
                                                               

1. Introduction 

 The Czochralski crystal growth technique is one 

of the most essential methods for producing large size 

germanium single crystals. Because of the 

multidisciplinary nature of the crystal growth 

technology, understanding of the growth phenomena 

as well as the interaction between the many factors 

influencing the final crystal quality, not only is not so 

easy but also is a very complicated task. However, 

because of high temperature, opaque materials and 

high purity requirements, improvement of any 

extensive experiments in the crystal growth 

environment is proved to be time consuming and 

extremely expensive. Therefore, numerical modelling 

and computer simulation has become an essential and 

indispensable tool for understanding, developing and 

optimizing the crystal growth processes and related 

equipment [1-41], that provides a meaningful and 

cost-effective alternative tool to experimental trials. 

The ultimate goal of numerical modelling in crystal 

growth technology is to control and optimize the 

growth process. 

The transport processes (heat and mass transfer 

including melt and gas convection) problem in 

Czochralski crystal growth technique represents one 

of the biggest challenges of crystal growth modelling 

[6,9,24,34]. Crowly [42] developed a mathematical 

model of the heat transfer in the holm region in the 

germanium Czochralski furnace including two 

moving boundaries, the phase change surface and the 

air-liquid meniscus applying the enthalpy method. 

Dupret etal. [43] implemented a simulation of the 

temperature field and the position of the 

crystallization front during growth of germanium 

crystal using radiative heat transfer. Bogaert and 

Dupret [44,45] computed the time-dependent 

Czochralski growth of germanium crystal including 
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heat exchange by conduction and diffuse grey 

radiation, in and between all the setup constituents, 

together with all the transient effects induced by the 

growth of crystal without melt convection. Bykova 

[46] simulated a two-dimensional time-dependent Ge 

crystal growth by the AHP method under 

microgravity conditions and showed that axial 

microaccelerations will have no impact on the forced 

melt flow along the crystallization front. Abbasoglu 

[47] performed a transient 3D numerical simulation to 

examine the roll of crystal and crucible rotations on 

the fluid flow and the radial segregation of silicon 

during the growth of Gex Si1−x crystals by the 

Czochralski technique using microgravity conditions. 

Recently, Honarmandnia etal. [48,49] have carried 

out a 2D global simulation of an RF Czochralski 

apparatus for different stages of germanium crystal 

growth in order to analyse of thermal field, the 

convexity of the crystal–melt interface and thermo-

elastic stresses of the grown crystal. Besides, an 

asymmetrical configuration leads to asymmetric and 

3D thermal fields in the growth setup, which in turn, 

changes the crystal quality, Figure 1. For this reason, 

a 3D calculation is required and has to be performed. 

It is usual to provide a heat shield assembly 

disposed above the molten source material (Si and Ge) 

and surrounding the ingot as it is pulled upward from 

the melt to shield the grown crystal against heat 

radiated from the crucible and the heater surrounding 

the crucible. Heat shield assemblies are typically 

constructed of graphite. Because of a relatively high 

emissivity of graphite, a conventional heat shield has 

a high ability to emit radiant energy from its surface, 

and so it radiates a substantial amount of heat toward 

the grown crystal, thereby inhibiting cooling of it. 

Consequently, the crystal pulling rate from the melt 

can be increased in crystal puller setups. On the other 

hand, the heat shield is refereed sometimes to a gas 

flow guide shield. Because it guides the inert inlet gas 

(usually Argon) toward the ingot to aid the cooling of 

the single crystal (reducing the possibility of 

microdefect nucleation). Another important effect of 

the guided gas flow is that the melt free surface is 

blown by it in such a manner that the gas flow takes 

the impurity away from the free surface regularly. 

Therefore, the obtained grown crystal will contain a 

reduced concentration of impurities and so a crystal 

with improved quality is achieved. 

