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model. The proposed Cascaded Lattice Boltzmann Method indicates a clear improvement in 
predicting the behavior of gaseous flows in microchannels for the previous classic and 
Cascaded Lattice Boltzmann Methods. 

DOI: 10.22075/jhmtr.2020.18359.1243 

 

Keyw ord s:  
Cascaded Lattice Boltzmann 
Method; 
Micro Poiseuille Flows; 
Boundary conditions; 
Bosanquet parameter; 
Effective viscosity. 
 

 © 2020 Published by Semnan University Press. All rights reserved. 

 

1. Introduction    

The process of building Microelectromechanical 

systems (MEMS) [1] referring to devices whose 

characteristic length is between 1 mm and 1 μm, has 

greatly expanded recently. Therefore, the flow in 

microdevices receives more and more attention [2-4]. The 

microflows have a different mechanism from that of the 

macroscopic ones. In these flows, the order of 

characteristic length of the flow and the mean free path is 

the same. 

Analytical solutions don’t cover all the requirements of 

CFD applications when it comes to analyzing the 

microflow geometries. The Knudsen number (Kn) is a 

factor characterizing the microflows and defined as 𝜆/H, 

where 𝜆 and H are the molecular mean free path and 

characteristic length, respectively. When Kn > 0.01, the 

Navier–Stokes equations are invalid, and some particular-

based methods such as Molecular Dynamics and the Direct 

Simulation Monte Carlo are employed in numerical 

approaches [5-8]. However, these approaches are 
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computationally expensive. Recently, the researchers have 

paid significant attention to the lattice Boltzmann method 

(LBM) as a better approach [9-11]. 

The basis of the Lattice Boltzmann Method is the 

Lattice Boltzmann Equation with the BGK collision 

operator [12]. It contains two features. First, the collision 

between the wall and fluid particles is applied to the model 

via the mean free path. Second, the particles streaming is 

incorporated [5]. 

There are various theoretical and experimental models 

in the field of microflows that Beskok and Karniadakis 

categorized some of them in their work [10]. In accordance 

with Kn number, compressibility is another consequential 

parameter that reflects the fact that the pressure 

distribution is not linear in a microchannel. Basically, gas 

flows are compressible. Furthermore, in a long 

microchannel, a high-pressure difference is required to 

drive the fluid. Cercignani and Daneri [6] studied the 

poiseuille flow of a gas, numerically. The inverse Kn 

number range that they investigated was 0-10.5. Ohwada 
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et al. [7] inspected the thermal poiseuille gaseous flow of 

rarefied gas in a microchannel. Their model was based on 

Linearized Boltzmann for Hard sphere molecules. The 

velocity distribution functions and gas heat flux was 

acquired in a spectrum range of Kn. Arkilic et al. [8] 

fabricated a microchannel for gaseous microflow. They 

displayed that a numerical method for compressible 

Navier-Stokes equations (NSE) with slip boundary 

conditions coordinates with the results of the fabricated 

microchannel. Hadjiconstantinou [9] concluded that 

modified second-order slip boundary conditions are 

compatible with the solution of the Boltzmann Equation 

for hard-sphere molecule for a wider spectrum of 

rarefaction. 

Viscous heating and thermal creep are other major 

effects on microgrids [10, 11]. Ahmed and Beskok [12] 

explored the effects of viscous heating and rarefaction for 

microflows in microdevices. The slip velocity was the 

final important effect in gas microchannels. 

Lee and Lin [13] inspected the slip velocity in the wall 

from the results of the simulation of the Lattice Boltzmann 

Method as a numerical error generated by the instability of 

the applied boundary conditions. However, it was clear 

that this slip velocity is a phenomenon present in the actual 

physics of microflows. Guo et al. [14] Systematically 

studied the symmetry, accuracy, and relaxation coefficient 

of the LBM for the microflows for Kn numbers from 0.1 

and 10. They manifested that the symmetry and accuracy 

of the common Lattice Boltzmann Methods cannot 

simulate gaseous microflows in the transition state well. 

Moreover, in the gaseous microflows, the channel wall 

enclosure has nonlinear effects on the relaxation 

coefficient which must be deliberated in the LBM to model 

these flows. 

Recently, Asadollahi et al. [15] explored the 

condensation process, the dynamic behavior of fluid, and 

phase-change inside a mini channel in the presence of 

square blocks, numerically. They employed multiphase 

LBM based on the pseudopotential model. In another 

study, Asadollahi et al. [16] removed the condensed liquid 

from an object and studied how wet is the surface in 

multiphase flows by Lattice Boltzmann Method. Hosseini 

et al. [17] studied a radiation and convection heat transfer 

problem in a microchannel with LBM. Their models 

agreed well with previous results. 

Cascaded Lattice Boltzmann method (CLBM) 

eliminates modeling artifacts using a set of collision 

operators to simulate flows [18]. It improves the stability 

of the LBM for high Re numbers. 

Several papers investigate the central moments and 

their high orders for the relaxation process in cascaded 

models [19-21]. They compare their CLBM models with 

some analytical solutions. Premnath and Banerjee [22] 

incorporated forcing terms in CLBM by a method of 

central moments. They concluded that their method is 

consistent with the NSE. They validated it with some 

benchmark problems. Fei and Lou also proposed another 

so-called Consistent forcing scheme in the CLBM that did 

not apply orthogonal relaxation times [23]. The CLBM 

also is employed in some multiphase problems [24-26]. 

There is a lack of systematic study of numerical 

properties of gas flows in a microchannel for a wider 

spectrum of Kn number applying CLBM. This paper 

investigates flows in microdevices with CLBM and 

indicates the validation and efficiency of this method for 

the entire range of Kn numbers in various forms of 

microflows. 

Here the LBM model will be discussed briefly, 

including a discussion about the LBM and the CLBM 

model for microflows In Section 2. Section 3 will inspect 

various wall-distance functions and incorporate them into 

boundary conditions. In Section 4, the CLBM for the 

microflows will be discussed. Section 5 will propose 

numerical results in detail and analyze them, and Section 

6 gives a summary and conclusion of the present work. 

