
1. Introduction 

    Natural convection in enclosures is a kind of 

classical problem in heat transfer and numerical heat 

transfer, and many experimental and theoretical 

studies have been performed, including those on 

thermal storage, environmental comfort, grain 

drying, furnaces, cooling of electronic devices, 

double-glazed windows, and solar collectors. 

Whatever the shape of the wall, flow and heat 

transfer inside enclosures have numerous engineering 

applications, such as heat exchangers, energy storage, 

solar collectors, double-wall insulation, electric 

machinery, cooling systems for electronic devices, 

and natural circulation in the atmosphere [1-11]. 

Natural convection flow into the cylindrical 

cavities could be used in energy-storage equipment 

such as the longitudinal cylindrical pipes installed in 

the back of the natural gas transmission pipeline 

terminals near cities filled by natural gases. 

This storage method is useful, especially in the 

cold season when gas pressure falls. The integrated 

flat-plate solar collectors are the other examples 

related to the present study. In these collectors, the 

fluid as an absorber has flow into the longitudinal 

cylindrical pipe. 

Heat-transfer processes and devices are inherently 

irreversible. Energy conservation requires the use of 

efficient thermodynamic heat-transfer processes, that 

is, minimization of irreversibility (entropy 
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enclosure is performed. In order to show the validation of this study, the code is 

reproduced to solve a similar problem from the cited paper. Finally, the solutions were 

extended for the new cases. 
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generation) due to temperature gradients and viscous 

dissipation [12-16]. 

There are a fair amount of studies about natural 

convection heat-transport problems in the literature. 

The optimal design criteria for thermal systems that 

minimize their entropy generation recently have been 

a topic of great interest, especially in the fields 

related to the geometry of a duct and natural 

convection in the enclosure. The present paper 

reports a numerical study of entropy generation in the 

incompressible natural convection flow within 

cylindrical cavities. Attempts are made to analyze the 

influence of the Rayleigh number, aspect ratio, and 

irreversibility distribution ratio on entropy 

production. Therefore, it is essential that an engineer 

focus on the irreversibility of heat-transfer and fluid-

flow processes and try to establish the optimal design 

criteria for thermodynamic systems.  

In the last numerical solutions of the heat transfer 

and fluid flow for enclosures, a code based on the 

enhanced SIMPLE method [17] couples the pressure 

with the velocity. In the current work, an artificial 

compressibility technique was applied to couple the 

continuity with the momentum equations. The idea of 

relaxing the incompressibility constraint by adding 

an artificial compressibility term has been known for 

a long time and has been used extensively in finite-

volume as well as in finite-element approximations 

of the incompressible Navier–Stokes equations [18-

20].  

In a finite-volume method, mapping is not 

needed. Therefore, the scheme is applied directly in 

the physical domain. Among the various schemes 

proposed for the flux calculation in the finite-volume 

model, the Jameson’s numerical method is still of use 

because of its simplicity [21]. In this work, the 

Jameson’s flux-averaging finite-volume scheme for 

space discretization was developed. 

One of the methods for solving incompressible 

flows is based on the artificial compressibility 

formulation of Chorin [22]. The artificial 

compressibility approach circumvents the difficulty 

of the pressure decoupling in the incompressible 

Navier–Stokes equations by adding a pseudo-time 

pressure derivative to the continuity equation. Then, 

the new system of equations can be iterated in 

pseudo-time until the divergence-free flow field is 

satisfied. The method can be used both for steady 

and unsteady flows, and there are a number of papers 

in the literature that describe implicit and explicit 

strategies for solving steady and unsteady flow 

problems in conjunction with artificial 

compressibility [23-31]. 

The artificial compressibility method leads to 

hyperbolic and hyperbolic–parabolic equations for 

inviscid and viscous incompressible (constant 

density) flows, respectively. The discretization 

schemes and solvers developed for artificial 

compressibility have many similarities with the 

methods developed for compressible flows. 

Therefore, numerical developments for compressible 

flows can be transferred to incompressible flows. 

