To help to better understand, the cases with 𝑅𝑖 =  4 

were just added here. The variation of average total 

kinetic energy as a function of Dufour coefficient for 

various convection regimes is represented in Fig. 13. 

It can be observed that 𝐸̅ was increased with 

reducing Richardson number when the influence of 

the extra heat diffusion was ignored, 𝐷𝑓 =  0. 

However, the variations of total kinetic energy as a 

function of Dufour coefficient manifests variety 

fashions depends mainly on the Richardson number 

value. In moderate and small Richardson numbers, 

it was reduced with increasing of the Dufour 

coefficient, while the opposite was achieved for the 

cases with 𝑅𝑖 > 1. This can be due to the influence 

of Dufour coefficient on the convective mode of 

heat transfer observed before in Fig. 12. In other 

words, increasing the convective mode of heat 

transfer would improve total kinetic energy of the 

enclosure. 

In further, a quadratic curve fitting of the average 

total kinetic energy with Dufour coefficient is 

implemented [32]. The fitted model is the form: 

𝐸̅ = 𝑎𝐷𝑓2 + 𝑏𝐷𝑓 + 𝑐                               (16) 

The values of coefficients a, b, and c with standard 

error of quadratic curve fitting for various 

Richardson numbers are calculated and registered in 

Table 3.  

 

In addition a linear curve fitting was also utilized 

on a, b, and c coefficients and Richardson number, 

whereby the following relation is obtained for 

total kinetic energy as follows: 

𝐸̅ = (−0.24𝑅𝑖 + 0.3)𝐷𝑓2 + (0.9𝑅𝑖 − 0.7)𝐷𝑓 +
0.2𝑅𝑖 + 24.7                              (17) 

The variations of total kinetic energy obtained by 

the relation above and data results achieved by 

numerical method are compared in Fig. 14. An 

acceptable agreement is observed between the 

obtained results. Therefore, Eq. (17) can well be 

utilized for estimating the average total kinetic 

energy of double-diffusive mixed convection in 

presence of Dufour effect.  
 

Table 3. The coeffiecients and standard errors of 

quadratic curve fitting of total kinetic energy. 

Ri a b c Standard Error 

0.01 -0.0047 -0.0853 24.926 0.0002 

0.1 0.0061 0.54 24.76 0.0008 

1 0.093 -1.4076 24.513 0.0012 

4 -2.2136 4.0211 23.339 0.0072 

10 -2.3423 7.9829 22.728 0.0081 

 

 

 

 
Fig. 13. The average total kinetic energy versus 

Dufour coefficient for diferent Richardson numbers 
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Fig. 14. The comparison of obtained results by 

numerical method (Num.) and estimated by Eq. (17) 

(Est.). 

 

5. Conclusions 

The present work addressed a numerical 

characterization of thermo-solutal mixed 

convection in a lid-driven square enclosure and in 

the presence of extra mass and energy diffusions 

named Soret and Dufour effects. The effects of 

varying Richardson number as well as Soret and 

Dufour coefficients on the resulting thermo-

solutal convection are examined and investigated. 

In addition, the influence of those pertinent 

parameters on the heat and mass transfer, various 

modes of heat transfer, and total kinetic energy of 

the thermo-solutal system are evaluated and 

discussed in detail. The main conclusions earned 

from this study are listed below: 

 

1. The influence of Soret and Dufour effects 

on fluid flow and transport phenomena 

seems to be insignificant when flow is 

dominated by forced convection. 

2. Thermal eddies formed by the competition 

of extra heat diffusion and thermal 

buoyancy forces at the bottom half of the 

enclosure causes a reduction in the natural 

convection heat transfer. 

3. The average Nusselt number decreases as 

Dufour coefficient and/or Richardson 

number increases. 

4. The average Sherwood number increases as 

Dufour coefficient and Richardson number 

enhance. It seems that the extra heat 

diffusion has an aiding effect on convective 

current of mass across the cavity. 

5. Dufour effect has an opposing action 

against the conductive mode of heat 

transfer especially at the vicinity of the hot 

wall. 

6. The enhancement of convective heat 

transfer within the enclosure causes an 

improvement in the total kinetic energy of 

the thermo-solutal system. 
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Nomenclature 

B buoyancy ratio 

C  concentration (𝑘𝑔𝑚−3) 

C0 characteristic concentration  

Dm diffusion coefficient (𝑚2𝑠−1) 

Df  dimensionless Dufour coefficient 

g gravity acceleration (𝑚𝑠−2) 

GrC solutal Grashof number 

GrT  thermal Grashof number 

L enclosure with (𝑚)  

Le Lewis number 

Nu  Nusselt number 

p fluid pressure (𝑁𝑚−2) 

Pr Prandtl number 

Re  Reynolds number 

Ri Richardson number  

Sc Schmidt number 

Sh  Sherwood number 

Sr dimensionless Soret coefficient  

T fluid temperature (𝐾) 

T0  characteristic fluid temperature  

U0 absolute lid velocity (𝑚𝑠−1) 

Greek  

𝛼𝑚 thermal diffusivity (𝑚2𝑠) 

 𝛽𝐶   concentration expansion coefficient (K−1) 

βT  thermal expansion coefficient (K−1) 

 𝜅𝐶𝑇       Soret coefficient (m−1K−1kgs−1) 

𝜅𝑇𝐶 Dufour coefficient (m5Kkgs−1) 
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𝜈 kinematic viscosity of fluid (m2s−1) 

Φ  dimensionless concentration 

 𝜓          stream function 

𝜌 fluid density (kgm−3) 

 𝜌0  characteristic fluid density 

Θ  dimensionless temperature 

 subscript 

h high  

l low 
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