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1. Introduction 

Fluid flow through permeable materials is one 

of the topics of interest in the geosciences, 

petroleum industry, molding industry and etc. In all 

above mentioned industries we are faced with 

flows with relatively low Reynolds numbers where 

Darcy’s law is applicable. Permeability is the most 

important property which characterizes a porous 

medium. It is a measure of the frictional resistance 

of the material to fluid flow or, equivalently, the 

drag force of the fluid on the material. Hence, it 

needs to be specified prior to any macro scale 

modelling. 

Two major groups of materials can be assumed 

as an appropriate representation of porous media. 

The first one is a fibrous medium. A fibrous 

medium is composed of a number of cylinders 

which are called fibers. The axes of fibers can be 

parallel to each other (1D), placed on planes 

parallel to each other with random orientations in 

each plane (2D), or randomly oriented in space 

(3D). The second group is granular media, and as a 

representative, an array of spheres which are 

considered as solids in a porous medium. 
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A B S T R A C T 

The permeability and tortuosity of pore-scale two and three-dimensional random 

porous media were calculated using the Lattice Boltzmann method (LBM). Effects 

of geometrical parameters of medium on permeability and tortuosity were 

investigated as well. Two major models of random porous media were 

reconstructed by computerized tomography method: Randomly distributed 

rectangular obstacles in a unit-cell as two-dimensional porous media, and random 

granular media in a cubic unit-cell as three-dimensional porous media. Results were 

validated using available theoretical, experimental, and numerical results from the 

literature. It is observed that permeability is a weak function of porosity in low 

porosity regions, but a strong function of porosity at high porosities. It also depends 

on the aspect ratio and hydraulic diameter of obstacles. 

Permeability results were obtained regarding to 73 random two-dimensional 

samples with different porosities and obstacle aspect ratios. Also 29 random sphere-

packings including three different cases with three different sphere diameters were 

investigated as three-dimensional cases. Employing nonlinear regression based on 

the “least-squares” method, two permeability correlations were proposed with 

minimum curve-fitting errors. Besides, the effect of porosity on required time-steps 

to reach the converged solutions was investigated. It is concluded that an increase in 

the required time-steps to convergence is seen with reaching both high and low ends 

of porosity. 
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Many experimental works have been carried out 

for granular media to model the Darcy and Darcy–

Forchheimer drags: the Blake–Kozeny [1] 

equation, the Ergun equation [2] and any 

modifications thereof [3, 4]. Sangani and Acrivos 

[5] studied the drag in periodic arrays of spherical 

particles; Liu et al [6] proposed a semi-empirical 

formula for the pressure drop which incorporates 

the tortuosity, the curvature ratio and the variation 

of the pore cross-sectional area. For 3D flows, 

Larson and Higdon [7] performed calculations for 

the Stokes flow through a lattice of spheres. Kim 

and Russel [8] derived an expression for drag of 

random arrays of spherical particles. Nakayama et 

al [9] studied the flows through a lattice of cubes to 

estimate the contributions of both Darcy and 

Forchheimer drags to the macroscopic pressure 

drop. 

Treating the flow through porous medium by the 

method of the conventional Navier–Stokes codes is 

often faced with extensive computational time, 

poor convergence and/or numerical instability that 

stem from the narrowness of the flow passages. In 

recent years, the Lattice Boltzmann Method 

(LBM), as a mesoscale approach, has emerged as 

an alternative tool to investigate flow in complex 

geometries. In general, the Lattice Boltzmann 

Method (introduced in the next section) is easier to 

be implemented than conventional computational 

fluid dynamic techniques, is highly compatible with 

parallelization, and can deal with arbitrary complex 

flow geometries without heavy penalties. These 

attributes, combined with its flexibility, make LBM 

suitable for the investigation of a wide range of 

flow problems ranging from flows through 

complex geometries (e.g. permeating groundwater 

flow, melt segregation) to flows in which 

multiphase interactions are of interest (e.g. particle 

laden flows, bubble suspensions). Rothman [10] 