 

2. The Lattice-Boltzmann Method 

The recently applied LBM models are proposed by 

Bhatnagar et al. [27] called the BGK–Boltzmann. The 

discretized form of this equation in momentum, space, and 

time is as below: 

𝑓𝑖(𝒙 + 𝒆𝑖𝛿𝑡, 𝑡 + 𝛿𝑡)
= 𝑓𝑖(𝒙, 𝑡)

−
𝛿𝑡

𝜏𝑠

(𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖
𝑒𝑞(𝒙, 𝑡)) 

(1) 

Where 𝑓𝑖, 𝑓𝑖
𝑒𝑞

, 𝑐𝑖  and 𝜏𝑠 are the discrete particle 

distribution function, equilibrium distribution function, 

velocity field, and the relaxation time, respectively. For the 

D2Q9 model used here, 𝒆𝒊 = [|𝒆𝒊𝒙⟩, |𝒆𝒊𝒚⟩] is: 

|𝒆𝑖𝑥⟩ = [0,1,0, −1,0,1, −1, −1,1]𝑇 

|𝒆𝑖𝑦⟩ = [0,0,1,0, −1,1,1, −1, −1]𝑇 
(2) 

Where i=0-8 and |. ⟩ refers to a vector, and superscript 

𝑇 stands for transposition. Equation 2 relates the relaxation 

time (𝜐) to the fluid viscosity through the relation below: 

𝜐 = 𝑐𝑠
2𝛿𝑡(𝜏𝑠 − 0.5) (3) 

Where δ𝑡 is the discrete time step and the sound speed 

𝑐𝑠 =
1

√3
𝑐 in D2Q9 lattice and 𝑐 =

𝛿𝑥

𝛿𝑡
. When the 

distribution functions are determined, the macroscopic 

properties like density (𝜌), velocity vector (𝑢) and pressure 

(𝑝) would be computed applying relations below: 

𝜌 = ∑ 𝑓𝑖
𝑘
𝑖=0 , 𝜌𝑢 = ∑ 𝑒𝑖𝑓𝑖

𝑘
𝑖=0 , 𝑃 = 𝑐𝑠

2𝜌 =
1

3
𝜌 (4) 

The equilibrium distribution functions is as below: 

𝑓𝑖
𝑒𝑞

= 𝑤𝑖𝜌 (1 + 3
𝑒𝑖 . 𝑢

𝑐𝑠
2

+
9

2

(𝑒𝑖 . 𝑢)2

𝑐𝑠
4

−
3

2

𝑢2

𝑐𝑠
2

) 

𝑤0 = 4/9, 𝑤𝑖=1,2,3,4 = 1/9, 𝑤𝑖=5,6,7,8 = 1/36 

   (5) 

 

3. Wall-distance functions 
The kinetic theory says the mean free path (λ) is related 

to the viscosity (μ) as [28, 29] 

𝜆 =
𝜇

𝑝
√

𝜋𝑅𝑇

2
 (6) 

Where T represents temperature. Equation (6) is true 

for rarefied gas flows in unbounded systems. Wall effects 
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are of the most important flow parameters, especially in 

the transition region. The collisions between walls and 

molecules are increasingly occurring, effectively reducing 

the gas mean free path [30]. 

For a micro gaseous flow between solid walls, the 

presence of walls has a great impact on the mean free path 

of the molecules. Various wall-distance functions [1, 29, 

31] are proposed to record the effects of solid gas impact 

on flow properties. The general form of these functions 

can be expressed as below 

𝜆∗ = 𝜆𝛹(𝐾𝑛) (7) 

Where 𝜆∗is the mean free path of the molecules in the 

confined system and 𝛹 is a function of 𝐾𝑛 and distance 

from walls, and satisfying [14] 

𝑙𝑖𝑚
𝐾𝑛→0

𝛹 (𝐾𝑛) = 1 (8) 

The key parameter in the microflows is the relaxation 

parameter (𝛕𝐬), a collisional relaxation time scale to the 

local equilibrium, which appears in the BGK model for a 

collision operator. Pursuant to the relation between the 

viscosity and mean free path of the molecules, it can be 

concluded to 

𝜇𝑒 = 𝜇𝛹(𝐾𝑛) (9) 

where 𝛍𝐞 is the effective viscosity in the confined 

system. According to Equations (6) and (7), the effective 

viscosity 𝛍𝐞 can be acquired as: 

𝜇𝑒 =
𝜌

3
√

2

𝜋𝑅𝑇
𝜆∗ =

1

3
√

6

𝜋
𝜌𝜆𝛹

=
𝑐

3
√

6

𝜋
𝜌𝑁𝑦𝐾𝑛𝛹𝛿𝑥 

(10) 

Where 𝑁𝑦 represents the size of grid in the y-direction, 

and δ𝑥  is the discrete lattice spacing.  Therefore, using 

equation (3) and 𝜇 = 𝜌𝜗 we can obtain an expression for 

𝜏𝑠: 

𝜏𝑠 = √
6

𝜋
𝑁𝑦𝐾𝑛 𝛹 +

1

2
 (11) 

The Knudsen number for poiseuille gas flows in a 

microchannel can be defined as below: 

𝐾𝑛 = 𝐾𝑛𝑜𝑢𝑡𝑃𝑜𝑢𝑡/𝑃(𝑥) (12) 

where 𝐾𝑛𝑜𝑢𝑡 and 𝑃𝑜𝑢𝑡 is the Knudsen number and 

outlet pressure. 

3.1. Bosanquet-type effective viscosity 

The Bosanquet-type effective viscosity is introduced by 

an interpolation formula proposed by Bosanquet for 

diffusion coefficients. It can be expressed as [10, 32] 

𝛹 =
1

1 + 𝑎𝐾𝑛
 (13) 

where 𝑎  is the Bosanquet parameter. Michalis et al. 

