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1. Introduction 

 The boundary layer flow of a continuously 
stretching sheet has attracted considerable attention 
in recent years due to its numerous applications in 
industry. It occurs frequently in manufacturing 
involving the hot metal rolling, wire drawing, 
glass-fiber production, paper production, drawing 
of plastic films, and metal spinning, as well as 
metal and polymer extrusion processes. The 
boundary layer flow and the heat transfer over a 
continuous stretching surface have been discussed 
by a significant number of researchers [1-7] due to 
its wide applications in industrial and engineering 
processes. However, less attention has been paid to 
the boundary layer flow over a radial stretching 

sheet. Hayat et al. [8] have studied an axisymmetric 
flow and heat transfer of a second grade fluid past a 
stretching sheet. Sahoo and Sharma [9] have 
investigated the MHD flow and heat transfer from 
a continuous surface in a uniform free stream of a 
non-Newtonian fluid. Sajid et al. [10] have 
presented an unsteady axisymmetric flow and heat 
transfer over a radial stretching sheet. Ariel [11] 
has presented the extended homotopy perturbation 
method and computation of flow past a stretching 
sheet. Sahoo [12] has examined the effects of the 
partial slip on axisymmetric flow of an electrically 
conducting viscoelastic fluid past a stretching 
sheet. Effects of slip, viscous dissipation and Joule 
heating on the MHD flow and heat transfer of a 
second grade fluid past a radial stretching sheet has 
been investigated by Sahoo [13]. 
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The second law of thermodynamics is more 
reliable than the first law of thermodynamics  due 
to the limitation of the efficiency of the first law in 
heat transfer engineering systems (Oztop and Al-
Salem [14]). In order to access the best design of 
the thermal systems, one can employ the second 
law of thermodynamics by minimizing the 
irreversibility. Entropy generation is a criterion of 
the destruction of the available system work. The 
evaluation of the entropy generation is carried out 
to improve system performance. Heat transfer, 
mass transfer, viscous dissipation, etc. can be used 
as sources of entropy generation. Entropy 
generation can be used as a quantitative measure of 
irreversibilities that are associated with a process, 
because of this fact that the greater the entropy 
generation indicates the greater the extent of 
irreversibilities. In many engineering and industrial 
processes, entropy production, destroys the 
available energy in the system. It is therefore 
imperative to determine the rate of entropy 
generation in a system, in order to optimize energy 
in the system for efficient operation in the system. 
According to the second law of thermodynamics, 
all the flows and heat transfer processes undergo 
changes that are irreversible. These irreversible 
changes are mostly caused by the energy losses 
during the processes. Although measures can be 
taken to reduce these irreversible effects, it is 
impossible to recover all of the lost energy. This 
process causes the entropy of the system to 
increase. Due to this, the entropy generation rate is 
used as a standard metric to study the irreversibile 
effects. This method was proposed by Bejan 
[15,16]. 

In recent years, many papers have been 
published on the applications and entropy 
generation rates of the second law of 
thermodynamics. Odat et al. [17] have explored the 
entropy generation effects in the laminar flow past 
a flat plate under the influence of the magnetic field 
and found that the entropy generation rate increases 
with the magnetic field intensity. This study has 
revealed that the magnetic field is one of the causes 
that are responsible for the entropy production in 
the systems. Saouli and Aiboud-Saouli [18] 
investigated the second law analysis of laminar 
falling liquid film along an inclined heated plate. 
Esfahani and Jafarian [19] have presented the 
entropy generation analysis of a flat plate boundary 
layer with different solution techniques. An 
irreversibility analysis for gravity driven non-
Newtonian liquid film along an inclined isothermal 
plate has been presented by Makinde [20]. 
Arikoglu et al. [21] have examined the effect of 
slip on entropy generation in a single rotating disk 
in MHD flow. Aiboud and Saouli [22] have 
illustrated the application of the second law 
analysis of thermodynamics to viscoelastic 
magneto-hydrodynamic flow over a stretching 