Although artificial compressibility has been used 

extensively for constant-density flows, the 

development of numerical schemes in the framework 

of artificial compressibility for variable-density 

incompressible flows have received scant attention in 

the literature. Riedel [32] used an artificial 

compressibility formulation to construct an 

unstructured finite volume method for the solution of 

two-dimensional steady viscous, incompressible, 

reacting flows, while Lin and Jion [33] developed a 

surface-capturing total variation diminishing method 

with slope modification for a multi-fluid 

incompressible Navier–Stokes formulation. 

To suppress the tendency for odd and even point 

decoupling, the artificial dissipation terms are added 

in the central differencing schemes. In this work, in 

order to overcome this problem, the discretization of 

the viscous and thermal conduction terms were 

simplified greatly using an enhanced scheme similar 

to the flux averaging in the convective term so that 

the artificial dissipation was not needed. 

 

2. Governing equations 

Fig. 1 shows the schematic view of the cylinder’s 

geometry and its thermal boundary conditions. 

According to this figure, the flow has two-

dimensional characteristics. Therefore, the cylinder 

is assumed to have expanded adequately on the z 

axis. According to this figure, the cylinder cross 

section has a circle shape when / 1A H W  . For 

other values of the aspect ratio, the cylinder cross 

section’s shape will be elliptic. All cylinder walls are 

assumed to be nonslipping. Therefore, under these 

assumptions, the nondimensionless variables at the 

cylinder walls are obtained as 0U V   (for all 

walls), 0   (on the left wall), and 1   (on the 

right wall). 
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Fig. 1  Schematic view of the cylindrical cavity. 
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The two-dimensional incompressible viscous 

flow governing equations in nondimensional form 

and with artificial compressibility can be written as 

 

where ( , ) / ,  /U V uL vL   are dimensionless 

Cartesian velocity components, ( , ) / ,  /X Y x L y L  

are dimensionless Cartesian axes, 2 2/( )P pL   is 

the dimensionless static pressure, 

( ) /( )c h CT T T T     is the dimensionless 

temperature, /A H L  is the aspect cavity ratio, 
2/t L   is dimensionless time, Pr is the Prandtl 

number, Ra is the Raleigh number, and   is the 

artificial compressibility that is given as follows: 

1
,

p

t t





 


 
  

(5) 

 

3. Formulation of heat-transfer 

characteristics 

The volumetric entropy generation in the flow 

due to the heat transfer and fluid friction can be 

written as 

 

. . ,l l h l fS S S   (6) 

 

The heat-transfer contribution of the volumetric 

entropy generation of the two-dimensional flow 

system is 
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The fluid-friction contribution of the volumetric 

entropy generation of the two-dimensional flow 

system is 
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The dimensionless quantity of these equations can 

be written as follows: 
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where   is the ratio between the viscous and 

thermal irreversibilities in the following equation: 
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where 
0 ( ) / 2h cT T T   is the bulk temperature. 

The dimensionless total entropy generation is the 

integral over the system volume of the dimensionless 

local entropy generation: 
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The Bejan nondimensional number (Be) is 

defined as follows:  

. .

.

,l a h

l a

S
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S
  (14) 

When 1/ 2Be  , the irreversibility due to the heat 

transfer dominates. For 1/ 2Be  , the irreversibility 
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due to the viscous effect dominates. For 1/ 2Be  , 

heat-transfer and fluid-friction entropy generation are 

equal. 

 

4. Nusselt number 

The heat-transfer coefficient in terms of the local 

Nusselt number  Nu  is defined as 

,Nu
n
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
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where n denotes the normal direction to a plan. 

The local Nusselt number at the heat wall-plane  

 ,x yNu Nu  is defined as 
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Therefore, the average Nusselt number is 

calculated as follows: 
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5. Grid features 

Here, grids are generated by using coding 

program as an easy method which is used in this 

investigation. In order to describe this method, first 

consider a circle with Cartesian xy coordinates, as 

shown in Fig. 2. In the customary way, this circle 

could be approximated by quadrilateral ABCD. In 

this case, four cells in the form of triangles OAB, 

OBC, OCD, and ODA result from the grid-

generation procedure. In the new current method, the 

circle is approximated by square 1234. In this case, 

four cells in the form of squares OA2B, OB3C, 

OC4D, and OD1A result from the grid-generation 

procedure.   