[32] used DSMC to study the rarefaction effect on 

viscosity for channel flows over the entire transition flow 

regime. Figure 1 shows their DSMC results in a channel 

for variation of the Bosanquet parameter with the Knudsen 

number. Each data set represents separated results with 

different end pressure values. They mentioned this 

dependence is relatively weak for most of the Kn numbers 

in this region and shows an effective value of about 2. The 

majority of previous studies [31, 33] that employed 

Bosanquet-type effective viscosity, used this value. Some 

other values, such as 1.5 [9] and 2.2 [3, 10] were reported 

in the literature.  

According to Figure 1, it can be observed that despite 

Michalis et al. suggestion, the dependence of the 

Bosanquet parameter with the Knudsen number is not 

weak, certainly for Kn < 0.5. In this paper, we suggest 

applying the nonconstant Bosanquet parameter instead of 

a constant one. After curve-fitting with various polynomial 

and arctangent-type functions, the best function that fits 

data over the whole range of 𝐾𝑛 obtained as 

𝑎 = 0.9586 + (2/𝜋)𝑎𝑟𝑐𝑡𝑎𝑛(39.27𝐾𝑛2.613) (14) 

Figure 1 also provides a comparison of the 

aforementioned suggestions for the constant 

Bosanquet parameter, including a=1.5, 2, 2.2, and 

the proposed model. It can be observed that the 

model proposed here fits data the best in comparison 

with the other models. The R-squared value of the 

curve-fitting is 0.08725; in spite of the shape of the 

curve proves its ability to fit the data. These values 

for a=1.5, 2 and 2.2 are -3.614, – 0.1014 and -1.455. 

In addition, the best exponential fitting function is a 

= 1.935× exp (-0.001221Kn) + 1.76×10-13× exp 

(1.484×Kn) that has R-squared value of 0.0129. 

Certainly, the arctangent-type function suggested 

here has the best prediction of the behavior of the 

data for Kn < 0.5. Although, the other models do not 

approximate the data in this region well. 

Confirming to Equation 13, the Bosanquet parameters 

for different values of Kn such as 0.0194, 0.194, 0.388, 0.5 

and 1 are 0.96, 1.27, 1.78, 1.86 and 1.94, respectively. 

These values of Kn are often applied in the literature for 

comparison with the analytical and experimental results. 

Table 1 provides the errors between the values of the 

proposed model and the other models discussed here. It 

can be interpreted that the errors of the previous models 

are not negligible, certainly for Kn < 0.5. For example, for 

Kn = 0.0194, the error for the most conventional model 

(a=2) is 108%, which is considerably large and can affect 

 

Figure 1. Variation of various models for the Bosanquet 
parameter with the Knudsen number. Data sets are from 

DSMC calculations [20] 
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the results of simulations for micro gas flows. Therefore, 

in this paper, Equation 13 is applied for the nonconstant 

Bosanquet parameter in the simulations. 

3.2. Tang’s function 
Tang et al. [34] showed that the local mean free path of 

molecules of a gaseous flow between two walls, near the 

south wall, is represented as  

𝜆−(𝑧) = 𝜆0(1 + (𝛼1 − 1) 𝑒𝑥𝑝(−𝛼1)
− 𝛼1

2𝐸𝑖(𝛼1)) 
(15) 

Where z is the direction normal to the wall, 𝜆0 is the 

reference mean free path, α1=z/λ0, 𝐸𝑖(𝑥) = ∫ 𝑡−1∞

1
𝑒−𝑥𝑡𝑑𝑡 

The local mean free path of molecules moving towards 

the upper wall can be written as: 

𝜆+(𝑧) = 𝜆0(1 + (𝛼2 − 1) 𝑒𝑥𝑝(−𝛼2)
− 𝛼2

2𝐸𝑖(𝛼2)) 
(16) 

Where α2= (H-z)/λ0. The effective mean free path can 

be determined by averaging both of aforementioned mean 

free paths as: 

𝜆 =
𝜆+ + 𝜆−

2
 (17) 

3.3. Lockerby’s function 
Lockerby et al. [35] obtain a geometry-dependent 

expression of effective local viscosity. They proposed a 

function as below: 

𝛹 =
1

1 + 0.7𝑒𝑥𝑝 (−𝐶𝑧/𝜆)
 (18) 

Where z is the distance normal to the wall and C is a 

constant that depends on the governing equations. Zhang 

et al. [36] showed that C = 1 is the best value that matches 

the results of the linearized Boltzmann equation and 

DSMC simulations. 

3.4. Normalized effective mean free path 
function 

Lopez [30] combined amplitude and profile to develop 

the Normalized effective mean free path function. The 

amplitude function is based on the molecular dynamics 

data at the center of the channel (y/H=0.5), plotted as a 

function of 1/Kn. For the profile function, the reference 

data for each Kn is divided by the value at the center of the 

channel. Combining these functions gives the normalized 

effective mean free path function which can be written as: 

𝛹 (
1

𝐾𝑛
,

𝑦

𝐻
) = (

(
1

𝐾𝑛
)

2

− 0.06 (
1

𝐾𝑛
) + 0.38

(
1

𝐾𝑛
)

2

+ 1
) 

(
(

𝑦

𝐻
)

𝑡𝑎𝑛

3

+ 0.53

(
𝑦

𝐻
)

𝑡𝑎𝑛

3

+ 1
) 

(19) 

3.5. Arctangent function 
Stops [37] inspected the transition from continuum to 

molecular behavior of gases applying a modified mean 

free path. His expression of Ψ for a gas flow system 

confined between two parallel walls was very 

 

Table 1. Percentage errors of various models for the 
Bosanquet parameter for different values of Kn 

Kn 0.0194 0.194 0.388 0.5 1 

a=1.5 56.4 17.8 15.4 19.4 22.8 

a=2 108.5 57.1 12.9 7.5 3.0 

a=2.2 129.3 72.8 24.2 18.3 13.3 

complicated. Guo et al. [14] have approximated the 

function with: 

𝛹 =
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (√2𝐾𝑛−3/4) (20) 

Finally. In this paper, the Bosanquet-type effective 

viscosity is chosen for modeling wall-distance effects. 

