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In the present study, an analytical investigation on the entropy generation examination for 
viscoelastic fluid flow involving inclined magnetic field and non-linear thermal radiation 
aspects with the heat source and sink over a stretching sheet has been done. The boundary 
layer governing partial differential equations were converted in terms of appropriate 
similarity transformations to non-linear coupled ODEs. These equations were solved utilizing 
Kummer's function so as to figure the entropy generation. Impacts of different correlated 
parameters on the profiles velocity and temperature, also on entropy generation were 
graphically provided with more information. Based on the results, it was revealed that the 
existence of radiation and heat source parameters would reduce the entropy production and 
at the same time aligned magnetic field, Reynolds number, dimensionless group parameter, 
Hartmann number, Prandtl number, and viscoelastic parameters would produce more 
entropy. The wall temperature gradient was additionally computed and compared with 
existing results from the literature review, and demonstrates remarkable agreement. 

DOI: 10.22075/jhmtr.2018.13611.1198 

 

Keyw ord s:  

Entropy;  

Inclined magnetic field;  

Heat source/sink;  

Non-linear thermal radiation.  
 

 © 2019 Published by Semnan University Press. All rights reserved. 

1. Introduction    

The territory of entropy generation has always attracted 

huge consideration in a few fields, for example, heat 

exchangers, electronic cooling, porous media, solar power 

collectors, turbomachinery, and combustions. Entropy 

investigation is a framework for specifying the 

irreversibility of thermodynamic in a few fluid heat 

transfer and flow forms, which is a result of the second law 

of thermodynamics. It tries to find out the measure of 

irreversibility related to genuine procedures. The idea of 

minimization of entropy generation was proposed by 

Bejan [1]. Then, a few analysts examined the entropy 

generation on viscoelastic fluid flows over an extending 

sheet. The impact of entropy generation examination over 

a stretching sheet was studied by Aiboud and Saouli [2] 

for viscoelastic hydromagnetic flow. It was demonstrated 
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that the entropy production is slightly affected by the 

magnetic parameter. The impact of entropy generation 

examination for hydromagnetic, mixed convective flow 

was contemplated by Butt et al. [3]. This expansion in the 

viscoelastic parameter has changed the entropy generation 

by a greater amount compared to what happened before.  

Analysis of the entropy generation test to the 

hydromagnetic flow of viscoelastic fluid in the presence of 

heat generation on a stretching surface was done by Baag 

et al. [4].  Rashidi et al. [5] performed work on entropy 

generation investigation for the hydromagnetic nonfluid 

flow on a stretching sheet. A numerical report on entropy 

production was studied by Lopez et al. [6] with non-linear 

hydromagnetic thermal radiation in a micro-channel. The 

impact of entropy generation examination for hydro-
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magnetic-nano-fluid stream over a porous medium was 

investigated by Shit et al. [7]. 

The issue of Magneto-hydrodynamic (MHD) fluid flow 

has been deliberated for its essentialness in the 

geophysical, extrusion of plastic sheets,  aero-dynamics, 

extrusion of plastic sheets, metallurgy, engineering 

procedure, for example, in oil enterprises, plasma 

contemplates, cooling of atomic reactors and MHD power 

generators. Furthermore, in medical fields, the MHD is 

pertinent in the magnetic wound, blood pump machinery, 

transportation of drugs, blood loss saving for the period of 

surgical treatment. In an inclined magnetic field with non-

linear thermal radiation, Hayat et al. [8] accomplished 

work for nano-fluid flow on a stretching surface, including 

heat source/sink effects. Abdul Hakeem et al. [9] resolved 

the boundary layer flow of a Casson fluid on a stretching 

sheet by means of an inclined magnetic field effect. In 

recent years, several articles deliberated the influence of 

an inclined magnetic field on the boundary layer flow 

issues [10-14]. 