 
Fig. 2  Depiction of the current grid characteristics. 

 
Fig. 3  Algebraic rectangular grids for a circular cavity. 

 

Fig. 3 shows the grid-generation processes 

schematically for a circle cavity (i.e., A = 1) 

according to the following steps: 

(1) As shown in Fig. 3a, the structured grid is 

generated algebraically for the square cavity. 

Clustering has been used near the square 

cavity walls. 

(2)  As shown in Fig. 3b, the cells in the vicinity 

of the curvilinear boundaries are selected 

completely as the computational domain 

(i.e., where pieces of them lay out of the 

physical domain). Then, the remaining cells 

between the curvilinear corner and the square 

cavity walls are withdrawn. Finally, all cells 

are established in the form of a rectangle.    

(3) Now, the required boundary conditions can be 

imposed onto the extra cells’ boundaries (see 

Fig. 3b).  
 

 

6. Finite-volume scheme for space 

discretization 

By integrating from conservation Eqs. (1)–(4) 

over a control volume  , which is bounded by 

surface  , and applying the Gauss divergence 

theorem, the following is derived: 
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Fig. 4  Cell view in the finite-volume method. 

 

Therefore, these equations can be arranged in the 
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The computational domain is divided into 

rectangular cells (see Fig. 4), and a system of 

ordinary differential equations is obtained by 

applying Eq. (23) to each cell separately.    

 

In order to find the convective terms in the 

boundaries of the cell (i,j), we choose the custom 

flux averaging scheme. In this scheme, each 

quantity, such as 
1( )u  (i.e., the value of u  on the 

boundary denoted by number 1, as shown in Fig. 4), 

is evaluated as the average of the cells on either side 

of the face, that is 
1 i,j , 1( ) 1/ 2[ (u ) ( ) ]i ju u     . 

Flux averaging is applied here for the viscous and 

conduction terms. In this method, we need to know 

the first-order derivatives, such as 
,( / )i jy   and so 

on (at the cell centers). These functions are obtained 

from the Gauss divergence theorem. For example, 

we have 
, ,( / ) 1/  i j i jy S dx 



     . Therefore, these 

derivatives are saved for all cells as the functions 

that can be used in the next time step. Thus, each 

quantity, for example, 
1( / )y  , is found, such as 

1 , , 1( / ) 1/ 2[( / ) ( / ) ]i j i jy y y            and so on. 

After discretizing Eq. (23) around the cell (i,j) 

and considering the cell-centered assumption for the 

variables, the following are the results: 
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where 
,i jS  is the area of the cell (i,j).    

7. Numerical solution processes  

An explicit classical fourth-order Runge–Kutta 

integration algorithm was applied to ordinary 

differential Eq. (25) to find the steady-state 

condition. To study the effect of the grid size on the 

solutions, a series of calculations was performed by 

varying the number of grid points in each direction. 

For 1A , it was found that, at 310Ra  ,
 
the Bejan 

number changes less than 0.0867 percent as the grid 

point varies from 50 50 to 150 150 . Therefore, 

100 100  grid points are considered optimal for this 

study. For the case 1A , the grid points were 

adjusted according to the aspect-ratio  A  values. 

The convergence criterion was used for the mass 

conservation residue, established as 810 . In this 

study, the selected fluid flow is air (with Pr = 0.7). 

 

8. Results and discussions 

     In order to show the validation of this study, 

the code was reproduced to solve a similar problem 

in [8] (i.e., 1H W   and the square boundary 

cavity). Then, the mean Nusselt number values for 

different Ra numbers were compared between the 

present study and the literature, as seen in Table 1. It 
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can be seen that the results obtained from the present 

model are as good as were expected. 