 

4. The Cascaded Lattice Boltzmann 
Method 

CLBM refers to a set of collision operator that decrease 

numerical instabilities. In the MRT model, the collision 

process is performed in a reference frame of a fixed lattice; 

however, in CLBM, this frame of reference is shifted by 

the macroscopic fluid velocity [6]. The local 

hydrodynamic velocity which is the first moment of the 

distribution functions, is the center of mass in the space of 

moments. The moments displaced by the local 

hydrodynamic velocity are central moments and defined 

in a reference frame moving with the fluid. Then again, the 

raw moments defined in the reference frame of a fixed 

lattice. The central moment of a given order is algebraic 

combinations of raw moments of dissimilar orders, with 

their highest order being equal to that of the central 

moment [38].  

4.1. The Algorithm of Cascaded Lattice 
Boltzmann Method 

The raw and central velocity moments of the 

distribution function are defined as: 

�́�𝑥𝑚𝑦𝑛 = ∑ 𝑓𝑖𝑒𝑖𝑥
𝑚𝑒𝑖𝑦

𝑛 = 〈𝑒𝑖𝑥
𝑚𝑒𝑖𝑦

𝑛|𝑓𝑖〉

𝑖

 (21) 

𝜿𝑥𝑚𝑦𝑛 = 〈(𝑒𝑖𝑥 − 𝑢𝑥)𝑚(𝑒𝑖𝑦 − 𝑢𝑦)𝑛|𝑓𝑖〉 (22) 

Respectively, where 𝑓𝑖  refers to discrete distribution 

functions and 𝑢𝑥and 𝑢𝑦are bulk velocities [23]. First, the 

lattice Boltzmann equation with a semi-implicit treatment 

of the forcing term is written as: 

𝑓𝑖(𝒙 + 𝒆𝑖𝛿𝑡, 𝑡 + 𝛿𝑡)

= 𝑓𝑖(𝒙, 𝑡) + 𝜴𝑖
𝐶|(𝒙,𝑡)

+
𝛿𝑡

2
(𝑆𝑖|(𝒙,𝑡)

+ 𝑆𝑖|(𝒙+𝒆𝑖𝛿𝑡,𝑡+𝛿𝑡)) 

(23) 

where 𝑆𝑖 is the forcing accounting for a body force field 

𝐹 = (𝐹𝑥, 𝐹𝑦)  and Ω𝑖
𝐶 is the collision term which can be 

defined as: 

𝛺𝑖
𝐶 = 𝛺𝑖

𝐶(𝑓, �̂�) = (𝐾. �̂�)𝑖 (24) 

where  �̂� =|�̂�𝑖⟩ = (�̂�0, �̂�1, �̂�2, … , �̂�8)𝑇is the vector of 

the unknown collision kernels and 𝑲 is an orthogonal 

matrix defined as: 
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𝐾 = [|1⟩, |𝑒𝑥⟩, |𝑒𝑦⟩, 3|𝑒𝑥
2 + 𝑒𝑦

2⟩, −4|1⟩, |𝑒𝑥
2

− 𝑒𝑦
2⟩, |𝑒𝑥𝑒𝑦⟩, −3|𝑒𝑥

2𝑒𝑦⟩

+ 2|𝑒𝑦⟩ − 3|𝑒𝑥𝑒𝑦
2⟩

+ 2|𝑒𝑥⟩, 9|𝑒𝑥
2𝑒𝑦

2⟩

− 6|𝑒𝑥
2 + 𝑒𝑦

2⟩ + 4|1⟩] 

(25) 

The forcing term 𝑆 =|𝑆𝑖⟩ = 𝑇−1�̂�, in which �̂� =|�̂�𝑖⟩ can 

be written as: 

�̂� = [0, 𝜌𝐹𝑥, 𝜌𝐹𝑦 , 2𝜌(𝐹𝑥𝑢𝑥 + 𝐹𝑦𝑢𝑦), 2𝜌(𝐹𝑥𝑢𝑥

− 𝐹𝑦𝑢𝑦), 𝜌(𝐹𝑥𝑢𝑦 + 𝐹𝑦𝑢𝑥),

𝜌(𝐹𝑦𝑢𝑥
2

+ 2𝐹𝑥𝑢𝑥𝑢𝑦), 𝜌(𝐹𝑥𝑢𝑦
2

+ 2𝐹𝑦𝑢𝑥𝑢𝑦), 𝜌(2𝐹𝑥𝑢𝑥𝑢𝑦
2

+ 2𝐹𝑦𝑢𝑦𝑢𝑥
2)]

𝑇
 

(26) 

𝑇 is a non-orthogonal transformation matrix which can 

be written as: 

𝑇

= [|1⟩, |𝑒𝑥⟩, |𝑒𝑦⟩, |𝑒𝑥
2 + 𝑒𝑦

2⟩, |𝑒𝑥
2

− 𝑒𝑦
2⟩, |𝑒𝑥𝑒𝑦⟩, |𝑒𝑥

2𝑒𝑦⟩, |𝑒𝑥𝑒𝑦
2⟩, |𝑒𝑥

2𝑒𝑦
2⟩]

𝑇
 

(27) 

The implicit treatment of the forcing term in Equation 

(23) makes its implementation in simulations complicated. 

By introducing a new distribution function 𝑓�̅� = 𝑓𝑖 −

0.5𝛿𝑡𝑆𝑖  the implicitness of this scheme can be avoided, 

which yields: 

𝑓�̅�
̃(𝒙, 𝑡) = 𝑓�̅�(𝒙, 𝑡) + Ω𝑖

𝐶|(𝒙,𝑡) + 𝛿𝑡 𝑆𝑖|(𝒙,𝑡) (28) 

𝑓�̅�
̃(𝒙 + 𝒆𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓�̅�

̃(𝒙, 𝑡) (29) 

Equations (28) and (29) represent collision and 

streaming step, respectively, and  𝑓�̅�
̃ is the post-collision 

distribution function. 