and Chen et al [11] used the lattice gas automata to 

study the microscopic behavior occurring at the 

pore scale and obtained volume-averaged 

parameters from a microscopic point of view. Succi 

et al [12] and Cancelliere et al [13] employed the 

LBM to extract the permeability of a randomly 

distributed 3D porous medium. Using lattice-

Boltzmann approach, Maier et al. [14] studied flow 

and transport properties in packed columns of 

spheres. Inamuro et al [15] applied the LBM to 

examine flows through a 3D porous structure, 

which was composed of nine identical spheres in a 

rectangular domain, for high and low Reynolds 

numbers. Their results were in good agreement 

with the Erguns correlation. However, they covered 

only one case of porosity and structure. Manwart et 

al [16] carried out a comparative study on LBM 

and a conventional FDM for flows through a 

straight rectangular channel and a cubic array of 

spheres with a porosity of 0.15. Each method was 

evaluated using the exact solutions of the Stokes 

equations. Next, both algorithms were employed to 

estimate the permeability of the three-dimensional 

sandstones. Van der Hoef et al. [17] investigated 

the drag in an arrangement of spherical particles 

with binary size distributions. The effect of particle 

shape on permeability has been studied numerically 

by Coelho et al. [18], Stewart et al. [19], and 

Garcia et al. [20]. All the above mentioned studies 

are restricted to the continuum flow regime even 

though the LBM can be applied to the slip flow 

regimes in micro-scale, and despite the seemingly 

large volume of experimental or computational 

literature, a detailed study on various porous 

structures, shapes of composed materials and 

porosities remains scanty. Jeong et al. [21] studied 

the macroscopic porous medium of various 

structures by calculating flows through 2D and 3D 

porous structures. Moreover, they investigated the 

effect of Knudsen number, Kn, on macroscopic 

porous-medium properties.  

In this study, pore-scale transport properties in 

the porous medium of various structures are 

investigated for flows through 2D and 3D porous 

structures, including 2D unit-cell with randomly 

distributed rectangular obstacles and 3D porous 

materials composed of randomly distributed 

spheres. The effect of geometrical parameters of 

media on permeability and tortuosity is also 

studied. The results are validated by various 

analytical, experimental, and numerical data from 

literature. Simulations are performed using LBFlow 

package source codes. Code is available by request 

at http://www.dur.ac.uk/ed.llewellin/lbflow/. It has 

been modified by authors. 

2. Numerical Method 

2.1 D2Q9 and D3Q15 Lattice Boltzmann 

Scheme  

The LBGKa [22] lattice Boltzmann scheme is 

governed by 

                                                                 
a Lattice Bhatnagar–Gross–Krook 
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(1) 

 

with f  the particle distribution in the direction 

  , x  the position, e  the discrete velocity in the 

direction   , 
LB

t the time step,   the 

dimensionless relaxation time,  the fluid viscosity, 

and 
LB

s
c  the lattice sound speed, equal to 1

3
. 

In the present study, the two-dimensional 9-

velocity (D2Q9) and the three-dimensional 15-

velocity (D3Q15) lattice Boltzmann models are 

used [23]. Schematic diagrams of D2Q9 and 

D3Q15 models are shown in Figure 1. 

In these models, the discrete velocities 


e  are 

given by 
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(3) 

The equilibrium distribution function, 
eq

f , is 

expressed by [24], 
 

    1 4.5 . . 1.5 .
eq

i i i j i j ij i j
f w e u e e u u u u
    

      (4) 

w


is the weighting factor of the system,  is the 

density, and 
i

u  is the macroscopic velocity. The 

values of w


 are given as [25]  

  

Fig. 1 D2Q9 (left) and D3Q15 (right) lattice 

velocity directions 
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In LBM, equation (1) is divided into two steps: 

collision and streaming.  

The collision step is: 

       ,

1
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LB eq
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   


     


x

x x  (7) 

and streaming step is :  

   , ,
LB LB

f t t t tf
  

    x e x  (8) 

f is the post-collision state of the distribution 

function f . After the simulation of the single 

variable f , the macroscopic flow properties, such 

as the density, pressure, and momentum, are 

extracted as follows: 

 
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f
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 (9) 

2.2 LBM Dimensional Consideration 

Physical units of length, time and mass are 

distinct from the simulation units used internally by 

the lattice Boltzmann algorithm. For a simulation 

of a practical usage, we require a unit conversion 

between simulation and physical units [26]:  

0 0 0
ˆ , ˆ ˆ,xL x tT t mM m    (10) 