The goal of this work is to apply an appropriate 3D 

numerical approach of a resistance heated CZ furnace 

for a Ge crystal before the seeding process (i.e., 

including only melt and gas), and to analyze the 

structure of fluid flow, temperature field and global 

heat transfer using finite volume method (CFD 

FLUENT Package [50]). Our attention is specially 

focused on the region where the crystal is grown. It is 

worth to note that the obtained numerical results are 

interesting and quite important for the growers, which 

present detail information about the nonsymmetrical 

thermal field in the growth setup. During the growth 

process, from seeding to cooling crystal, a real-time 

control and monitoring of the thermal field is crucial 

task because it directly effects on the shape and quality 

of the grown crystal. For example, a nonsymmetrical 

thermal field can change the cylindrical shape 

(circular cross section) of the crystal to a non-

cylindrical shape [51-53]. Therefore, improvement 

and reduction of the non-cylindrical symmetric 

conditions of the growth setup, and precisely 

controlled the growth procedure are possible using the 

simulation results presented here.  
 

2. Model description 

 

2.1. Governing equations 
Figure 1 represents the schematic diagram of the CZ 

growth, which is used in this study. Our model covers 

the following key assumptions: (1) The system is not 

time dependent (i.e., steady state). (2) Melt and gas 

are incompressible Newtonian fluids keeping the 

Boussinesq approximation. (3) The flow is laminar. 

(4) Viscous dissipation is not included. (5) The 

surface of melt is flat, i.e., there is not any meniscus 

at the crucible wall. (5) The thermo-physical 

properties of the fluids are constant except for the 

density difference in the buoyancy force term. (6) 

Fixed temperature is set on the chamber walls. 

 

 

 
 

Fig 1. Schematic model of the resisting heated 

Czochralski system for Ge growth. 

Thus, the basic equations are; 
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(a) Fluid flow in the melt and gas: 

   2

0
ˆ. - zp ρβg T T e       v v v

r r r
                 (1) 

which is the Navier-Stokes equation with Boussinesq 

approximation. 

(b) Continuity equation: 

  . 0 v
r

                                                                  (2) 

c) Energy equation: 

  2 . 0f fT T   v
r

 (convection and conduction in 

the melt and gas)                                                     (3) 

  02  sT  (conduction in the solid parts)              (4) 

where the subscripts f and s denote fluids (gas and 

melt), solids (crucible, heat shield, insulation and 

chamber), respectively. The boundary conditions are:  

a) at the solid-fluid interfaces:  

     0 v
r

                                                                (5) 

b) at the melt-gas interface:  
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where the subscripts m and g denote melt and gas, 

respectively. The Equation (7) represents the thermal 

Marangoni phenomena at this interface. 

c) at the outer surfaces of the chamber (the water 

cooled wall): 

  300T K                                                             (9) 

d) at the solid-gas interfaces:  
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s g s s
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                       (10) 

which denotes the gas cooling combined with surface 

to surface heat radiation exchange from those 

surfaces. 

e) at the gas inlet: 

  300gT K                                                          (11) 

  0,g g g inu v w v                                              (12) 

f) at the gas outlet: 

  ˆ. 0, 1  gn T p atm                                          (13) 

    In the above equations, v
r

= (u, v, w) is the fluid 

velocity vector in the cylindrical coordinate system 

(r,φ z), p the pressure, T the temperature, 
zê  the z-

directional unit vector, g the acceleration due to 

gravity, β the thermal expansion coefficient, µ the 

dynamic viscosity, α the thermal diffusivity, γ the 

surface tension, ε the emissivity, k the thermal 

conductivity, ρ the density, n̂  the unit normal vector, 

̂  the unit tangential vector along the meridional 

direction and σ the Stefan-Boltzmann constant. 

 

2.2. Numerical method 
In the next step of the calculation procedure, the 

current problem of great interest is to obtain a very 

high-order accurate and efficient numerical solution 

for the system of governing equations in the 

computation domain. It is as follows:  

    1. The governing equations were solved employing 

the finite-volume based CFD FLUENT Package with 

three-dimensional double precision second-order 

discretization. The finite volume method is a common 

way used in several CFD codes and has some 

advantages in memory usage and solution speed, 

especially for large problems (like our problem). 

    2. Since the domain of interest has a complex 

geometrical shape, an unstructured grid of more than 

5×105 finite control volume was employed, Figure 3. 

    3. The convergence is checked by monitoring 

residuals of momentum, continuity and energy 

equations which were set at 10-5, 10-5 and 10-6, 

respectively.  