Even though the significance of viscoelastic fluid 

cannot be denied due to their applications in plastic 

manufacturing, extrusion of plastic films, drawing of 

stretching sheet through quiescent fluid models are meant 

for slow fluids taking a slight level of elasticity [15].  Over 

an irregular channel, the performance of the magnetic field 

on viscoelastic fluid flow was analytically evaluated by 

Sivaraj and Rushi Kumar [16]. The same researchers 

studied the production of a viscous-fluid flow on a moving 

cone and flat plate [17]. Such attempts have still been 

pointed out to non-Newtonian fluid, with a much smaller 

number of records for a stretched flow of viscous fluid. 

Thermal radiation is a key in the plan of countless 

advanced energy alternatives operating in high-

temperature liquids. A numerical inquiry of thermal 

radiation on the flow of MHD nano-fluid was analyzed by 

Sheikholeslami et al. [18] through an enclosure. Ganesh 

Kumar et al. [19], in the existence of the magnetic field, 

tested the dusty hyperbolic tangent fluid through a 

stretching sheet. The three-dimensional flow with non-

linear thermal radiation influence on a stretched nanofluid 

was studied by Rakesh Kumar et al. [20] along with a 

rotating sheet. 

Hayat et al. [21] tackled an issue for mixed convective 

magneto-hydro-dynamic nano-fluids flow past an inclined 

stretching sheet incorporating its effectiveness for non-

linear thermal radiation. Farooq et al. [22] took into 

account the hydromagnetic stagnation point flow of the 

viscoelastic nanofluid to typically access the condition of 

non-linear thermal radiation along with a stretching sheet. 

Likewise, Ganesh Kumar et al. [23] inspected the 

viscoelastic nanofluid flow with double-diffusive free 

convective boundary condition in order to determine the 

impact of non-linear thermal radiation. Numerous 

examinations have been completed successfully by the 

specialists to plot the non-linear thermal radiation in 

different geometries [24, 25]. 

Nobody has ever considered the stretching sheet 

problem with the effects of blending inclined magnetic 

field and non-linear thermal radiation on entropy 

generation of the viscoelastic fluid (to the greatest extent 

of the authors’ data). Remembering this, in the present 

examination, we have broken down for the viscoelastic 

fluid, the impacts of the inclined magnetic field on entropy 

generation over a stretching sheet together with non-direct 

thermal radiation and uniform heat source/sink 

analytically. The emerging profiles were utilized to 

process the entropy generation. The outcomes were also 

examined using graphical outlines and tables. 

 

2. Mathematical formulation and 
solution 

We analyzed two-dimensional steady, boundary layer 

flow of viscoelastic fluid on a stretching sheet coinciding 

with a plane y equal to zero, and the flow is confined to y 

greater than zero. The inclined magnetic field of strength 

B0 is applied along the y-direction, with a sensitive angle 

γ. If magnetic field acts as the transverse magnetic field 

at the angle γ = 900 , under the usual boundary layer 

hypothesis, the continuity, momentum, and energy 

equations for the flow of viscoelastic fluid would be as [2, 

8]. 
∂u

∂x
+
∂v

∂y
= 0 

(1) 

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
−k0

(

 
 

u
∂3u

∂x ∂y2
+ v

∂3u

∂y3

−
∂u

∂y

∂2u

∂x ∂y
+
∂u

∂x

∂2u

∂y2)

 
 

 

                                    −
σB0

2

ρ
usin2γ 

(2) 

ρCp (u
∂T

∂x
+ v

∂T

∂y
) = k

∂2T

∂y2
+ q(T − T∞) −

∂qr
∂y

 
(3) 

where 𝑘0 =
−𝛼1

𝜌
 is the viscoelastic parameter, qr is the 

radiative heat flux, and q is the rate of volumetric heat 

source/sink.  