Equations (10) are usually called mapping 

relationships and are used for conversion of 

physical and lattice units to each other. x̂ , t̂ , m̂ , 

0L , 0T , and 0M  are lattice length, lattice time, 

lattice mass, and mapping parameters for length, 

time, and mass, respectively. The mapping allows 

us to convert, for instance, velocities from lattice 

spacing per time-step in the simulation, to meters 

per second in physical system. In this study, 

mapping parameters are entered to the simulator, 

which will be discussed later. 
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3. Boundary Conditions and Geometry 
Generation 

3.1 Boundary Conditions 

One of the advantages of LBM is its easy 

boundary condition implementation on complex 

geometries including complex walls [24]. The 

following three boundary conditions are used for 

different conditions in the present study: 

3.1.1 Halfway Bounce-back BCs : 

The halfway bounce-back boundary condition is 

applied on a solid surface [23]. Figure 2 illustrates 

the halfway bounce-back scheme [23]. 

Fundamental steps of LBM, namely collision and 

streamingb are completely local; hence they are 

done in a fashion regardless of the type of the 

geometry. That is, there is no difference between 

the ways that collision is done in a random or a 

regular medium. There are two kinds of nodes in a 

porous medium: solids and fluids. 

Streaming and collision are both applied only 

for fluid nodes. Now if it is assumed that collision 

step is done for all fluid nodes including those next 

to solid boundary nodes, a problems is just 

encountered when it’s time for the streaming step 

to be done; It is mentioned that collision and 

streaming are only valid for fluid nodes, hence no 

collision/streaming rules exist for solid boundary 

nodes. If so, what happens for a fluid node, just 

next to boundary solid nodes? In other words, in 

figure 2 bellow, because solid nodes are not taken 

part into collision/streaming, upcoming f2, f5 and f6 

of the adjacent-to-boundary fluid nodes are 

unknown. Consequently, the calculation becomes 

unsettled. 

Here’s when boundary conditions are employed. 

Boundary Conditions are special kinds of collision 

steps which are set to solve the problem of 

unknown streaming data of adjacent-to-boundary 

fluid nodes. In this example the bounce-back 

boundary condition is employed as : f5= f7, f2= f4, 

and f6= f8 to make unknown distribution functions 

for adjacent-to-boundary nodes specified. 

The solid boundary is located at the halfway 

between fluid node and solid isolated node. 
4 7
,f f , 

and 
8

f  are known from streaming process, but

2 5
,f f , and

6
f are unknown distribution functions as  

                                                                 
b  Or propagation 

 

Fig. 2 Halfway bounce-back boundary condition 

[23]. 

 

they come from isolated solid nodes outside the 

computational domain. 

3.1.2 Pressure BCs (Dirischlet): 

Pressure boundary conditions were applied along 

the x direction, which was supposed to be the 

major flow direction. This kind of boundary 

condition constrains the densityc at the boundary. 

Two densities were specified at inlet and outlet of 

the domain along with the major flow direction. To 

make the point clear, consider an entrance 

boundary node as illustrated in figure 3. In this 

node, there are known and unknown distribution 

functions, and unknown normal velocity, 
x

u : 

 

 
Fig. 3 A schematic illustration of pressure 

boundary condition at the inlet boundary (density is 

known). 

                                                                 
c Hence the pressure by eq. 9 
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Note that velocity tangent to the boundary, uy is 

assumed to be zero. According to above figure, 

there are four unknowns. Hence, a system of four 

equations is needed. 

Three equations are written according to the 

moment equations, Eqs. 9: 

0 0 1 2 3 4 5 6 7 8

1 5 8 3 6 7

2 5 6 4 7 8
0

x

f f f f f f f f f

u f f f f f f

f f f f f f

         

     

     

 (11) 

For the fourth equation, Zou and He [44] 

suggested that non-equilibrium components of 
1

f  

and 
3

f  are assumed equal: 

1 1 3 3

eq eq
f f f f    (12) 

Equations 11 and 12 together are a system of 

four equations with four unknowns. By solving this 

system, four unknowns, 
1 5 8
, ,f f f , and 

x
u , are 

determined. The same procedure is performed for 

all inlet and outlet boundary nodes. 