It is noteworthy to mention that collisions do not alter 

mass and momenta. Considering the effect of the external 

force, the collision kernels �̂�  =| �̂�𝑖⟩  employing the 

expressions for discrete raw moments acquired as follows: 

�̂�0 = �̂�1 = �̂�2 = 0 (30) 

�̂�3 =
𝑠3

12
{−(�́̂̅�𝑥𝑥 + �́̂̅�𝑦𝑦) +

2

3
𝜌

+ 𝜌(𝑢𝑥
2 + 𝑢𝑦

2)

−
1

2
𝜌(2𝐹𝑥𝑢𝑥 + 2𝐹𝑦𝑢𝑦)} 

(31) 

�̂�4 =
𝑠4

4
{− (�́̂̅�𝑥𝑥 − �́̂̅�𝑦𝑦) + 𝜌(𝑢𝑥

2 − 𝑢𝑦
2)

−
1

2
𝜌(2𝐹𝑥𝑢𝑥 − 2𝐹𝑦𝑢𝑦)} 

(32) 

�̂�5 =
𝑠5

4
{−�́̂̅�𝑥𝑦 + 𝜌𝑢𝑥𝑢𝑦

−
1

2
𝜌(𝐹𝑥𝑢𝑦 + 𝐹𝑦𝑢𝑥)} 

(33) 

�̂�6 =
𝑠6

4
{�́̂̅�𝑥𝑥𝑦 − 2𝑢𝑥 �́̂̅�𝑥𝑦 − 𝑢𝑦 �́̂̅�𝑥𝑥 + 2𝜌𝑢𝑥

2𝑢𝑦

−
1

2
𝜌(𝐹𝑦𝑢𝑥

2 + 2𝐹𝑥𝑢𝑥𝑢𝑦)}

− 2𝑢𝑥�̂�5

−
1

2
𝑢𝑦(3�̂�3 + �̂�4) 

(34) 

�̂�7 =
𝑠7

4
{�́̂̅�𝑥𝑦𝑦 − 2𝑢𝑦 �́̂̅�𝑥𝑦 − 𝑢𝑥 �́̂̅�𝑦𝑦

+ 2𝜌𝑢𝑥𝑢𝑦
2

−
1

2
𝜌(𝐹𝑥𝑢𝑦

2 + 2𝐹𝑦𝑢𝑥𝑢𝑦)}

− 2𝑢𝑦�̂�5

−
1

2
𝑢𝑥(3�̂�3 − �̂�4) 

(35) 

�̂�8 =
𝑠8

4
{− [�́̂̅�𝑥𝑥𝑦𝑦 − 2𝑢𝑥 �́̂̅�𝑥𝑦𝑦 − 2𝑢𝑦 �́̂̅�𝑥𝑥𝑦

+ 𝑢𝑥
2 �́̂̅�𝑦𝑦

+ 𝑢𝑦
2 �́̂̅�𝑥𝑥+4𝑢𝑥𝑢𝑦 �́̂̅�𝑥𝑦]

+
1

9
𝜌 + 3𝜌𝑢𝑥

2𝑢𝑦
2

−
1

2
𝜌(2𝐹𝑥𝑢𝑥𝑢𝑦

2

+ 2𝐹𝑦𝑢𝑦𝑢𝑥
2)} − 2�̂�3

−
1

2
𝑢𝑥

2(3�̂�3 − �̂�4)

−
1

2
𝑢𝑦

2(3�̂�3

+ �̂�4)−4𝑢𝑥𝑢𝑦�̂�5 − 2𝑢𝑦�̂�6

− 2𝑢𝑥�̂�7 

(36) 

where {𝑠𝑖|𝑖 = 3,4, … ,8}  are relaxation parameters in 

the moment space. The discrete raw moments can be 

written as: 

�́̂̅�0 = 𝜌 (37) 

�́̂̅�𝑥 = 𝜌𝑢𝑥 −
1

2
𝜌𝐹𝑥 (38) 

�́̂̅�𝑦 = 𝜌𝑢𝑦 −
1

2
𝜌𝐹𝑦 (39) 

�́̂̅�𝑥𝑥 = 𝑓1 + 𝑓3 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 (40) 

�́̂̅�𝑦𝑦 = 𝑓2 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 (41) 

�́̂̅�𝑥𝑦 = 𝑓5 − 𝑓6 + 𝑓7 − 𝑓8 (42) 

�́̂̅�𝑥𝑥𝑦 = 𝑓5 + 𝑓6 − 𝑓7 − 𝑓8 (43) 

�́̂̅�𝑥𝑦𝑦 = 𝑓5 − 𝑓6 − 𝑓7 + 𝑓8 (44) 

�́̂̅�𝑥𝑥𝑦𝑦 = 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 (45) 

The kinematic viscosity (𝜗) and bulk viscosity (𝜁) are 

given by: 

𝜗 = 𝑐𝑠
2(

1

𝑠𝜗

−
1

2
)𝛿𝑡 (46) 

𝜁 = 𝑐𝑠
2(

1

𝑠𝑏

−
1

2
)𝛿𝑡 (47) 

Respectively, where 𝑠4 = 𝑠5 = 𝑠𝜗 and 𝑠3 = 𝑠𝑏 are the 

relaxation rate associated with shear viscosity and bulk 

viscosity, respectively.  𝑠6 = 𝑠7 = 𝑠𝑞 , and 𝑠8 are 

relaxation rates of the third and fourth-order moments 

which can be tuned independently of shear viscosity, and 

then brings an increase in stability. Equating all the 

relaxation rates to 𝑠𝜗 would decrease the CLBM scheme 

to LBGK. As a result of cascaded nature of the central 

moment approach, the collision kernel �̂�𝑖  can be written 

as �̂�𝑖=|�̂�𝑖(𝑓, �̂�𝛽), 𝛽 = 0,1, 𝑖 − 1. Therefore, the evolution 

of lower-order raw moments influences higher-order 

central moments and not vice versa. Thus, starting from 

the lowest central moment, the higher-order central 
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moments can be relaxed successively towards their 

equilibrium, which is implicitly carried out in terms of 

raw moments [38]. The so-called "cascaded" collision 

naming is due to the aforementioned procedure. 