surface analytically by using Kummer's functions. 
Makinde [23] has conducted a thermodynamic 
analysis on a gravity-driven liquid film along an 
inclined heated plate. He assumed viscosity to be a 
variable quantity and considered the convective 
cooling effect. Makinde [24] has studied a variable 
viscosity boundary layer flow over a flat plate 
under the effects of thermal radiation and 
Newtonian heating, as well as explored entropy 
generation effects in this flow. Makinde [25] has 
examined the entropy generation on 
magnetohydrodynamic flow and heat transfer over 
a flat plate with a convective boundary condition. 
The effect of viscous dissipation and thermal 
radiation on entropy generation in Blasius flow has 
been displayed numerically by Butt et al. [26]. 
Rashidi et al. [27] have analyzed the entropy 
generation in steady MHD flow due to a rotating 
porous disk in a nanofluid. The results showed that 
as the thermal radiation parameter increases, the 
generated entropy decreases. Butt and Ali [28] have 
illustrated the effects of magnetic field on entropy 
generation in the flow and heat transfer due to a 
radially stretching surface. Butt and Ali [29,30] 
have carried out the entropy analysis of flow and 
heat transfer caused by a moving surface. Recently, 
Butt and Ali [31] have presented the entropy 
analysis of magnetohydrodynamic flow and heat 
transfer over a convectively heated radially 
stretching surface. 

The aim of the present paper is to explore the 
entropy generation in MHD boundary layer flow of 
a viscous incompressible electrically conducting 
fluid due to a radial stretching sheet in the presence 
of a transverse magnetic field by taking the 
convective boundary condition into account. The 
partial differential equations governing the flow are 
reduced to nonlinear ordinary differential 
equations, which are solved numerically by 
shooting technique by using fourth order Runge-
Kutta method. A systematic study of the effects of 
the various pertinent parameters on the flow and 
heat transfer characteristic is carried out with the 
help of graphs and table. 

2. Mathematical formulation 

Consider a steady two-dimensional 
boundary layer flow due to the stretching of the 
sheet along the radial direction with the velocity 

( ) =U r ar , where (> 0)a  is a constant, as shown 

in Fig. 1. The sheet is located in the plane = 0z  

and the fluid is confined to the region > 0z . The 
flow is due to the stretching of the sheet. A uniform 

magnetic field of strength 0B  is applied 

perpendicularly to the sheet, i.e. in the z -direction. 
The lower surface of the sheet is heated by 

convection from a hot fluid at temperature fT  
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which provides a heat transfer coefficient fh  while 

the temperature of the ambient cold fluid is T . 

The cold fluid on the upper side of the sheet is 
assumed to be an electrically conducting 
Newtonian fluid with constant fluid property. There 
is no external electric field. Also, it is assumed that 
the magnetic Reynolds number is small enough so 
that the induced magnetic field can be neglected. 

An order-of-magnitude analysis of the 
momentum equation (normal to the sheet) by using 
the usual boundary layer approximations shows 
that the pressure gradient is constant. Thus 
neglecting the pressure gradient, the continuity, 
momentum and energy equations in a viscous 
MHD incompressible boundary layer flow can be 
written, respectively, as follows  

= 0,
u u w

r r z

 
 

 
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(3) 

 

Where u  and w  are the velocity components 

along the r  and z -directions, respectively, T  the 

temperature of the fluid,   the electric 

conductivity of the fluid,   the kinematic 

viscosity,   the fluid density, k  the thermal 

conductivity, pc
 the specific heat at constant 

pressure and rq
 the radiative heat flux. 

The appropriate boundary conditions are  

= ( ) = , = 0,

= ( ) a = 0,

0, a ,

f f

u U r ar w

T
k h T T t z
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u T T s z
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(4) 

Where k  is the thermal conductivity. 
 