3.1.3 Periodic BCs : 

Periodic boundary conditions are applied for the 

transverse directionsd in which the system becomes 

closed if one edge is attached to the opposite edge. 

As an example, in figure 4 for inlet and outlet 

boundaries: 

   

   

, , 1, 5, 8

, , 3, 6, 7

i o

o i

f x t t f x t

f x t t f x t

 

 





   

   





 (13) 

where i and o  denote inlet and outlet, respectively. 

3.2 Geometry Generation 

Two-dimensional domains with a mesh size of 

100×100 lu2 and three-dimensional domains with a 

100×100×100 lu2 mesh size were selected with 

periodic boundary conditions in all three spatial 

directions. To induce the flow, pressure difference 

was applied between the inlet and the outlet 

boundaries [21].  

In order to reconstruct the required geometries, 

instead of tomography of real porous media, an 

alternative method, namely computed tomography 

was employed. As the input geometry for 3D 

simulations, some 3D virtual media, for example  

                                                                 
d y in 2D case, and y and z  in 3D case 

 

Fig. 4 A schematic illustration of the periodic 

boundary condition. 

randomly distributed spheres in a unit cell, were 

generated using C++ coding language. Next, each 

volume was parsed into a sequential stack of 2D 

bmp image files, each file as a representation of a 

slice of the volumetric medium. Then the resulting 

stack of images was imported into an image 

processing program to be converted to an 

identifiable format for the simulator. Another 

geometry generation method was to create some 

ASCII text files, including only “0”s and “1”s as 

fluid and solid nodes, respectively. Generated 

geometries were put to the simulations. Figures 5 

and 6 illustrate binary and ASCII geometry files. 

For 2D medium which has rectangular obstacles, 

the aspect ratio is the ratio of the height to the 

length of obstacles. For example in the medium 

depicted in figure 5, right, the aspect ratio of 

obstacles is 0.5. 

Details of geometry generation are included in 

appendix. 

For engineering purposes, the permeability, K, is 

generally non-dimensionalized by dividing it by the 

square of the characteristic length scale. For a pore-

scale simulation, it is customary to use the 

hydraulic diameter of obstacles, Dh, as the 

characteristic length. 

2

h

DA
D

P
  (14) 

where , ,D A  and P  denote number of dimensions, 

area, and perimeter of obstacles, respectively. 

Now the dimensionless permeability is defined 

as *
K  : 

*

2

h

K
K

D
  (15) 

  

Fig. 5 Binary Geometries; Left: 3D, Right: 2D. 
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Fig. 6 Part of an ASCII geometry file. 

4. Results and Discussion 

4.1 Two-dimensional Simulations 

After putting the input geometry file into the 

simulator, some parameters have to be entered as 

well, including the pressure difference in x  

direction, the kinematic viscosity  , the lattice 

size, the relaxation parameter,   , and mapping 

parameterse. Boundary conditions are implemented 

in the main CPP file. The simulation is started and 

the mean superficial velocity (i.e. Darcy velocity) 

is calculated as the main output by applying the 

Darcy’s law: 

 
1

K u P


   (16) 

It should be noted that when the assumption of 

isotropic medium is not possible, the general form 

of Darcy's law should be considered, which is 

given in equation 17. This general form is reduced 

to equation 16 for assumed homogenous and 

isotropic porous media. 

1

P
xx xx xy xz

P
yy yx yy yz

P
zx zy zz zz

u K K K

u K K K

K K Ku













    
    
    

   
   

 (17) 

                                                                 
e Section 2.1 

As mentioned before, the pressure difference is 

applied in x direction, and the medium is assumed 

to be isotropic. Hence, equations 16 and 17 are 

reduced to equation 18: 

1
P

K u
L







 
 
 

 (18) 

By the use of this equation, the permeability is 

extracted. Broadly speaking, for engineering 

purposes, the permeability K is non-

dimensionalized by using equation 15. It is worth 

noting that the Darcy’s law is valid while the 

Reynolds number value is very lowf. In order to 

keep the Reynolds number low, the value of 

applied pressure gradient has to be absolutely low. 

Figure 7 demonstrates contour of velocity 

magnitude in 2D random geometries for creeping 

flow regime as investigated in the current study. 

Contours are generated using LB2D_PRIME open-

source simulator.  

