
                                                               

1. Introduction 

In many different fields of applied sciences and 

engineering, heat sources such as lasers and 

microwaves have been extensively used under 

extremely short durations or very high frequencies. In 

such situations, the classical Fourier’s heat 

conduction theory becomes an inaccurate approach to 

describing diffusion and predicting temperature 

distribution. The non-Fourier effect is a more reliable 

means through which to explain the aforementioned 

processes. Non-Fourier motion (visually perceived 

motion that cannot be explained simply on the basis 

of the auto correlational structure of a visual stimulus) 

is a well-recognized phenomenon that is generally 

considered to be due to the non-linear preprocessing 

of a visual stimulus prior to standard motion analysis. 

In 1822, Fourier first investigeted an experimental 

relation between conduction heat transfer rate of a 

substance and the temperature gradient in the 

direction of energy flow. He deduced that the heat flux 

resulting from conduction heat transfer is proportional 

to the magnitude of the temperature gradient and 

opposite to it in sign [1]. This observation may be 

expressed for unidirectional conduction heat transfer 

as Eq. (1): 

 

( , , ) ( , , )q x y t k T x y t   ,  (1) 

 

 Most thermal conduction or mass diffusion 

problems are depicted and investigated using 

Fourier’s law, on whose basis non-physical 

conclusions are derived regarding situations that 

involve very high temperature gradients, extremely 

short durations, very low temperatures, and very small 
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structural dimensions. The use of Fourier’s law is 

complemented with a modified flux model of transfer 

processes with finite speed waves. For an improved 

explanation of heat conduction in solids, however, 

researchers were driven to develop non-Fourier heat 

conduction theories. The mathematical statement of 

non-Fourier heat conduction law, which represents 

the time lag of heat waves, is a type of differential 

equation.  

 If the occurrence of temperature difference T  

across depths x  and y  is the cause of heat 

conduction, the propagation of energy via conduction 

at any locations x and y in a medium with thermal 

conductivity k is expressed thus: 

 

( , , ) ( , , ),q x y t k T x y t     (2) 

 

where   is the thermal lag time, that is, the rate of 

thermal diffusivity ( ) to the square of the speed of 

heat wave propagation ( )C , 2( / )C  .  

 The non-Fourier heat conduction equation has 

found broad applications in the analysis and design of 

thermal systems [1–3]. recently, the lattice Boltzmann 

method has become a powerful numerical algorithm 

for simulating heat transfer phenomena and fluid 

flows. The LBM is based on simplified mesoscopic 

equation engineering and can easily incorporate 

underlying physics into numerical solutions. The 

method is a powerful technique for the computational 

modeling of various complex fluid flow and heat 

transfer problems in complex geometries. It is also a 

discrete computational approach grounded in the 

Boltzmann equation. It regards a typical volume 

element of fluid as composed of a collection of 

particles that are represented by a particle velocity 

distribution function at each grid point. Time is 

counted in discrete time steps, and particles are 

assumed to collide with one another as they move, 

possibly under applied forces.  

 Despite the advantages of the non-Fourier heat 

conduction mechanism, there are few studies about it. 

Ho et al. [4] and Mishra et al. [5, 6], investigated non-

Fourier heat conduction in one-dimensional planar 

geometry. In some studies also analyzed non-Fourier 

heat conduction in planar and rectangular geometries 

[7–11] and cylindrical and spherical geometries [12–

15]. Variable thermal conductivity heat transfer 

occurs in many engineering applications. Such 

variability can be observed, for example, during heat 

transfer in furnaces, boilers, porous burners, 

volumetric solar receivers, and fibrous and foam 

insulations; these materials exhibit combined 

conduction and radiation problems, in which large 

changes in temperature and thus large variations in 

thermal conductivity occur [16, 17]. Variable thermal 

conductivity in convective heat transfer problems may 

also be noticed in the heat exchangers and cooling 

systems of electronic devices. In the simulation of 

these cases, assuming the constancy of thermal 

conductivity may result in considerable error. 