The boundary conditions for the velocity field are of the 

form: 

y = 0,                  u = up = λx,                v = 0 

y → ∞,                  u = 0,                         
∂u

  ∂y
= 0              (4) 

Using Rosseland approximation for radiation (see 

Hayat et al. [8]): 

q
r=−

4σ∗

3k∗

∂T4

∂y
 

(5) 

Disregarding the higher order terms T4, the assumed 

neglected temperature difference about 𝑇
∞

 in the flow 

could be expanded utilizing Taylor’s series as:  

 

T4 ≅ 4T∞
3T − 3T∞

4  (6) 

and 
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∂qr
∂y

= −
16σ∗T∞

3

3k∗
∂2T

∂y2
 

(7) 

After substituting Eq. (7) into Eq. (3): 

ρCp (u
∂T

∂x
+ v

∂T

∂y
) = k

∂2T

∂y2
+ q(T − T∞) +

16σ∗T∞
3

3k∗
∂2T

∂y2
 

(8) 

Using dimensionless stream 𝜓(x,y) such that 

u =
∂ψ

∂y
andv = −

∂ψ

∂x
 (9) 

 

2.1. Solution of flow field 

Introducing the similarity transformations [2] 

η = y√
λ

ν
,            ψ(x, y) = x√νλf(η) (10) 

Then, the momentum Eq.(2) becomes:  

f ′
2
− ff ′ = f ′′′ − k1(2f ′f ′′′ − ff ′′′′ − f ′′

2
) 

                                                   −Mnf ′sin2γ 

(11) 

   where 𝑀𝑛 =
σB0

2

aρ
f

 is the magnetic parameter and 

k1 =
λk0

ν
 is the viscoelastic parameter. 

The boundary conditions of Eq. (11) are:  

f(0) = 0, f ′(0) = 1, f ′(∞) = 0, f ′′(∞) = 0 (12) 

An analytic solution of Eq. (11) satisfying the boundary 

conditions (12) as [Abdul Hakeem et al.[9]] could be 

obtained as: 

f(η) =
1 − e−αη

α
 

(13) 

Substituting Eq. (13) into Eq. (11) and using Eq. (12), 

the velocity components take the form: 

u = λxf ′(η),                    v = −√νλf(η) (14) 

where 

α = √
1 +Mnsin2γ

1 − k1
 

(15) 

 

2.2. Solutions for the thermal transport 

Which are relevant as: 

y = 0,           T = Tp = A (
x

l
)
r

+ T∞ 

T →∞,         T = T∞        (16) 

Describing  dimensionless temperature as 

θ(η) =
T−T

∞

Tp−T∞
         (17) 

using Eq. (14) and Eq. (17), in Eq. (8) the result would 

be: 
θ′′(η)

Pr
(1 +

4Rd

3
{1 + (θw − 1)θ}

3) +
4Rd

3
{1

+ (θw − 1)θ}
2 

 (θw − 1)θ′
2
+ f(η)θ′(η) − (rf ′(η) − β)θ(η) = 0 

(18) 

and the corresponding boundary conditions of Eq. (16) 

takes the form 

θ(0) = 1           and               θ(∞) = 0       (19) 

where Pr =
μCp

k
 the Prandtl number, β =

qυ

ρCp
 the 

heat/sink parameter, θ
w
=
Tw

T
∞

 is the temperature ratio 

parameter  and Rd =
4σ

∗
T
∞
4

kk∗
  is the thermal radiation 

parameter. 

When θ
w
= 1.0  , the non-linear radiation captures 

linearity. We are able to give the exact solution of Eq. (18), 

the energy equation with the aid of Confluent 

hypergeometric function [31] 

Introducing the new variable, 

ξ =
Pr

α2
(

3

3 + 4Rd
)e−αη 

(20) 

and inserting Eq. (20) into Eq. (18): 

ξθ′′(ξ) + (1 −
Pr

α2
(

3

3 + 4Rd
) + ξ) θ′(ξ) 

                                   −(r −
Prβ

α2ξ
(
3 + 4Rd

3
))θ(ξ) = 0 

(21) 

 and Eq. (19) would be transformed to: 

θ (
Pr

α2
(

3

3 + 4Rd
)) = 1    and    θ(0) = 0 

(22) 

The solution of Eq. (21) in terms of η is written as [2]: 

θ(η) = e−α(a0+b0)η
M[a0+b0−r  2b0+1,   −

Pr

α
2(

3

3+4Rd
)e−αη]

M[a0+b0−r,2b0+1,   −
Pr

α
2(

3

3+4Rd
)]

   (23) 

Where a0 =
Pr

α2
(

3

3+4Rd
) , b0 =

√Pr2(
3

3+4Rd
)
2
−4Prβα2(

3

3+4Rd
)

2α2
,  and M[a0 + b0 − r, 2b0 +

1,   −
Pr

α2
(

3

3+4Rd
) e−αη] is the Kummer's function. 