4.1.1 Permeability 

Results by LBM are evaluated against the 

results of Carman-Kozney [27] and modified 

Carman-Kozney correlations presented by 

Koponen et al. [28]. Note that the dimensionless 

permeability is very sensitive to changes in the 

porosity, and the graph is plotted with the ordinate 

in logarithmic scale. Koponen et al. [28] used 

effective porosity,
eff

 , based on neglecting dead-

end pores. Then, they proposed the following 

correlation, relating the effective porosity to real 

porosity of the medium, 

     
3 2

0.33 2.07 0.33 2.43 0.33
eff

          (19) 

They also reported correlations for hydraulic 

tortuosity and specific surface, S, dependent to 

porosity [28, 29]. Substituting their correlations for 

tortuosity and specific surface in their permeability 

correlation leads to their dimensionless 

permeability correlation. 

If one uses real porosity, the Carman-Kozney 

correlation is concluded, which is proposed in [27]. 

Results are shown in figure 8. Scattered data are 

the results of present work for 73 random 2D 

samples with different porosities and obstacle 

aspect ratios. In addition, a curve with fitting 

parameters with the minimum error is fitted over 

scattered data, leading to dimensionless correlation 

for permeability. 

                                                                 
f Thus we can consider forchheimer drag, F.ReD, negligible. 
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 

*

3

1

19.95 ln 0.268 ln 0.001
K

 

  

 (20) 

with fitting parameters equal to 0.001, -0.268, and -

19.95 . The “correlation coefficient”, r , and the “ 

coefficient of determination”, 
2

r , of this 

correlation have excellent values of 0.997 and 

0.994, respectively. The overall error of this fitted 

correlation is 1.63%. Standard deviation, n  , for 

this case is 2.316292. This correlation is plotted as 

red dashed-line in figure 8. From figure 8, it can be 

inferred that the results of this study are in good 

agreement with the results of Koponen et al. [28] 

for porosities higher than 0.65. However, while the 

porosity is decreased to less than 0.65, some 

deviations are emerged, that is to say, the LBM 

overestimates the permeability in comparison with 

that of Koponen et al. [28]. It is likely because of 

the increase of dead-end pores with the decrease of 

porosity; hence the effective porosity is decreased. 

Subsequently, a rise in the difference between real 

and effective porosities occurs that leads to a sharp 

fall in graph of Koponen et al. [28] correlation with 

porosities less than 0.65. 

The results of dimensionless permeability 

according to different obstacle aspect ratios are 

depicted in figure 9. Three different obstacle aspect 

ratios are employed: 0.5, 1, and 2. From this figure, 

for aspect ratios equal to 0.5 and 1 in porosity 

range of  0.8 0.95   there is some mild data 

variation. However, a smooth increase rate in 

comparison with aspect ratio equal to 2. Thus, it 

can be concluded that a choice of 0.5 and 1 values 

for aspect ratio may lead to more accurate results. 

4.1.2 Tortuosity 

The hydraulic tortuosity is expressed as [28]: 

eff
L

T
L

  (21) 

 

Fig. 8 Two-dimensional dimensionless 

permeability versus porosity. 

 

Fig. 9 Effect of obstacle aspect ratios on two-

dimensional dimensionless permeability. 

where Leff is the real length of the flow through 

interconnected pores of the porous medium, and L  

is the minimum available length, as if the medium 

is not porous. A general discussion in Ref. [30] 

leads to the following form of tortuosity: 

x

u
T

u
  (22) 

where u is the average magnitude of the intrinsic 

velocity over the entire volume and 
x

u is the 

    

Fig. 7 Contours of velocity magnitude in 2D random geometries with AR=0.5(left), 1(middle), and 2(right). 
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volumetric average of its component along the 

macroscopic flow direction. 

Here, the fact that the LBM method uses a 

regular mesh allows to approximate Eq. 22 with: 

( )

( )
x

r

r

u r
T

u r




 (23) 

where r  runs through all lattice nodes. Note that 

this simple formula can be used not only in 

numerical studies, but also for the data obtained 

experimentally. 