Performing the cascaded collision, using matrix 𝐾 the 

final distribution functions can be acquired as follows: 

𝑓0̅
̃ = 𝑓0̅ + [�̂�0 − 4(�̂�3 − �̂�8)] + 𝛿𝑡𝑆0 (48) 

𝑓1̅
̃ = 𝑓1̅ + [�̂�0 + �̂�1 − �̂�3 + �̂�4

+ 2(�̂�7 − 𝑔8)] + 𝛿𝑡𝑆1 
(49) 

𝑓2̅
̃ = 𝑓2̅ + [�̂�0 + �̂�2 − �̂�3 − �̂�4

+ 2(�̂�6 − 𝑔8)] + 𝛿𝑡𝑆2 
(50) 

𝑓3̅
̃ = 𝑓3̅ + [�̂�0 − �̂�1 − �̂�3 + �̂�4

+ 2(�̂�7 + 𝑔8)] + 𝛿𝑡𝑆3 
(51) 

𝑓4̅
̃ = 𝑓4̅ + [�̂�0 − �̂�2 − �̂�3 − �̂�4

− 2(�̂�6 + 𝑔8)] + 𝛿𝑡𝑆4 
(52) 

𝑓5̅
̃ = 𝑓5̅ + [�̂�0 + �̂�1 + �̂�2 + 2�̂�3 + �̂�5

− �̂�6−�̂�7 + �̂�8] + 𝛿𝑡𝑆5 
(53) 

𝑓6̅
̃ = 𝑓6̅ + [�̂�0 − �̂�1 + �̂�2 + 2�̂�3 − �̂�5

− �̂�6+�̂�7 + �̂�8] + 𝛿𝑡𝑆6 
(54) 

𝑓7̅
̃ = 𝑓7̅ + [�̂�0 − �̂�1 − �̂�2 + 2�̂�3 + �̂�5

+ �̂�6+�̂�7 + �̂�8] + 𝛿𝑡𝑆7 
(55) 

𝑓8̅
̃ = 𝑓8̅ + [�̂�0 + �̂�1 − �̂�2 + 2�̂�3 − �̂�5

+ �̂�6−�̂�7 + �̂�8] + 𝛿𝑡𝑆8 
(56) 

Finally, the macroscopic properties would be 

determined through the relations below: 

𝜌 = ∑ 𝑓�̅�
𝑘
𝑖=0 , 𝜌𝑢 = ∑ 𝒆𝑖𝑓̅ +

𝛿𝑡

2
𝜌𝑭𝑘

𝑖=0 ,  

𝑃 = 𝑐𝑠
2𝜌 =

1

3
𝜌 

(57) 

4.2. Boundary Conditions 
Various forms of boundary conditions for the 

microflows have been presented recently. In the present 

work, the combination of bounce-back and specular 

reflection boundary condition (CBBSR) boundary scheme 

is employed in order to perceive the slip boundary 

conditions [29, 33]. For instance, the unknown distribution 

functions at J=1 (the bottom wall is plated at J=0.5) are 

given as: 

𝑓2̅ = 𝑓4̅
̃  

𝑓5̅ = 𝑟𝑏 × 𝑓7̅
̃ + (1 − 𝑟𝑏) × 𝑓6̅

̃  

𝑓6̅ = 𝑟𝑏 × 𝑓8̅
̃ + (1 − 𝑟𝑏) × 𝑓5̅

̃  

(58) 

where 𝑓�̅�
̃ are the post-collision distribution functions at 

J=1, and 0 ≤ 𝑟𝑏 ≤ 1 is the portion of the bounce-back part 

in the combination of boundary conditions. 

For isothermal rarefied gas flows, the widely used 

boundary condition for the Navier–Stokes equations is the 

second-order slip scheme [39]: 

𝑢𝑠 = 𝐴1𝜎𝑣𝜆
𝜕𝑢

𝜕𝑛
|

𝑤
− 𝐴2𝜆2

𝜕2𝑢

𝜕𝑛2
|

𝑤

 (59) 

where us is the slip velocity, n is the unit vector normal 

to the wall, the subscript w denotes the quantity at the wall, 

and σv = (2 − σ)/σ, in which σ is the tangential 

momentum accommodation coefficient (TMAC). A1 and 

A2 are two parameters dependent on gas-solid interaction 

properties. In the literature, there are some suggestions for 

A1 and A2. e.g., A1 = 1.1466 and A2 = 0.9756 [31, 40]; A1 

= 1.11 and A2 = 0.61[9]; A1 = 1 and A2 = 0.5 [39]. 

The kinetic theory and molecular simulations displays 

that Maxwell’s first order slip coefficient (A1 = 1 and A2 = 

0) [41] sometimes suffers from a lack of accuracy and 

overestimates the amount of microscopic actual slip 

velocity. By employing an approximate method in the 

kinetic theory, Loyalka et al. suggested a modification of 

Maxwell’s slip scheme. The proposed coefficient is A1 =

1 − 0.1817σ [42]. 

When the Bosanquet-type effective viscosity is applied, 

Equation (59) should be modified as: 

𝑢𝑠 = 𝐵1𝜎𝑣𝜆𝑒

𝜕𝑢

𝜕𝑛
|

𝑤
− 𝐵2𝜆𝑒

2
𝜕2𝑢

𝜕𝑛2
|

𝑤

 (60) 

where λe = (μe/p)√πRT/2. Based on the 

modification of Maxwell’s argument [42] B1 = 1 −

0.1817σ is selected. Some suggestions for coefficient B2 

through harmonizing slip scheme with the results of  

analytical and experimental flow rates [9] are 0.8 [31], 

0.55 [33] and (1/π) + (1/2)(σvB1)2 [1]. Table 2. 