     The curves in Fig. 5 show the histories of the 

mass conservation residues (Res) for different values 

of the artificial compressibility parameters ( ) in the 

cases of different aspect ratios and different Rayleigh 

numbers. One can see that, in all situations, good 

convergence speed has been obtained. Also, for each 

selected value of , in the case of the constant aspect 

ratio, the residues are converged with the constant 

number. This means that the value of   cannot change 

the exactness of the steady-state results. However, 

the convenience choice of   can be useful for the 

solution procedure.     

 

    The streamline is shown in Fig. 6, which 

depicts three different aspect ratios ( 0.5,1,2A  ) in 

the cases of two Rayleigh numbers ( 3 510 ,10Ra  ). 

In all figures, it can be observed that, with an 

increase in the Rayleigh number, the circulation of 

the fluid flow is affected by the thickness of the 

hydrodynamic boundary layer. This phenomenon is 

followed by an increase in the fluid acceleration due 

to the buoyant force action layers.  

    Isotherms have been plotted in Fig. 7. These 

figures have been sketched for three different aspect 

ratios (  ) in the cases of two Rayleigh numbers (  ). 

We know that the temperature gradient causes these 

phenomena. It can be seen that the variation of the 

aspect ratio affects the temperature distribution 

within the cylinder. For a small Rayleigh number 

(i.e.,  ), the isolines are approximately smooth and 

vertical. In a high Rayleigh number (i.e.,   ), the 

isolines are horizontal at the cavity center and 

vertically clustered near the isotherm’s boundary 

walls. In the natural convection process, the biggest 

velocity gradients are found near the walls that have 

larger thermal gradients due to the action of the 

buoyant force. 

 

Table. 1  Verifying for average Nusselt number. 
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Fig. 5  Histories of the mass conservation residues. 

 

 

 

Fig. 6  The velocity field for 310Ra   and 510Ra   in 

different aspect ratios ( A ). 

The effects of the irreversibility ratio and the 

Rayleigh number on the total entropy generation ( ) 

are shown in Fig. 9. These figures have been drawn 

for different aspect ratios ( ). According to these 

figures, a higher aspect ratio has a greater entropy 

generation. Also, it can be seen that, with a decrease 

in the irreversibility ratio, the total entropy 

generation decreases. In addition, according to these 

figures, for a higher Rayleigh number, the values of 

the total entropy generation limit the constant value. 
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Fig. 7  Isotherms for 310Ra   and 510Ra   in 

different aspect ratios ( A ). 

 

 Fig. 8 shows isobars for different aspect ratios and 

Rayleigh numbers. The figure clearly illustrates how 

a stratified pressure field is formed. In the case of 

both a higher aspect ratio and Rayleigh number, the 

isobars are horizontal.  

 

 

 
 

Fig. 8  Isobars for 310Ra   and 510Ra  in different 

aspect ratios ( A ). 

     The effects of the aspect ratio, irreversibility 

ratio, and the Rayleigh number on the Bejan 

nondimensional number (Be) are shown in Fig. 10. 

Different behaviors are shown for the variation of the 

Bejan nondimensional number when the 

irreversibility ratio changes. It can be seen that, with 

a decrease in the irreversibility ratio, the Bejan 

number increases. This phenomenon obviously can 

be seen with a high Rayleigh number. As mentioned 

previously, when , the irreversibility due to the heat 

transfer dominates. For , the irreversibility due to the 

viscous effect dominates. For  , heat-transfer and 

fluid-friction entropy generation are equal. 

 

 

 

 
Fig. 9  The effects of the irreversibility ratio ( ), 

aspect ratio ( A ), and the Rayleigh number on the total 

entropy generation ( TaS ). 
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Fig. 10  The effects of the irreversibility ratio ( ), 

aspect ratio ( A ), and the Rayleigh number on the Bejan 

number ( Be ). 

 
 

 
 

 
 

 
Fig. 11  The effects of the aspect ratio ( A ), 

irreversibility ratio ( ), and the Rayleigh number on the 

total entropy generation ( TaS ). 
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     The effects of the aspect ratio and the Rayleigh 

number on the total entropy generation ( ) are shown 

in Fig. 11. These figures have been drawn for 

different irreversibility ratios  . According to these 

figures, a higher irreversibility ratio has a bigger 

entropy generation. Also, it can be seen that, with an 

increase in the aspect ratio, the total entropy 

generation increases. In addition, according to these 

figures, with a higher Rayleigh number, the values of 

the total entropy generation increase exponentially as 

a function, and with a lower Rayleigh number, the 

values of the total entropy generation limit the 

constant value. 