Figure 10 depicts the effect of the obstacle 

aspect ratios on the predicted tortuosity. As it is 

observed, the flow tortuosity increases with 

increasing obstacle aspect ratios. The effect of 

obstacle aspect ratios is more pronounced at lower 

porosities, however at high porosities it is 

practically negligible. Another fact extracted from 

graphs in figure 10 is that the lower is the porosity, 

the greater would be the tortuosity values. Physical 

interpretation of this fact may be as follows: while 

the porosity is decreased, the total volume of dead-

end pores is increased, making the fluid to do more 

trial and errors to find interconnected pores, 

leading to a longer fluid’s travelling distance, and 

ending to a more tortuosity value based on Eq. 21. 

4.1.3 Required Time-steps 

From figure 10 one may conclude that tortuosity 

is not only a function of porosity, but also a 

function of obstacle aspect ratios. 

In order to define a criterion for convergence of 

the solutions, the Convergence Number is defined 

as follows: 

Whenever the deviation of results of 50 

sequential time-steps is less than Criteria Number, 

the simulation will be terminated. 

 
Fig. 10 Two-dimensional tortuosity versus 

porosity. 

 

The choice of Convergence Number is done by 

trial and error. Table 1 depicts eclectic 

Convergence Numbers for diverse porosity ranges. 

The effect of porosity on required time-steps for 

convergence of the results for different obstacle 

aspect ratios is reported in figure11. From graphs, 

it can be inferred that: 

i. Convergence speed is increased through the 

middle of the porosity range. 

ii. With an increase in porosity, number of 

required time-steps for convergence is increased. 

Since the increase of the porosity is equal to the 

rise of number of fluid nodes, and this 

consequently leads to more collisions and 

propagations, which are two major LBM 

mechanisms, more local macroscopic velocities are 

to be calculated by eq. 9. That is to say, the total 

number of time-steps is increased. 

iii. On the other part, figures clearly show that a 

rise of the number of time-steps is also occurred 

with a reduction in the porosity. It is because of the 

fact that at low porosities the volume of dead-end 

pores is increased, which increases the total fluid 

travel distance and consequently more processing 

time. 

Hence, the time-step is increased along two end 

limits of the porosity band, and a sharper increase 

of time-step at high porosities is clearly observed in 

all three graphs in figure 11. 

4.2 Three-dimensional Simulations 

4.2.1 Permeability 

Dimensionless values of extracted permeability 

in some samples of 100×100×100 lu3sphere-

packing, versus porosity are shown in figure 12. 

Results are validated using three prevalent 

correlations: 

i. Kozney-Carman [27], 

ii. Rumpf-Gupte [31], and 

iii. Koponen et al. [28]. 

Scattered data are the results of calculation of 

permeability over 29 3D random granular media. 

Similar to the 2D case, a correlation is proposed 

based on the least-squares method by fitting the 

parameters with minimum fitting errors: 

*

2

0.0037 0.00108

0.9 1.89 1
K



 




 
 (24) 
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Table 1. Convergence Number for diverse porosity 

ranges 

Convergence Number Porosity range 

810 0.4  

710 0.4 0.5  

610 0.5 0.71  

410 0.71  

 

 

 

 

Fig. 11 Time-steps required for macroscopic local 

velocities to converge. 

with fitting parameters equal to 0.001, -0.268, and -

19.95. The “correlation coefficient”, r  and the 

“coefficient of determination”, 2
r of this correlation 

have excellent values of 0.995 and 0.99, 

respectively. The overall error of this fitted 

correlation is 4.28%. And the Standard deviation,

n  for this case is 2.55136. The red dash-line 

depicts correlation 24. 

Some good agreements between the data can be 

seen for moderate to high values of porosity. 

However, there are some deviations in upper and 

lower limits of porosity. 

To investigate the effect of spheres’ diameter on 

results, three distinct scattered graphs 

corresponding to three different sphere diameters 

are depicted in figure 13. It can be seen that when 

the lower is the sphere diameter, the higher would 

be the calculated permeability at a constant 

porosity. 

4.2.2 Tortuosity 

Figure 14 illustrates the results of 3D tortuosity 

which are validated using two experimental, and 

one analytical correlations. Various 

phenomenological expressions have been proposed 

to describe the tortuosity as a function of the 

porosity. Among them, the logarithmic equation is 

valid for media with non-porous, non-overlapping 

particles [32]. 