The non-dimensional wall temperature gradient derived 

from Eq. (23) would be: 

θ
′
(0) = −α(a0 + b0) 

+
Pr

α
(

3

3+4Rd
)
a0+b0−r

1+2b0

M[a0+b0−r+1,2b0+2,−
Pr

α
2(

3

3+4Rd
)]

M[a0+b0−r,2b0+1,−
Pr

α
2(

3

3+4Rd
)]

        (24) 

 

3. Entropy generation analysis 

According to Woods [32] and Arpaci [33], the 

dimensional form of entropy generation is given by [2]. 

 

SG =
k

T
∞
2 [(

∂T

∂x
)
2
+ (1 +

16σ
∗
T
∞
3

3kk∗
) (

∂T

∂y
)
2
] +

μ

T
∞

(
∂u

∂y
)
2
+

                                                           
σB0

2

T
∞

u2sin2γ                (25) 

Eq. (25) undeniably indicates the three sources in 

bringing about a result of entropy generation. The leading 

term on the right-hand side of Eq. (25) is the entropy 

generation caused by heat transfer covering a finite 

temperature difference; the following term takes place 

owing to viscous dissipation and is named as the local 

entropy generation, while the third term stands for the 

local entropy generation owed to the consequence of the 

magnetic field.  To be particular, this dimensionless 

number is the proportion of SG, the local volumetric 

entropy generation rate to SG0, the characteristic entropy 

generation rate. SG0, the characteristic entropy generation 

rate under a prescribed boundary condition is: 
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(SG)0 =
k(∆T)2

l2T∞
2  

 (26) 

Entropy generation number is:  

 

Ns =
SG
(SG)0

 
(27) 

Using Eqs. (13), (23) and (25), the entropy generation 

number is given by: 

 

Ns =
r2

X2
θ2(η) + (

3

3 + 4Rd
)Relθ

′2(η) + Rel
Br

Ω
f ′′

2
(η)

+  
BrHa2

Ω
f ′
2
(η)sin2γ 

(28) 

where Rel, the Reynolds number and Br,  the Brinkman 

number could be obtained from: 

Rel =
ull

υ
,   Br =

μup
2

k∆T
,   Ω =

∆T

T∞
, Ha = B0l√

σ

μ
 

(29) 

 

4. Results and discussion 

The major intention of this section is to highlight the 

outcome of distinct parameters on longitudinal and 

transverse velocities, temperature, and entropy generation 

profiles. The numerical outcomes for the wall temperature 

gradient compared with some previously done works on 

Newtonian fluids were set down in Tables 1 and 2, which 

established the correctness of the present work. 

 

4.1. Flow characteristics 

The impact of changing the estimations of the 

viscoelastic parameter on 𝑓(η)& f′(η) are displayed in Fig. 

2. It is perceptible that elevating values of viscoelastic 

parameter slow down the fluid velocity.  The impact of 

magnetic and the inclined angle on the longitudinal and 

transverse velocities are clarified in Figs. 3 and 4, 

respectively. Because of improved magnetic field 

parameter, well known Lorentz force enriches, with which 

the velocity of the fluid becomes smaller. It is prominent 

that the increase in the inclination angle is to diminish the 

flow velocity. 

 

4.2. Thermal characteristics 

The θ(η) and the thermal boundary layer were improved 

with an expansion in the viscoelastic parameter, which is 

obvious from Fig. 5. The behavior of magnetic and aligned 

angle parameters is disclosed in Figs. 6 and 7. It reveals 

that in the heat transfer process, the thermal boundary 

layer would be enhanced with the influence of the aligned 

magnetic field. 