 

2.3. The calculation conditions 
All parts of the considered CZ setup have cylindrical 

symmetry except for gas ducts and outlets. Placing of 

two gas ducts in the bottom insulation and the same 

outlets in the chamber breaks the 2D rotational 

symmetry of the system. This means that the CZ setup 

has still a symmetry axis (z) and two perpendicular 

planes of symmetry (zx and zy), Figure 2. The gas 

ducts and outlets are located in the zx plane. 

     The temperature at the central point of the melt-gas 

interface (i.e., the position of the seed crystal) is 1210 

K, i.e., 20 K above the melting point of Ge (real 

condition before the seeding). It is not a boundary 

condition but it must be a calculation result by 

adaption of the heater power. The inlet gas flow rate 

is set to be 1 lit/min. The thermophysical properties 

used for our simulations are selected from the 

FLUENT materials database. 

     In order to analyse and obtain detailed information 

about the effects of the asymmetrical geometry and 

the gas flow on the thermal conditions during the Ge 

growth, we have considered two computational cases, 

the configuration contains (a) only gas (i.e., without 

any melt and crystal), and (b) gas and melt, 

confirming to the real condition just before the Ge 

seed contacts the melt. We will discuss the flow and 

temperature fields in these two cases specifically. 

 
Fig 2. Two perpendicular planes of symmetry zx and zy in 

the growth setup. 
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Fig 3. The applied unstructured grid used for the 

calculation. 

 

 

 
Fig 4. Temperature field (right hand side) and the vector 

velocity (left hand side) in the symmetry plane zx for Case 

a - configuration containing only gas. 

 

3. Results and discussion 

3.1. Case a: Configuration contains only gas 
Figures 4 and 5 show the temperature field (right hand 

side) and flow arrows (left hand side) in the setup for 

both perpendicular planes of symmetry zx and zy. In 

both planes, a counter clockwise gas vortex caused by 

free convection (buoyancy driven) with average speed 

3.5 /v cm s  exists and occupies the upper entire 

volume of the configuration (i.e., independent of the 

asymmetrical conditions). This flow carries the heat 

from the upper side of the heat shield to the middle 

space (location of the seed holder) and so prevents the 

inlet gas flow in that part. For this reason, the inlet gas 

flow is completely deflected from the central part 

toward the chamber side wall. Then it is directed 

toward the central part along the upper side of the heat 

shield, downward into the crucible, passing the area 

between the heat shield and the crucible, and then 

again downward to the space below the crucible. In 

that part of the system, the gas flow is guiding into 

two ducts placed in the bottom insulation (zx plane) 

and speeding it up (average speed 13.6 /Ductv cm s ), 

and then exits the setup via the chamber outlets with 

average speed 12.7 /Outletv cm s . For this reason, the 

behaviour of gas flow is completely three-

dimensional and non-cylindrical symmetric in that 

region.    

       

 

 
Fig 5. Temperature field (right hand side) and the flow 

arrows (left hand side) in the symmetry plane zy for Case a 

- configuration containing only gas. 

 

 

 
Fig 6. A three-dimensional view of the temperature field in 

the symmetry planes zx and zy for Case a - configuration 

containing only gas. 
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The temperature gradient in the setup is considerably 

affected by the orientation of gas convection, and so 

it is completely three-dimensional too, Figure 6. In the 

growth setup, the role of gas flow is quite important 

as other mechanisms of the heat transport phenomena 

(such as conduction and radiation). Therefore, the 

isotherms have a curvature commensurate to the 

structure and intensity of gas flow. The isotherms are 

pushed along the gas flow (proportional to its 

velocity) in the upper part of the system and deflected 

toward the bottom ducts and outlets. The temperature 

maximum in the setup is 1542MaxT K and is located 

at the upper part of the heating elements. 

 

 

 
Fig 7. Temperature field (right hand side) and the flow 

arrows (left hand side) in the symmetry plane zx for Case b 

- configuration containing melt and gas. 

 

 

 
Fig 8. Temperature field (right hand side) and the flow 

arrows (left hand side) in the symmetry plane zy for Case b 

- configuration containing melt and gas.  