There is another experimental power-law 

correlation which is prevalent for granular media, 

again with non-overlapping spheres [33-36] with a 

coefficient of n , being dependent on type of 

sphere-packing. According to reports of Refs. [36-

41], the value of n  for non-overlapping condition 

would be 0.4 

The third correlation is an analytical one, 

namely the Maxwell equationg [42]. A comparison 

between the results is depicted in figure 14. The 

figure clearly shows that the results of the present 

study agrees well with the results of Maxwell’s 

analytical correlation. However, there are some 

drastic deviations from the experimental results, 

which are based on the assumption of overlapping 

spheres in this study and non-overlapping 

assumption in the experiments. Hence, the present 

study data, based on overlapping spheres, are fitted 

to experimental and analytical non-overlapping 

formulas, with fitted parameters listed in table 2. 

                                                                 
g A comprehensive explanation for this correlation can be found in 

[43]. 
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Fig. 12 Three-dimensional dimensionless 

permeability versus porosity. 

5. Conclusions 

The flow behavior, permeability, and tortuosity 

in two and three-dimensional random porous media 

were investigated using Lattice Boltzmann Method 

with D2Q9 and D3Q15 lattice arrangements. Unit-

cells with randomly distributed rectangular 

obstacles, and random sphere-packing in cubic 

unit-cells were employed as two and three-

dimensional media, respectively. Almost all 

models, including LBM models and models 

available in the literature behave the same at low 

porosities: no significant difference in 

permeabilities is seen at low porosities. However, 

sudden sharp rises at high porosities are observed. 

Thus, the graph was plotted with the ordinate in 

logarithmic scale. For two-dimensional cases, some 

deviations from the permeability results of 

Koponen et al. [8] at the low end of porosity were 

seen. It occurred because of the increase in the 

difference between effective and real porosities at 

low porosities.  

The effects of obstacle aspect ratios and spheres’ 

diameter on permeability were also studied for two 

and three-dimensional cases. It is observed that the 

when the lower are the obstacle aspect ratios and 

diameters, the higher would be the calculated 

permeability at a constant porosity, and the more 

uniform would be the variation of the permeability. 

Based on the scattered results, two permeability  

correlations  for  both  two  and  three- permeability 

correlations for both two and three-dimensional 

cases with the least fitting errors were proposed. 

Tortuosity was also studied for both cases and the 

effect of porosity and aspect ratio was depicted. It 

is concluded that tortuosity is a function of not only  

 

Fig. 13 Effect of obstacles’ diameter on two-

dimensional dimensionless permeability. 

 

Fig. 14 Three-dimensional tortuosity versus 

porosity. 

Table 2. Fitting parameters of tortuosity. 

Present study,  

Free to 

overlap 

Literature,  

Non-

overlapping 

 

-0.25 -0.4 Experimental, [32] 

1.4 

0.4 

1.5 

0.5 
Analytical, [43] 

0.22 0.4 Experimental, [36-41] 

porosity, but also obstacle aspect ratios. Finally, it 

is worth mentioning the effect of porosity on the 

required time-steps for solution to converged. 

Appendix. Geometry generation in details 

Two types of geometries were generated in this 

paper: Binary and ASCII. 

1. Details of binary geometry generation:  

These type of geometries simulate porous media 

by assuming obstacles as white color 

(grayscale=255) and pores as black color 

(grayscale=0). 
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2D binary geometries are simply created by 

Microsoft Paint application, drawing white 

rectangles on a black background as shown in 

figure A1: 

Then the porosity of just generated 2D binary 

geometries is measured with ImageJ, an open-

source image processing softwareh. 

For 3D binary cases, a simple C++ program was 

employed to generate random spheres in a cube as 

a unit  cell  domain.  The  code  simply  chooses  

random geometrical positions as centers of spheres 

in the defined domaini, then the C++ sphere 

generation algorithm is employed to create 

diversely placed spheres as random obstacles. 

The output of C++ is a “.raw” format file which 

can be broken up to a sequence of “.bmp” files with 

ImageJ software, thus its porosity can be 

calculated. The resulted “.raw file” can be entered 

to the LBM simulator, that is to say LB3D-Prime 

simulator. 