 In this work, the LBM was employed for the first 

time to analyze non-linear, non-Fourier, two-

dimensional (2D) heat transfer with variable thermal 

conductivity. After the convergence and accuracy of 

the method was ascertained, the temperature 

distributions in a 2D plate were obtained under 

constant thermal conductivity and heat generation 

conditions. The derived temperature distributions 

were then compared. 

 

2. Formulation 

 The 2D geometry under consideration and its 

boundary conditions are illustrated in Fig. 1. Four 

boundaries of the plate were kept at constant 

temperature, and the wall at x=0.5 m was assumed to 

be adiabatic. The equation for non-Fourier conduction 

when two space dimensions are considered in analysis 

can be written as  

 

( ).
q T T

q k
t x y


  

   
  

 (3) 

 

 Conduction Heat transfer in a 2-D geometry can be 

described as Eq. (4) 

 

 

. .p

T
c q g

t



  


 (4) 

 

 Substituting q from Eq. (3) in Eq. (4) yields 

 
2

2

2
( ) ,p

T T
c k T g

t t
 

 
   

 
 (5) 

 

where  𝜌, 𝐶𝑝, k, and g are the density, specific heat 

coefficient, thermal conductivity, and volumetric heat 

generation, respectively. In Eq. (5), if thermal lag 

(relaxation time) ξ → 0, it takes a form governed by 

Fourier heat conduction. Applying the LBM for 

simulation necessitates the use of non-dimensional 

equations. To non-dimensionalize a system of 

equations, the following steps must be implemented: 

 

1. Identify all independent and dependent variables 

( , , , , , ).t x y T g q  

2. Replace each of the variables with a quantity 

scaled relative to a characteristic unit of 

measure to be determined *( , , , , , ).x y g      

3. Divide the obtained equation in step 2 by the 

coefficient of the highest-order polynomial or 

derivative term. 

4. Judiciously choose a definition of the 

characteristic unit for each variable so that the 
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coefficients of as many terms as possible 

become 1. 

For generalization, non-dimensional time  , 

distances x  and 
y , temperature  , heat flux  , 

and volumetric heat generation *g  are defined in Eq. 

(6) in the manner recommended in [18]: 

 
2

2
*

2

, , ,
2 2 2

4
, , .

  
  

 
 

  

  

x y

ref ref ref

c t cx cy

T g q
g

T c kT kT c

        (6) 

 

 The non-dimensional forms of Eqs. (3) and (4) 

are 

 

2 ,x
x

x

 


 

 
  

 
   (7a) 

2 ,
y

y

y

 


 

 
  

 
 (7b) 

*
*. .

2

g





  


  (8) 

 

 One of the most common approaches to 

considering the effects of source terms is attaching 

an additional term to the standard LBM, as was done 

in [19]. This approach is reflected in the equation 

below: 

 

 

(0)

( , ) ( , )

( ( , ) ( , )) ,

i i i

i i i

f r e f r

f r f r S

   


   



   

  
 (9) 

 

where 𝑓𝑖 is the particle velocity distribution function, 

𝜔𝑖 is the weight function, S denotes the source term, 

𝜏 represents the relaxation factor, ie  is the discrete 

particle vector, 
x yr i j    is the lattice grid, and 

  is the time increment. Eq. (9) is very convenient 

to use and accurate for steady source term situations 

[20]. 

 For the geometry under consideration, the 2 9D Q  

(Fig. 2) lattice was used. In this lattice, velocity ie  and 

the corresponding weight function 𝜔𝑖 are given as 

Eqs. (10) and (11): 

 

0, 0,

(cos[( 1) ],sin[( 1) ]) , 1, 2,3, 4,
2 2

9 9
(cos[( ) ],sin[( ) ]) , 5,6,7,8,

2 2 2 2

 

 


 



   



  


i

i

e i i c i

i i c i

  

(10) 

 

 

 

Fig. 1. Geometry and boundary conditions of the 

problem under consideration. 