 
Fig 9. Temperature field (right hand side) and the flow 

arrows (left hand side) in the symmetry planes zx and zy in 

the melt for Case b. 

 

 
Fig 10. A three-dimensional view of the temperature field 

in the symmetry planes zx and zy  for Case b - 

configuration containing melt and gas. 

 

3.2 Case b: Configuration contains melt and gas 
Figures 7 and 8 represent the temperature field (right 

hand side) and flow arrows (left hand side) in the 

growth system for both perpendicular planes of 

symmetry (zx and zy). The orientation of argon flow 

is completely similar to Case a, which is totally three-

dimensional as has been already described. The gas 

average speed is 3.8 /gasv cm s which is a little higher 

than Case a. 

     In the molten material, a counterclockwise eddy 

that is produced by the free convection overlapped 

with the thermal Marangoni flow happens and 

occupies its entire volume with an average speed

0.8 /meltv cm s , Figure 9. This vortex has expanded 

from the crucible wall to the centerline. The melt flow 

is started along the hot crucible sidewall (buoyant 

flow) and the melt-gas interface where the 
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temperature gradient via the surface tension produces 

the thermal Marangoni convection [40,47].  

     The temperature field in the growth setup is 

distinctly influenced by the gas flow similar to Case 

a. The influence of gas flow is more essential than 

conduction and radiation in the gas part. Therefore, 

the isotherm shapes have a deviation commensurate 

to the gas convection approach and flow arrangement. 

The gas isotherms are moved downward along the 

inner surface of the heat shield, upward adjacent to 

inner crucible sides, deflected downward in the space 

between the crucible and heater and deformed toward 

the gas ducts and outlets, Figure 10. The temperature 

maximum in the furnace is 1604MaxT K and is 

located at the lower part of the heating zone contrary 

to Case a. In the Ge melt 1238.1Melt

MaxT K which its 

location is in the lower portion of the crucible sidewall 

and close to its bottom. 

     Figure 11 illustrates the temperature variation of 

the melt surface and its sensitivity to the gas flow 

above the melt surface. It shows a non-cylindrical 

symmetric structure, which arises from the different 

gas flow in the zx and zy symmetry planes. In the zx 

plane, the argon flow rate more accelerates and 

becomes stronger than zy plane and so it can cool the 

melt surface more efficiently in that direction. 

Therefore, the temperature maximum of the melt 

surface is located in the zy symmetry plane with 

2.5 K: more compared to the zx plane. It should be 

noted here that the non-symmetrical conditions of 

thermal field in the growth setup is quite similar in 

both cases considered here which is arises directly 

from different argon flow in the zx and zy symmetry 

planes.   

     It has been mentioned that any non-symmetrical 

condition for setup thermal field is not desirable and 

can lead to crucial problems related to the crystal 

quality. Consequently, we have to prevent or reduce 

these non-symmetrical thermal conditions of the 

growth furnace by special considerations during the 

system design, for example, using four symmetrical 

gas ducts and outlets in the presented growth setup.   

 

4. Conclusions and outlook 
We have presented and exhibited the results of a three-

dimensional global numerical calculation of the flow 

structure and temperature field for a non-cylindrical 

Ge crystal puller containing only gas (Case a), and 

melt and gas (Case b). From these simulations, we can 

conclude: 

1- The presented numerical solution is only the 

first result of the considered non-cylindrical Ge 

Czochralski configuration including seed and crystal. 

Therefore, the obtained results are useful for the 

seeding process because the detailed information 

about the thermal field at the melt surface is a crucial 

factor for a successful seeding process (before, during 

after touching the seed to the melt). 

 

 
Fig 11. Temperature variation of the melt free surface, 

which shows a non-rotationally symmetric distribution. 

 

2- Although the temperature gradient is 

symmetrical around the center of melt surface but it is 

completely non-cylindrical symmetric close to the 

crucible wall which arises from the three-dimensional 

orientation of argon flow above it. The temperature 

difference along the y-direction is 2.5 K:  more than 

x-direction, Figure 11. Therefore, this condition can 

influence on the control of crystal diameter and its 

uniformity. For this reason, further calculations 

including the seed and grown crystal have to be 

performed.  
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