For an optically thick fluid, in addition to 
emission there is also self absorbed and usually the 
absorption coefficient is large and dependent on the 
wavelength so that we can apply Rosseland 
approximation for radiative flux. The Rosseland 
approximation [32] applies to optically thick 
medium and taking into account the model 
proposed by Magyari and Pantokratoras [33], the 

net radiation heat flux rq
 is given by  

44
= ,

3
r

T
q

yk

 







 

  
(5) 

 

Where    is the Stefan-Boltzmann 

constant and k  the Rosseland mean 

absorption coefficient. The Rosseland mean 
absorption coefficients for the optically thick 
media are expressed as function of the 
thermodynamic properties of the media. It is 
assumed that the temperature difference 
between the fluid temperature and the free 

stream temperature T  is small, so that the 

term 4T  may be expressed as a linear function 

of temperature. This is done by expanding 4T  
in a Taylor series about a free stream 

temperature T  as follows:  
4 4 3

2 2

= 3 ( )

6 ( )

T T T T T

T T T

  

 

 

   
 

(6) 

Neglecting higher-order terms in the 

equation (6) beyond the first order in ( )T T

we get 
4 3 44 3 .T T T T    (7)  

 
The use of the equation (5) and (7), the 

equation (3) becomes 
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(8) 

The following similarity variables are 
introduced (Butt and Ali  [28]): 

= , = ( ),

= 2 ( ), = ,

'

f
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T T
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T T
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(9) 

 
 

 
Figure 1. Geometry of the problem 
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where   is the independent similarity variable, 

( )f   the dimensionless stream function and ( )   

the dimensionless temperature. 
The use of equation (9), equations (2) and (8) 

reduce to  

2 22 = 0,''' '' ' 'f f f f M f    (10) 

 1 2 = 0,'' 'R Pr f    (11) 

Where 
2

2 0=
B

M
a




 is the magnetic parameter, 

316
=

3

T
R

kk

 



 the radiation parameter, and 

=
pc

Pr
k


 the Prandtl number which measures the 

ratio of momentum diffusivity to the thermal 
diffusivity. 

The thermal radiation is quite significant and 
the quality of the final product can be controlled by 
the control of cooling rate via the radiation 
parameter. In polymer industry, the thermal 
radiation effect may play an important role in the 
control of heat transfer process if the process is 
directed in a thermally controlled environment. 

The corresponding boundary conditions are  

(0) = 0, (0) = 1,

(0) = B [1 (0)],

( ) 0, ( ) 0,

'

'

'

f f

i

f

 



 

   

 

 
(12) 

Where B =
fh

i
k a


 is the surface convection 

parameter or so-called Biot number. When 
Bi  , the convective boundary condition 
reduces to a uniform surface temperature boundary 
condition. For uniformly heated ( Bi  ) radial 
stretching sheet and in the absence of thermal 

radiation ( = 0R ) the present problem reduces to 
the Butt and Ali [28]. 

3. Numerical method for solution 

 
The governing non-linear ordinary differential 

equations (10) and (11) cannot be solved 
analytically. This set of equations with the 
boundary conditions (12) must be solved 
numerically by applying most efficient fourth-order 
Runge-Kutta integration scheme with shooting 
algorithm. Equations (10) and (11) and boundary 
conditions (12) are reduced to a set of simultaneous 

first order differential equations by setting 1 =y f , 

2 = 'y f , 3 = ''y f , 4 =y   and 5 = 'y   as follows  
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(13) 

With the boundary conditions  

1 2 3

4 5

(0) = 0, (0) = 1, (0) = ,

(0) = , (0) = B (1 ),

y y y b

y c y i c 
 

(14)  