The effects of the aspect ratio, irreversibility 

ratio, and the Rayleigh number on the 

nondimensional Nusselt number (Nu) are shown in 

Fig. 12. Different behaviors are shown for variations 

of the Nusselt number when the aspect ratio changes. 

Due to the low temperature gradient, the Nusselt 

number is not high when there is a low Rayleigh 

number. When the temperature gradient increases, 

the Rayleigh number also increases, and as a result, 

the Nusselt number enhances exponentially as a 

function. When the Rayleigh number gradually 

increases, the buoyancy force intensifies, and finally, 

the dominant force and the viscosity of the fluid will 

begin to move. Increasing the Rayleigh number in all 

cases will increase the amount of the buoyancy 

force, or the turbulence of the flow within the 

chamber. 

 

Also, one can try to correlate functions for the 

Nusselt number through the curves shown in Fig. 12. 

For example, the following equation results under 

the related conditions: 

 

 
 

Fig. 12  The effects of the aspect ratio ( ) and the 

Rayleigh number on the Nusselt number. 

 

0.1030.79Nu Ra  
for 2 510 10  ,  Pr 0.7Ra   , 

and  0.5Aspect ratio  ;
 

0.140.62Nu Ra   
for 2 510 10  ,  Pr 0.7Ra   , 

and  1.0Aspect ratio  ; and 

0.0071.26Nu Ra  
for 2 510 10  ,  Pr 0.7Ra   , 

and  2.0Aspect ratio  . 

 

9.  Conclusions 

     In this paper, an explicit finite-volume model 

was developed to study incompressible natural 

convection in cylindrical cavities. An artificial 

compressibility technique was applied to couple 

continuity with momentum equations. In order to 

find the steady-state solutions, an explicit classical 

fourth-order Runge–Kutta integration algorithm was 

applied to the ordinary differential, obtained from a 

cell-centered finite-volume discretization scheme 

(see Eq. (25)). In this work, the aspect ratio, the 

Rayleigh number, and the irreversibility distribution 

ratio were limited as 0.5 2A  , 2 510 10Ra  , 

and 2 510 10   , respectively. It was seen that, 

with a decrease in the irreversibility ratio, the total 

entropy generation decreases. Different behaviors are 

shown for variations of the Bejan nondimensional 

number when the irreversibility ratio changes. It was 

seen that, with a decrease in the irreversibility ratio, 

the Bejan number increases. 

 

Nomenclature 

A            aspect ratio, dimensionless 

PC        specific heat at constant pressure, J kgK  

Be          Bejan number, dimensionless 

           thermal expansion coefficient, 1 K  

g            gravitational acceleration, 2/m s  

h            heat-transfer coefficient, 2/W m K  

H           cavity height, m   

k             thermal conductivity, /W mK   

L            cavity length, m   

Nu          Nusselt number, dimensionless 

p            pressure, Pa  

P            dimensionless pressure  

Pr           Prandtl number, dimensionless 

Ra          Rayleigh number, dimensionless 
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S            entropy generation, 3/W m K   

t              time, s  

T            temperature, K   

R             cavity corner radius, m  

r             dimensionless radius 

,u v         velocity components in ,x y direction, 

/m s  

,U V     dimensionless velocity, components in ,x y

direction 

,x y         Cartesian coordinates, m   

,X Y        dimensionless Cartesian coordinates  

 

Greek Symbols 

            thermal diffusivity, 2 /m s  

            artificial compressibility  

            dynamic viscosity, /kg ms   

v             kinematics viscosity, 2 /m s   

            density, 3/kg m  

            dimensionless time 

             dimensionless temperature 

            irreversibility ratio, dimensionless 

 

Subscripts 

a            dimensionless 

c             cold 

f            fluid viscous effect 

h             hot 

l              local 

T            total 
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