 

 

 
Fig. 2. Nine-particle velocity 𝒆𝒊 in the 2D geometry lattice 
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  (11) 

 

 The solution of Eq. (10) in terms of 𝑓𝑖 yields non-

dimensional temperature distribution ( , )r t  in the 

plate as follows: 

 
(0) ,   i i

i i

f f  (12) 

 

 Using non-dimensional temperature distribution

( , )r t , non-dimensional heat flux   can be 

calculated by solving Eq. (3). If the LBM is employed, 

  is simply obtained according to Eq. (13): 

 
(0) ,      x x i i i i

i i

i j f e f e  (13) 

 

where i  and j  are the representative horizontal and 

vertical axes, respectively (Fig. 1). The solution of Eq. 
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(9) needs an equilibrium distribution function (0)

if , 

which, for this problem, is assumed to take the 

following form: 

 
(0) ( ).i if A   (14) 

 

 The equilibrium distribution function must 

satisfy Eqs. (12) and (13). The satisfaction of the 

equations is expressed thus: 

 
(0) ( . ).i i if e     (15) 

 

 Given that Eqs. (8) and (9) are equivalent and 

represent governing equations of the same problem, 

they should provide the same results under 

macroscopic and mesoscopic approaches. The 

classical Chapman–Enskog expansion is handled to 

confirm that the results of the mesoscopic approach 

accord with those of the macroscopic method. 

Accordingly, the source term (S) in Eq. (9) can be 

achieved through this expansion analysis, as reflected 

in Eq. (16). Details on obtaining source terms are 

provided in Appendix A. 

 
*

2 . .
2

i

g
S e    (16) 

 

 Chapman–Enskog multi-scale expansion can be 

used to confirm that the relationship between 

relaxation time   and thermal diffusivity   is 

obtained via Eq. (17): 

2

3
.

2ie

 
     (17) 

 

 In this study, the thermal conductivity coefficient 

was considered the quadratic function of non-

dimensional temperature, as demonstrated in Eq. (18), 

 

2(0.25 0.5 ).pk c    (18) 

 

2. 1. Boundary Conditions 

 The boundaries of the 2D plate were positioned 

on the lateral sides of the computational domain. In 

the upper, right, left, and bottom boundaries, 

4 7 8( , , )f f f , 3 6 7( , , )f f f , 1 5 8( , , )f f f , and 2 5 6( , , )f f f

respectively, are unknown and should be specified for 

streaming. The boundary conditions are shown in Fig. 

1. The unknown distribution functions can be 

regarded as Eqs. (19) to (24):  

 

2 2up B.C.: ( ) ,

4,7,8.

i up i i if f

for i

      


 (19) 

   

 

2 2bottom B.C.: ( ) ,

2,5,6.

i bottom i i if f

for i

      


 (20) 

 

2 2

6 6 8 8

right B.C.: ( ) ,

3,7,

( ) .

i right i i i

right

f f

for i

f f

  

  

   



  

 (21) 

 

2 2

8 8 6 6

left B.C.: ( ) ,

1,5,

( ) .

i left i i i

left

f f

for i

f f

  

  

   



  

 (22) 

 

adiabatic B.C.: 0 0,1,...,7.if for i
x


 


 (23) 

 

To solve the governing equation, (i.e., Eq. (9)), in 

addition to, the boundary conditions, the initial 

condition requires identification. This condition is 

written as follows: 

 

: ( , 0) 0.IC r      (24) 

 

3. Results and Discussion 
  

 Grid convergence reflects result improvement 

derived through effective small cell sizes for 

calculations. A calculation should come on the correct 

answer as a mesh becomes finer, hence the term “grid 

convergence”. To do this, grid-independent numerical 

results for the examined 2D plane should be obtained 

using several different grid resolutions. As shown in 

Fig. 3, the number of grids adopted in this work 

ranged from 5850 to 31850. With 23400 grids, the 

temperature difference between two consecutive time 

periods did not exceed
610

. 
 