2. Details of ASCII geometry generation: 

Another approach of geometry generation is to 

create geometries in a simple ASCII text file, with 

0s and 1s as representations of pores and obstacles, 

respectively. Granted the fact that LBFlow, another 

simulator, uses ASCII geometries as input files, 

creating the ASCII is an indispensable step. Thus, 

after creating binary geometries with above 

approaches, a Netpbm script in Linux is written to 

convert the files into ASCII files: by putting all 

relevant “.bmp” filesj into one directory, and then  

 

Fig. A1 Creating 2D binary geometries with 

Microsoft Paint 

                                                                 
h The software measures the total area occupied by black and white 

portions, separately. Accordingly, the ratio of black area to the total area, 

porosity, is calculated easily by the software itself. 
i Which is the unit cell 
j Created by C++ in binary geometry generation step 

by typing this script on Linux command line: 

cat <(j=0; for i in fence*.bmp; 

do j=$((j+1)); 

done; 

echo "100 100 $j"; 

for i in fence*.bmp; 

  do bmptopnm $i | pnmtoplainpnm | 

  sed ':a;N;$!ba;s|P2\n100 100\n255\n||; 

s|255|1|g; 

  s| ||g; s|\n||g'; 

done) > mask.dat 

The script above is modified for a 
3

100 100 100lu   domain. The expression “for i in 

fence*.bmp” asks the Linux compiler to place all 

“.bmp” files in a ASCII file named “mask.dat”. 

First, it is required that all “.bmp” files are 

converted to “.pnm” files, and then converted to a 

set of 0/1 binary characters, as is achieved through 

lines 6-8. 

The resulting “.mask” file, figure 6, can now be 

entered into the numerical simulator. 

 

Fig. A2 (repeated). Part of a resulted ASCII file 
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محههیه هههای مت ل هه   پههیو و  هه ، نف ذپههذيری و بههه کمههک روش شههلکه بهه لت من

اثهرات پارامترههای هندسهی  ،نیه تصادفی دو بعدی و سهه بعهدی محاسهله یرديهده اسهت. 

نماينهده کلهی ام محهیه ههای مت ل ه  بها بررسهی شهده اسهت. دو محیه بر نف ذپهذيری 

اسههتفاده ام روش ت مهه یرافی کههام ی تری ايجههاد شههد : الههر. م انهه   هار ههلعی بهها 

 یدمان تصهادفی در يهک سهل ل واحهد بهه  نه ان محهیه مت ل ه  دو بعهدی، و محهیه 

دانههه ای در يههک سههل ل واحههد مکعلههی بههه  نهه ان محههیه مت ل هه  سههه -هههای کههروی

ام نتههاي  ترهه ری، تجربههی، و  ههددی م جهه د ا تلارسههنجی بعههدی. نتههاي  بهها اسههتفاده 

یرديههد. مشههاهده میشهه د کههه در ت ل هه  هههای پههايین، نف ذپههذيری تههابعی  ههعیر ام 

ايههن میهه ان تلعیههت افهه ايش نهه احی ت ل هه  ميههاد، ت ل هه  پههذيری اسههت و بههر ک  در 

. نف ذپههذيری همینههین بههه نلههلت رهه ل بههه  ههرل، و موههر هیههدرولیکی م انهه  مههی يابههد

 21نم نهه محهیه مت ل ه  دو بعهدی و  33بها ت جهه بهه دارد. نتهاي  نف ذپهذيری بلتگی 

مجم  ه کروی بها مورههای م تلهر کهرات بهه  نه ان محهیه سهه بعهدی مه رد کنکهاش 

مههرار یرفتههه اسههت. بهها بکههارییری ریرسههی ن شیههر  وههی و روش کمتههرين مربعههات، دو 

ه اسهت.  ههوه بهر  ريب نف ذپهذيری بها کمتهرين  واههای بهرامش منحنهی ارایهه یرديهد

آن تاثیر می ان ت ل ه  بهر یهام ههای ممهانی مه رد نیهام بهرای رسهیدن بهه پاسه  همگهرا 

م رد تحقیق مرار یرفت. در نهايهت مشهاهده شهد کهه تعهداد یهام ههای ممهانی  مم بهرای 

 رسیدن به پاس  همگرا در ن احی ت ل   مياد و ک  اف ايش می يابد.
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