Where b  and c  are determined such that 

1( ) = 0y   and 4 ( ) = 0y  . The essence of this 

method is to reduce the boundary value problem to 
an initial value problem and then to use the 

shooting numerical technique to guess b  and c  

until the boundary conditions 1( ) = 0y   and 

4 ( ) = 0y   are satisfied. It is important to note that 

the infinity ( m= ax ) in the above equations 

represents the boundary layer thickness. We 

compare the calculated values for 1 (= )'y f  and 

4 (= )y   at m = 15ax  with the given boundary 

condition (15) = 0'f  and (15) = 0  and adjust the 

estimated values, (0)'f  and (0) , to give a better 

approximation for the solution. The accuracy of the 
assumed missing initial condition is checked by 
comparing the calculated value of the dependent 
variable at the terminal point with its given value 

there. The step size 0.01  is used to obtain the 
numerical solution with seven-decimal place 
accuracy as the criterion of convergence. The 
numerical computations are done by MATLAB 
built-in routine. The method is adequately 
explained in literature and it has second order 
convergence, unconditionally stable. It gives 
accurate result for boundary layer equations. In the 
present study, a uniform grid is used which is 
concentrated toward the wall. 

4. Results and discussion 

 In order to gain a clear physical insight of the 
problem, we have discussed the effects of different 

values of magnetic parameter 2M , radiation 
parameter R , Prandtl number Pr  and the Biot 
number on the velocity, temperature and shear 
stress at the surface of the sheet. The default values 
of the other parameters are mentioned in the 
description of the respected figures. Fig.2 shows 

that the fluid velocity )(f   decreases with an 

increase in magnetic parameter 2M . A drag-like 
Lorentz force is created by the application of the 
transverse magnetic field of the electrically 
conducting fluid. This force has the tendency to 



55 

 

S.Das / JHMTR 1 (2016) 51-61 

slow down the fluid flow. Fig.3 shows that the fluid 

temperature )(  increases by increasing the 

magnetic parameter 2M  in the boundary layer 
region and the thermal boundary layer thickness 
increases as the magnetic field becomes stronger. It 
is important to notice that large resistances on the 
fluid particles, which cause heat to be generated in 
the fluid, as the transverse applied magnetic field 
increases. It  can be observed from Fig.4 that the 
fluid temperature increases by increasing values of 
radiation parameter R . The increase in radiation 
parameter means the release of heat energy from 
the flow region and so the fluid temperature 
decreases. A decrease in the values of R  for given 

k  and T  means a decrease in the Rosseland 

radiation absorptivity k . Since the divergence of 

the radiative heat flux
y

qr




 increases, k  decreases 

which in turn causes to increase the rate of 
radiative heat transfer to the fluid and hence the 
fluid temperature increases. In the presence of 
thermal radiation, the thermal boundary layer 
always found to be increased. This means that the 
thermal boundary layer increases and there is more 
uniform temperature distribution across the 
boundary layer. 

The effect of Prandtl number Pr on the heat 
transfer process is shown in the Fig.5. This figure 
shows that an increase in Prandtl number number 
Pr results in a decrease in the temperature 
distribution because, the thermal boundary layer 
thickness decreases  by increasing  the Prandtl 
number Pr. In  summary, an increase in the Prandtl 
number means slow rate of the thermal diffusion. 
The graph also shows that the wall temperature 
decreases, as the values of Prandtl number Pr 
increase. It is also found that the thermal boundary 
layer thickness reduces as Pr increases. Fig.6 
demonstrates the effects of the Biot number Bi  on 
fluid temperature. It  can be seen that the 
temperature profiles within the boundary layer 
increase  by increasing  in Biot number, leading to 
an increase in the thermal boundary layer 
thickness. Biot number is the ratio of the hot fluid 
side convection resistance to the cold fluid side 
convection resistance of a surface. For fixed cold 
fluid properties, Biot number Bi  is directly 

proportional to the heat transfer coefficient fh   

associated with the hot fluid. The thermal 
resistance on the hot fluid side is inversely 
proportional to fh . Thus, as Bi  increases, the hot 

fluid side convection resistance decreases and 
consequently, the surface temperature increases. It 
is also noticed that for large values of Bi , i.e. 
Bi  , the temperature profile attains its 
maximum value 1; thus the convective boundary 
condition becomes the prescribed surface 

temperature case. The thermal boundary layer 
thickness increases as Bi  increases. 