 In any practical application, a number of 

important decisions need to be made. These include 

decisions regarding the number of iterations, the 

spacing between the iterations retained for the final 

analysis, and the number of initial burns in discarded 

iterations. In the problem pursued in this work, the 

convergence of results was achieved by increasing the 

number of iterations in the LBM from 1000 to 16000. 

Fig. 4 presents the temperature distribution at y=0.4 

m along the x direction. After 15000 iterations, the 

results coincided.   
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Fig. 3. Centerline (y=0.4 m) temperature evolution at 

different numbers of grids. 
 

 
Fig. 4. Centerline (y=0.4 m) temperature evolution at 

different numbers of iterations. 
 

 

 
 

Fig. 5. Comparison of centerline ( 0.5)x   temperature 

distributions in the present study and [23]. 

 

To validate the results, we analyzed non-Fourier heat 

conduction in the 2D plate under known temperatures 

in the four boundaries and compared the temperature 

distributions at steady-state conditions in the 

centerline ( 0.5)x   with those reported in the 

literature (i.e., [23]). Fig. 5 indicates excellent 

agreement between the findings.    

 The thermal perturbation source is centrally 

located on the north and west boundaries of the plate 

and influences the temperature distribution along the 

plate. Figs. 6 and 7 show temperature distributions at 

x=0.25 m, 0.5 m, and 0.7 m at dimensionless time 

periods 0.1, 0.3, 0.6 and 1   respectively. Over time, 

temperature along the considered lines increased to 

reach a steady state. 

 Temperature distributions in the plate under heat 

generation conditions at dimensionless time periods

0.1, 0.3, 0.6 and1  , respectively, and the steady state 

for different locations are shown in Fig. 6. The figure 

clearly shows the hyperbolic nature of the problem. At

0.1  , only the limited regions close to the 

boundaries were affected. With the passage of time, 

the influence propagated in all parts of the 2D 

geometry domain. At 1   or when steady-state 

conditions were reached, the hyperbolic behavior died 

out, and the conditions became identical to those 

observed in Fourier conduction. 

 Figs. 8 and 9 illustrate the effects of volumetric 

heat generation on different parts of the plate. In this 

case, a heat source was assumed to exist at one part of 

the plate, and other boundaries were assumed to be 

located at specified boundary conditions. The non-

dimensional volumetric heat generation was set 

at 10−3. Heat generation exerted a minimal effect in 

the beginning compared with the effect imposed 

under steady-state conditions. This result is attributed 

to the fact that heat generation entails some time to 

influence the temperature profile. Temperature 

distribution under constant thermal conductivity was 

reviewed (Fig. 8). A difference was found between the 

heat generation conditions and the conditions wherein 

thermal conductivity was a function of temperature. 

This finding is due to the fact that temperature 

increased, according to Eq. (27), as thermal 

conductivity increased. Given the material’s 

considerable effectiveness in transferring heat energy 

under heat generation conditions, the temperature 

gradient of the plate decreased to a level lower than 

that observed under constant thermal conductivity. 