Summarizes these different values for wall-distance 

functions, slip coefficients and grid sizes. 

In order to coordinate the second-order slip boundary 

condition at the macroscopic level, the parameter 𝑟𝑏 and 

the relaxation rate 𝑠𝑞 are selected as below [29, 31, 33, 43] 

𝑟𝑏 = (1 + √
𝜋

6
𝐵1𝜎𝑣)

−1

 

𝑠𝑞
−1 =

1

2
+

4𝜋𝐵2 (𝑠𝑣
−1 −

1

2
)

2

16 (𝑠𝑣 
−1 −

1

2
)

 

(61) 

 

5. Results and Discussion 

In this section, the Cascaded Lattice Boltzmann is 

applied to a microchannel gas flow. The abovementioned 

parameters 𝑎 (Bosanquet parameter) and 𝐵1 are selected, 

as stated before. Moreover, 𝐵2 = (1/𝜋) + (1/2)(𝜎𝑣𝐵1)2 

is chosen. It is the best fitting value for the solution of the 

linearized Boltzmann equation through investigations with 

different values of it. The other parameters are chosen as 

follows: 𝛿𝑥 =  𝛿𝑦 = 𝛿𝑡 = 1 , 𝑠3 = 1.1, 𝑠8 = 1.2, 𝑠4,5 = 𝑠𝜗 

and  𝑠6,7 = 𝑠𝑞 . The stability criteria for the proposed 

CLBM is defined as below [44]: 

𝛿 = √
1

𝑁
∑(𝑢𝑛+1 − 𝑢𝑛)2 + (𝑣𝑛+1 − 𝑣𝑛)2

𝑁

𝑖=1

≤ 10−7 

(62) 

Where N represents the whole nodes in the solution 

domain, n and n+1 are related to the present, and the 

previous time step and u and v are the velocity components 

in x and y directions, respectively. This criterion is 

satisfied for all cases studied here. 

5.1. Microchannel with periodic boundary 
condition 
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Table 2. Various values for wall-distance functions, slip coefficients and grid sizes 

Author(s) 
Wall-distance 

function 
B1 B2 

Grid 

(Force B.C)  

Grid 

(Pressure B.C) 

Guo & Zheng [29] - 1.1466 0.9757 16×31 - 

Maxwell [41] - 1 0 - - 

Hadjiconstantinou [9] - 1.11 0.61 - - 

Kandlikar et al. [39] - 1 0.5 - - 

Cercignani [40] - 1.1466 0.9756 - - 

Loyalka et al. [42] - 1-0.1817σ 0 - - 

Guo et al. [14] Arctangent - - - 2000×20 

Li et al. [31] Bosanquet 1-0.1817σ 0.8 50×50 2000×20 

Liu & He [33] Bosanquet 1-0.1817σ 0.55 50×50 2000×20 

Liu & Guo [1] Tang 1-0.1817σ (1/π)+(1/2)(σv B1 ) 2 - 2100×21 

Present Work Bosanquet 1-0.1817σ (1/π)+(1/2)(σv B1 ) 2 51×51 2100×21 

First, the force-driven gaseous flow in a microchannel 

with periodic boundary conditions is inspected. This paper 

employs periodic boundary conditions at the inlet and 

outlet of the channel. Both channel walls are postulated in 

order to be completely diffusive (σ = 1), and the CBBSR 

scheme is employed in order to discern the second-order 

slip boundary condition, with its details in section 2.3. The 

constant driven force is implemented by setting 

Fx=0.0001. 

5.1.1. Grid independency 
The grid independence for the Kn = 0.1128 is 

contemplated here. The grid sizes of 21×21, 51×51, and 

101×101 Lu are selected to compare. Figure 2 represents 

the streamwise velocity normalized by the average 

velocity at the outlet (U=u/uave) at different values of Kn. 

It can be observed that the results of the grids 51×51 and 

101×101 Lu match well with each other. Therefore, the 

size of 51×51 is chosen for the present work. 

5.1.2. Results of velocity profile 
Figure 3 demonstrates normalized velocity at the outlet 

at different values of Kn. The results are compared with 

the previous works of the Linearized Boltzmann Equation 

acquired by Ohwada et al. [7], the conventional N-S 

solution applying a by Hadjiconstantinou [9], MRT results 

by Guo et al. [43], Filter-Matrix Lattice Boltzmann 

Method by Zhuo et al. [45] and the CLBM with constant  

Figure 2. Normalized velocity at the outlet at different 
values of Kn. 

   Bosanquet factor by Li et al. [33]. It can be perceived 

that the N-S solutions significantly deviate from the 

Ohwada's Linearized Boltzmann Equation solutions 

almost in all ranges of Kn numbers. The MRT results also 

begin its deviation in the middle of the transitional flow 

regime (Kn >=1.1284). It is probably due to the difference 

in frames of reference between the CLBM and MRT. The 

results of the present work match better than CLBM with 

constant Bosanquet parameter with the Ohwada's solutions 

in almost all Kn numbers. The present results are 

comparable with the CLBM accompanying the constant 

Bosanquet parameter in estimating the streamwise 

velocity. This demonstrates the superiority of our 

suggestion for the nonconstant Bosanquet parameter. The  
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Figure 3. Streamwise velocity normalized by the average velocity at the outlet for fully diffusive walls with periodic boundary 

conditions driven by a constant force at different values of Kn. 

present results are also better than the Filter-matrix Lattice 

Boltzmann Method results for most parts of the Kn 

regions; However, in the last third portion of the 

transitional flow regime (Kn >= 6.7703), the present 

results slightly deviate from the Ohwada's solutions. It is 

noteworthy to mention that our results have some 

discrepancies between the present work and Ohwada's 

solutions in predicting the slip velocity, but they match 

better than the other works with the Ohwada's solutions 

across the channel. 