 
Figure 2. Velocity profiles for different 2M  

 

 
Figure 3. Temperature profiles for different 2M  when 

2 = 1M ,   = 0.5R  and = 0.72Pr  

 

 
Figure 4. Temperature profiles for different R  when 

2 = 1M ,   B = 0.1i  and = 0.72Pr  
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Figure 5. Temperature profiles for different Pr  when 

2 = 1M ,   = 0.5R  and B = 0.1i  

 

 
Figure 6. Temperature profiles for different Bi  when 

2 = 1M ,    = 0.5R  and = 0.72Pr  

At the engineering point of view, the shear stress at 
the surface of the sheet is an important 
characteristic in the heat transfer studies, since it is 
directly related to the heat transfer coefficients. The 
increased shear stress is generally a disadvantage in 
the technical applications, while the increased heat 
transfer can be exploited in some applications such 
as heat exchangers, but should be avoided in other 
applications such as a gas turbine, for instance. The 

numerical values of the surface temperature (0)  

and the shear stress (0)''f  at the surface of the 

sheet = 0  are entered in the Table 1 for several 

values of 2M , R , Pr and Bi . It  can be seen from 

the Table 1 that the surface temperature (0)  

increases by increasing values of either 2M  or Bi  
or R  while it decreases  by increasing  in Pr . This 
is  because of the fact that the Biot number Bi  is 
directly proportional to the heat transfer coefficient 
associated with hot fluid. The thermal resistance on 
the hot fluid side is inversely proportional to fh . 

Thus, as Bi  increases, the hot fluid side 
convection resistance decrease; as a result, the 

surface temperature (0)  increases. The shear 

stress (0)''f  increases by increasing values of 
2M . 

4.1. Entropy generation 

Non-equilibrium conditions happen due to the 
exchange of the energy and momentum within the 
fluid and at solid boundaries that result in entropy 
generation. According to Woods [34], the local 
volumetric rate of entropy generation for a viscous 
incompressible conducting fluid in the presence of 
a magnetic field is given by  

2
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2 2
20
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.

G

k T

zT

Bu
u

T z T
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 
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 

 
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(15) 

 
The first term in equation (15) is the 

irreversibility due to the heat transfer, the second 
term is the entropy generation due to viscous 
dissipation and the third term is a local entropy 
generation due to the effect of magnetic field (Joule  

The dimensionless entropy generation number 
may be defined by the following relationship: 

2 2

2
N = .

( )
G

S

f

T r E

k T T



 

  

(16) 

The use of (9), the entropy generation number in 
dimensionless form is  
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Re Br
f M f
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Where =
U r

Re


 is the Reynolds number, 

2

=
( )f

U
Br

k T T




  is the Brinkmann number and 

=
fT T

T






  the non-dimensional temperature 

difference. 

The entropy generation number NS  can be 

written as a summation of the entropy generation 

due to heat transfer denoted by NS  and the entropy 

generation due to fluid friction with magnetic field 
denoted by NS  given as  

 

2
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2 2 2
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N Re

Br Re
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In order to obtain an idea of whether entropy 
generation due to the heat transfer dominates over 
entropy generation due to the fluid friction and the 
magnetic field, or vice versa, the Bejan number 

Be  is defined to be the ratio of entropy generation 
due to the heat transfer to the entropy generation 
number [35].  

1

entropy generation due to heat transfer
B =

entropy generation number

1
= = ,

N 1
S

e

N

 

 

  

  

(19) 

Where 2

1

=
N

N
  is the irreversibility ratio. Heat 

transfer dominates for 0 < 1   and fluid friction 
with magnetic effects dominates when > 1 . The 
contribution of both heat transfer and fluid friction 
to entropy generation is equal when = 1 . The 
Bejan number Be  takes the values between 0 and 1 
(see Cimpean et al. [36]). The value of B = 1e  is 
the limit at which the heat transfer irreversibility 
dominates, B = 0e  is the opposite limit at which 
the irreversibility is dominated by the combined 
effects of fluid friction and magnetic field and 
B = 0.5e  is the case in which the heat transfer and 
fluid friction with magnetic field entropy 
production rates are equal. Further, the behavior of 
the Bejan number Be  is studied for the optimum 
values of the parameters at which the entropy 
generation takes its minimum. 