Fig. 8 depicts the typical profile of temperature for 

Prandtl number. The thickness of the thermal boundary 

layer grows smaller when the magnitude of the Prandtl 

number is enlarged.   The variations of temperature profile, 

along with different values of thermal radiation parameter, 

are plotted in Fig. 9. It is noticeable that the augmentation 

in the radiation parameter upturns the temperature profile; 

this is caused by the release of heat energy to the flow, 

which helps to increase the thermal boundary layer. The 

change in the temperature profile with respect to the heat 

source/sink parameter is depicted in Fig. 10.  It is quite 

interesting that increasing the variation of temperature 

distribution would enhance the thermal boundary layer 

thickness when heat source parameter (β>0) diminishes 

while the reverse for heat sink parameter (β<0) situation 

were observed. 

 

4.3 Entropy generation analysis 

The viscoelastic parameter has a fascinating part in the 

entropy generation. Attributable to this, it is displayed in 

Fig. 11 that the occurrence of viscoelastic parameter 

delivers more entropy in fluid flow. The impact of varying 

magnetic and inclination angle parameters on entropy 

generation could be seen in Figs. 12 and 13, separately. It 

seems that both these parameters would improve the NS. 

Fig. 14 speaks to the impact of distinct Prandtl number 

values on NS; it could be concluded that a higher 

estimation of Prandtl number produces higher entropy in 

the fluid stream. In Fig. 15, the NS is plotted against the 

radiation parameter. Obviously, the NS close to the surface 

diminishes with an enhancement in the thermal radiation 

parameter past the sheet. 

The impact of modified estimations of the heat 

source/sink parameter on entropy generation is introduced 

in Fig. 16.  It is witnessed that the entropy production 

reduces for heat source parameter ( β >0) and in the 

meantime, it enhances for heat sink parameter (β<0). Figs. 

17, 18 and 19, help to explain the influence of Reynolds 

number, dimensionless group parameter, and Hartmann 

number on NS. It could be declared that all these 

parameters produce more entropy in the fluid flow. 

Table 3 is intended to reveal the insight into the values 

of the -θ’(0). The wall temperature gradient diminishes 

because of increment in the viscoelastic, magnetic, heat 

source, and radiation parameters, yet it increments within 

sight of Prandtl number. It is likewise commented that the 

existence of the inclination angle has no effect on the wall 

temperature gradient of the viscoelastic fluid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.A sketch of the physical model. 
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Figure 2. f(η) and f ′(η) via variation of k1. 

 

 

Figure 3. f(η) and f ′(η) via variation of Mn. 

 

 
Figure 4. f(η) and f ′(η) via variation of γ . 

 

 

 

 

 

 
Figure 5. θ(η) variation via k1 

 

 

 
Figure 6. θ(η) variation via Mn 

 

 
Figure 7. θ(η) variation via γ . 

 

 

 

 



6 A.K. Abdul Hakeem / JHMTR 6 (2019)1-10 

 

 
Figure 8. θ(η) variation via Pr . 

 
Figure 9. θ(η) variation via Rd. 

 
Figure 10. θ(η) variation via β . 

 
Figure 11. Ns variation via k1 

 

 Figure 12. Ns variation via Mn. 

 Figure 13. Ns variation via γ  

 Figure 14. Ns variation via Pr  

 
Figure 15. Ns variation via Rd. 
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 Figure 16. Ns variation via β. 

 Figure 17. Ns variation via Rel. 

 Figure 18. Ns variation via BrΩ-1. 

 Figure 19. Ns variation via Ha. 

 

5. Conclusion 

In the present investigation, the impact of 

entropy generation examination for viscoelastic fluid 

on a stretching sheet within the presence of non-

linear thermal radiation, inclined magnetic field, and 

heat source/sink have been evaluated.  It was 

discovered that with the expansion in the estimation 

of the viscoelastic parameter, inclined magnetic field 

lessens the fluid velocity, and in the meantime, the 

temperature is upgraded with increment in the values 

of viscoelastic parameter, inclined magnetic field, 

non-linear thermal radiation, and heat source 

parameters and a backward design could be seen for 

augmented Prandtl number. It was also discovered 

that the decline in the entropy generation is higher for 

radiation and heat source parameter but improving 

the estimation of the viscoelastic parameter inclined 

magnetic field, Prandtl number, Reynolds number, 

dimensionless group parameter, and Hartmann 

number delivered more entropy in the fluid stream.