 

4. Conclusion  
  

The LBM was applied in this work to solve the 

energy equation of a problem with temperature-

dependent thermal conductivity. This study is the first 

to use the LBM in solving the non-Fourier heat 

conduction problem in a 2D geometry with uniform 

lattices. The source terms in the LBM formulation 

were obtained using Chapman–Enskog expansion. 
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Temperature distributions at four temporal periods, 

including the steady state when the plate was 

subjected to heat generation and constant thermal 

conductivity conditions, were also examined. The 

results showed that because of changes in the ability 

of the material to transfer heat energy, the temperature 

gradients under constant and variable thermal 

conductivity differed. 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Temperature distributions at different time 

periods ( 0.1, 0.3, 0.6,1)   and (a) x=0.25 m, (b) 

x=0.5 m, and (c) x=0.7 m 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Contours of temperature distribution derived via 

the current LBM model at different time periods: (a)

0.1  , (b) 0.3  , (c) 0.6  , and (d) 1   (steady 

state). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. Temperature distributions at different time 

periods ( 0.1, 0.3, 0.6, 1)   and (a) x=0.25 m, (b) 

x=0.5 m, (c) x=0.7 m, and (d) y=0.4 m. Temperature-

dependent thermal conductivity is denoted by a solid 

line; constant thermal conductivity is denoted by a 

solid line with a shaded circle on it; and heat generation 

is denoted by a dashed line. 

 

Nomenclature 

c  microscopic velocity vector 

C speed of thermal wave ( / )m s  

pc  specific heat ( / )kJ kg c   

ie  propagation velocity in direction i in 

the lattice 

if  particle distribution function in the i 

direction 

k thermal conductivity ( / )W m c   

L reference length (m)  

m direction 

q conduction heat flux 2( / )W m  

r  position vector 

S source term 

T temperature ( )c   

t time (s) 

X, Y 
dimensions of the 2D rectangular 

enclosure 

Greek symbols 

  thermal diffusivity coefficient 2( / )m s   

   non-dimensional temperature 

  non-dimensional time 

  relaxation time 

  direction cosine  

  time lag 

   non-dimensional heat flux 

Subscripts 

i, j coordinates of a cell center 

ref reference 

x, y for x-y faces of control volume 

0 initial value 

Superscripts 

* Non-dimensional quantities 
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Appendix A 
 

 The distribution function can be extended in 

terms of a small parameter  (Knudson number) as 

follows: 

(0) (1) 2( , ) ( ),i i if r f f o      (A-1) 

 

       where (0)

if  is the distribution function at 

equilibrium state and is equal to eq

if . Summing up the 

equation above and noting that 1   leads to 

(1) 0, 0,1,2,....  n

i i

i

e f n  (A-2) 

 The updated distribution function 

( , )if r r    in Eq. (9) is expanded using Taylor 

series: 

 

2 2

( , )

( )
( , ) . ( , ).

i

i i i
i

f r r

f e f
f r r o r

r

  

    


  

 
  

 

 (A-3) 

  

 Substituting the two equations above in the right 

hand side of Eq. (9) yields 
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(0) (1) (0) (1)

(1) (0) (1) 2 2 2

( ) ( )

1
( ) ( , , ).

i i i i i i

i i

f f e f e f

r r

f S S o r

 
 

     


   
  

   

    

  (A-4) 

 Collecting the terms of order   from both sides 

of the above-mentioned equation, summing it over all 

states (i.e., i=0,…, 8), and considering that 1i

i

   , 

(1)S  is equal to zero, we obtain Eq. (A-5). 

 
(1) (1)

(1) (1) (1)

( )

1
0.





 

 
 

   

 



i i i

i i

i

i

f e f

r

f S S

  (A-5) 

By deriving equivalence between the other terms from 

both sides of the equation above and summing it over 

all states (i.e., i=0,…, 8), we derive to the Eq. (A-6). 

(0) (0)

(0)

* (0)

( )

. .








 

 
 


   



 i i i

i i

f e f

S
r

S

 (A-6) 

 Multiplying the equation above by propagation 

speed 
ie  results in Eq. (A-7). 

(0) 2 (0)

(0)

* (0)

. ( )

.

. . .








 

 
 


   



 i i i i

i i
i

i

e f e f

e S
r

e S

 (A-7) 

A correct form of (0)S  can be obtained as Eq. (A-8). 

*
(0) 2 . .

2
  i

g
S e   

 

(A-8) 





                                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