 
The influences of the different governing 

parameters on entropy generation and Bejan 
number are presented in Figs. 7-14. It  can be seen 
from Fig.7 that the entropy generation number NS  

increases  by increasing  in magnetic parameter 
2M . An increase in the magnetic field intensity 

causes an increase in the entropy generation. It 
reveals that the magnetic field is a source of 
entropy generation in addition to the fluid friction 
and the heat transfer. Also, it  can be seen that the 
entropy generation effects are prominent on the 
surface of the stretching sheet and in the region 
close to it. However, in the free stream region the 
entropy effects are negligible. This implies that in 
order to control the entropy which is generated in 
boundary layer flow, the value of the magnetic 
parameter should be reduced, which is an issue of 
interest in nuclear-MHD propulsion. Fig.8 shows 

that the entropy generation number NS  increases 

by increasing Reynolds number Re  due to higher 
heat transfer rates at the sheet surface. An increase 
in Reynolds number Re , the entropy effects due to 
heat transfer entropy effects become prominent and 
fluid friction and magnetic field are lessen near the 
stretching sheet surface. However, as the distance 
increases from the sheet surface, these effects are 

negligible. Fig.9 illustrates the effects of the Biot 
number Bi  on the entropy generation. Increasing 
Bi  enhances the entropy generation. It means that 
the convective surface boundary condition acts as a 
strong source of irreversibility. Therefore, the 
entropy can be minimized by reducing the 
convection through the boundary. The closeness of 
the curves in Fig.9 can be attributed that the 
entropy effects are dominated by the entropy 
effects due to fluid friction and magnetic field. It 
can be observed from Fig.10 that entropy 
generation number increases by increasing the 

group parameter 1Br   due to the viscous heating 
effects. An increase in the values of the group 

parameter 1Br   due to the combined effects of 
viscous heating and temperature difference yields a 
higher entropy generation number. 

Fig.11 shows that the Bejan number Be  
increases by increasing the values of magnetic 

parameter 2M . For large values of 2M , the 
entropy effects due to fluid friction and magnetic 
field are fully dominated by heat transfer entropy 
effects near the sheet surface. Fig.12 illustrates the 
effects of the radiation parameter R  on the Bejan 
number Be . By increasing values of R , the entropy 
effects due to heat transfer become strong and 
hence Bejan number Be  increases. This is due to 
the fact that the effect of the radiation parameter R  
is to enhance the temperature significantly in the 
flow region. The increase in radiation parameter 
means the generation of heat energy in the flow 
region. An increase in Biot number Bi  leads to 
increase the Bejan number Be  as shown in Fig.13. 
Also, an increase in the values of the Biot number 
results in an increase in the dominant effect of heat 
transfer irreversibility at the sheet surface. This 
means that the sheet surface acts as a strong source 
of irreversibility. Fig.14 reveals that the Bejan 
number Be  decreases by increasing group 

parameter 1Br   . This is quite true as higher 

values of 1Br  , which increase the magnitude of 

fluid friction with magnetic field irreversibility 2N  

but has no effect on the heat transfer irreversibility 

1N , increases the values of   leading to lower 

Bejan number. The group parameter is an 
important dimensionless number for irreversibility 
analysis. It determines the relative importance of 
viscous effects to that of temperature gradient 
entropy generation. The graphs of the Bejan 
number are useful to obtain an idea on whether heat 
transfer irreversibility dominates fluid friction 
irreversibility or vice versa. 

 

5. Conclusion 

Entropy generation analysis in hydromagnetic 
boundary layer flow of a viscous incompressible 
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electrically conducting fluid due to a radially 
stretching sheet with Newtonian heating in the 
presence of a transverse magnetic field has been 
carried out. The velocity and temperature profiles 
are obtained numerically and used to compute the 
entropy generation number. The effects of the 
pertinent parameters on velocity and temperature 
profiles are presented graphically.  