 Table 1.Values of -θ’(0) for various values of r ,Pr with Mn=Rd =k1= γ=β=0. 

r Pr Gupta and Gupta [26] Grubka  and Bobba [27] Ali [28] Eldahab and Aziz [29] Abel and Mahesha [30] Present study 

0 0.72 - 0.4631 0.45255 0.45445 0.46314 0.46314 

1.00 0.5820 0.5820 0.59988 0.58201 0.58197 0.58197 

10.0 - 2.3080 2.29589 2.30801 2.30800 2.30800 

2 0.72 - 1.0885 - - 1.08852 1.08852 

1.00 - 1.3333 - - 1.33333 1.33333 

10.0 - 4.7969 - - 4.79687 4.79687 
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Table 2.Values -θ’(0) for various values of r ,Pr and k1 with Mn=Rd =k1= γ=β=0. 

r Pr k1 

0.0 0.01 0.1 0.2 0.5 

Abel 

and 

Mahesh

a [30] 

Present 

study 

Abel 

and 

Mahesh

a [30] 

Present 

study 

Abel 

and 

Mahesh

a [30] 

Present 

study 

Abel 

and 

Mahesh

a [30] 

Present 

study 

Abel 

and 

Mahesh

a [30] 

Present 

study 

-2 1.0 1.0 1.0 0.99498 0.99498 0.94868 0.94868 0.89443 0.89443 0.70710 0.70710 

3.0 3.0 3.0 2.98496 2.98496 2.84605 2.84605 2.68328 2.68328 2.12132 2.12132 

10 10.0 10.0 9.94987 9.94987 9.48683 9.48683 8.94427 8.94427 7.07107 7.07107 

0 1.0 0.58197 0.58197 0.58093 0.58093 0.57083 0.57083 0.55786 0.55786 0.50125 0.50125 

3.0 1.16525 1.16525 1.16414 1.16414 1.15341 1.15341 1.13944 1.13944 1.07521 1.07521 

10 2.30800 2.30800 2.30691 2.30691 2.29622 2.29622 2.28229 2.28229 2.21756 2.21756 

1 1.0 1.0 1.0 0.99867 0.99867 0.98571 0.98571 0.96886 0.96886 0.89215 0.89215 

3.0 1.92368 1.92368 1.92239 1.92239 1.90976 1.90976 1.89324 1.89324 1.81591 1.81591 

10 3.72067 3.72067 3.71942 3.71942 3.70724 3.70724 3.69132 3.69132 3.61699 3.61699 

2 1.0 1.33333 1.33333 1.33192 1.33192 1.31810 1.31810 1.30001 1.30001 1.21577 1.21577 

3.0 2.50973 2.50973 2.50839 2.50839 2.49534 2.49534 2.47824 2.47824 2.39780 2.39780 

10 4.79687 4.79687 4.79559 4.79559 4.78306 4.78306 4.76669 4.76669 4.69021 4.69021 

Table 3.Values of -θ’(0) for different values of Pr, r, Mn, Rd, 

k1,  γandβ. 

k1 Pr Mn γ β Rd r -θ’(0) 

0.0 3.0 1.0 450 0.1 0.3 1.0 1.27052 

0.1       1.23579 

0.2 
 

     1.18823 

0.1 3.0 1.0 450 0.1 0.3 1.0 1.23579 

 4.0      1.52545 

 5.0      1.77151 

0.1 3.0 0.0 450 0.1 0.3 1.0 1.40771 

  0.5     1.32108 

  1.0     1.23579 

0.1 3.0 1.0 00 0.1 0.3 1.0 1.23579 

   450    1.23579 

   900    1.23579 

        

        

0.1 3.0 1.0 450 -0.2 0.3 1.0 1.76617 

    -0.1   1.62310 

    0.1   1.23579 

0.1 3.0 1.0 450 0.1 0.1 1.0 1.52838 

     0.2  1.38027 

     0.3  1.23579 
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