The influences of the same parameters and the 
dimensionless group parameter on the entropy 
generation rate and Bejan number are also 
discussed. 

From the results the following conclusions could 
be drawn: 

 The magnetic field retards the fluid velocity 
while it causes to increase the fluid 
temperature. 

 The fluid temperature decreases by 
increasing the values of the radiation 
parameter, leading to a decrease in the 
thermal boundary layer thickness. 

 It is also found that the thermal boundary 
layer thickness reduces as Prandtl 
number increases. 

 The fluid temperature increases by 
increasing values of Biot number, leading 
to an increase in the thermal boundary 
layer thickness. 

 The surface of the sheet acts as strong 
source of entropy and the heat transfer 
irreversibility. 

 

 

Table 1. The shear stress (0)''f  and the temperature (0)  at the sheet = 0 . 

2M  R   Pr  Bi  (0)''f   (0)  

 0.5    0.72  0.1  1.57758  0.08345 

1    0.72  0.1  1.70391  0.08358 

2    0.72  0.1  1.94118  0.08384 
  

1  0.1      0.08018  

1  0.5      0.08283 

1  1      0.08474 
  

   0.72     0.08358 

   2     0.07279 

   3      0.06597 

  

    0.1    0.08358 

    1    0.47701 
     5    0.82016 

 
Figure 7. NS  for different 2M  when B = 0.1i , 

= 1Re  and 1 = 1Br   
 
 

 
Figure 8. NS  for different Re  when 

2 = 5M , 

B = 0.1i  and 1 = 1Br   
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Figure 9. NS  for different Bi  when 2 = 1M , = 1Re  

and 1 = 1Br   
 

 
Figure 10. NS  for different 1Br   when 2 = 1M , 

B = 0.1i  and = 0.5R  

 
Figure 11. Bejan number Be  for different 2M  when 

B = 0.1i , = 0.5R  and 1 = 1Br   

 
 

 
Figure 12. Bejan number Be  for different R  when 

2 = 1M , B = 0.1i  and 1 = 1Br   
 
 
 

 
Figure 13. Bejan number Be  for different Bi  when 

2 = 1M , = 0.5R  and 1 = 1Br   
 

 
Figure 14. Bejan number Be  for different 1Br   when 

2 = 1M  and B = 0.1i  

 The optimum design and efficient 
performance of a flow system or a thermally 
designed system can be improved by choosing the 
appropriate values of the physical parameters. This 
will be enabled to reduce the effects of entropy 
generated within the system. 
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Nomenclature 

 
  a    a constant  

0B    applied magnetic field  

Be    Bejan number  

Bi    Biot number  

Br    Brinkmann number 

c p    specific heat at constant pressure 

EG    volumetric rate of entropy generation 

f    non-dimensional steam function 

'f    first order derivative with respect to   

''f    second order derivative with respect to   

'''f    third order derivative with respect to   

h f    heat transfer coefficient 

k    thermal conductivity  

k
   Rosseland mean absorption coefficient 
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2M    magnetic parameter  

1N    entropy generation due to heat transfer 

2N    entropy generation due to fluid friction and 
magnetic field 

NS    entropy generation number 

Pr    Prandtl number  

rq    radiative heat flux 

R    radiation parameter  

Re    Reynolds number 

T    fluid temperature 

fT    hot fluid temperature 

T    free stream temperature 

u , 
w   

 velocity components in r  and z -directions 

U    Stretching velocity of the sheet in radial 
direction 

  Greek symbols 

    similarity variable 

    kinematic viscosity 

    irreversibility distribution ratio 

    the fluid density 

 
   Stefan-Boltzman constant 

    non-dimensional temperature difference 

    non-dimensional temperature 

'    first order derivative with respect to   

''    second order derivative with respect to   
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