For a more detailed comparison, Velocity contours and 

vectors for Knudsen numbers of 0.1128, 1.1284, and 

11.2838 are portrayed in Figure 4, respectively, from left 

to right. In consonance with the figure, as the Knudsen 

number or the rarefaction effects increased, the velocity 

profiles get more smooth and uniform across the channel.  

Figure 5 reveals the normalized volumetric flow rate 

against Kn number. The present results are compared with 

the linearized BE solutions by Cercignani et al. [46], the 

N-S solutions by Hadjiconstantinou [9], the MRT results  
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Figure 4. Velocity contours and vectors for Knudsen 
numbers of 0.1128 (a), 1.1284 (b), and 11.2838 (c). 

by Guo et al. [43] and the CLBM with constant Bosanquet 

factor by Li et al. [33]. It can be observed that our results 

agree with other methods very well as Kn < 0.5. For larger 

Kn numbers, the prediction of the present method is a little 

larger than other methods, but the trend of the present 

results is the same as the other results. Furthermore, in the 

last portion of the transitional flow regime, the present 

work coordinates better than CLBM with constant 

Bosanquet parameter with the Cercignani's solutions. The 

error sum of squares between present results and the 

Cercignani's solutions for Kn numbers of 0.8 to10 is 

0.6091 while this error for CLBM with constant Bosanquet 

parameter is 0.6396. 

 

Figure 5. Normalized flow rate in a microchannel with 

periodic boundary condition driven by a constant force. 

 

Figure 6. Normalized flow rate against Kn numbers from 0 
to 1000. 

Figure 5 also displays the well-known Knudsen 

minimum phenomenon, which occurs at about Kn = 0.8 

for Cercignani's solution. The present work predicts this 

phenomenon at Kn = 0.7. 

Figure 6 compares the present results, LBM and 

CLBM, without the Bosanquet parameter for the 

normalized flow rate against Kn numbers from almost 0 to 

1000. Some computer codes are written for LBM and 

CLBM without the Bosanquet parameter. The ability of a 

model to catch the flow behavior in such high Kn numbers 

is obvious in the figure. The results are also compared with 

DSMC results presented by Beskok and Karniadakis [21], 

which proposed for Kn up to 50. Confirming to the figure, 

the results of LBM has a large deviation from the results 

of DSMC. Moreover, the CLBM model without the 

Bosanquet parameter gets unstable in Kn = 70, after its 

obvious deviation from the results of DSMC. The present 

CLBM with nonconstant Bosanquet parameter for 

boundary conditions works well for the widest range of 

Kn. This is due to the fact that the CLBM is more stable 

than previous versions of LBM. Consequently, it can 

predict flow behavior for higher Kn numbers. 

5.2. Microchannel with pressure boundary 
condition 
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Figure 7. Pressure deviation from linear distribution along 
the microchannel. 

In this section, the proposed CLBM is employed to the 

pressure-driven gaseous flow in a long microchannel with 

height H = 1 and length L = 100. The pressures are set to 

be pin and pout, respectively. The ratio of the length L to the 

height H of the channel is 100. The CBBSR boundary 

scheme is applied to the bottom and top walls of the 

channel. pin and pout are used for inlet and outlet pressure 

boundary conditions. The ratio of pin and pout takes 1.4 and 

2 in our simulations. Three cases are inspected according 

to the Knudsen number at the exit, i.e., Knout=0.0194, 

0.194, and 0.388.  

5.2.1. Grid independency 
The grid independence for the Knout = 0.0194 and 

pressure ratio (PR=1.4) is deliberated here. The sizes of 

the grids to compare are 1100×11, 2100×21, and 4100×41. 

Figure 7 exhibits the normalized pressure deviation from 

its linear distribution in conformity with the 

microchannel 𝑝𝑙 , 𝛿𝑝 =
𝑝−𝑝𝑙

𝑝𝑜𝑢𝑡
 . In consonance to the figure, 

the results of the grids 2100×21 and 4100×41 are very 

close to each other. Therefore, the grid size of 2100×21 is 

a reasonable choice for the present work.  

5.2.2. Results of velocity profile and pressure 
distribution 

In the Figures 8, 9 and 10, the deviation of pressure 

from its linear  and the normalized streamwise velocity 

u/umax at the outlet are compared with the slip N-S 

solutions by Arkilic et al. [8], the DSMC and information-

preservation DSMC (IP-DSMC) results of Shen et al. [47] 

and the CLBM with constant Bosanquet factor by Li et al. 

[33]. It can be seen that the results of the present work are 

in good agreement with the benchmark data in the 

literature. The proposed CLBM also has better results than 

the previous one in all three cases. The profiles of the 

velocity and pressure deviation acquired by the proposed 

CLBM agree well with the DSMC, IP-DSMC, and slip N-

S solutions. However, a small discrepancy in the velocity 

is still observed near the two walls as a result to the 

Knudsen layer effect. Figure 10 clearly indicates 

significant improvements made by the present model for 

Knout= 0.388 and pin=2 (the slip flow regime). This is the 

region that previous works have an obvious deviation from 

the results of DSMC and IP-DSMC in it. Again, it displays 

superiority of the present CLBM in one of the most major 

applications of MEMS. The effect of selecting a 

nonconstant Bosanquet parameter becomes consequential 

in this region. Figure 11 persuades the pressure contour for 

Kn=0.388. 

Here, the velocity profile of the present CLBM is in 

good agreement with the DSMC and IP-DSMC results. 

The pressure deviation profile of our work has some 

discrepancies; however, it matches far more with them in 

comparison with the CLBM with constant Bosanquet 

parameter. 

The other major parameter in a microchannel is the slip 

velocity. It can be observed from figures 8 to 10 that the 

CLBM with constant Bosanquet parameter has a better 

prediction for slip velocity than the present work. The 

reason for this dissimilarity is that this paper does not 

employ a consistent linear extrapolation scheme for inlet 

and outlet boundary conditions. 

Figure 12 depicts the normalized flow rate against the 

average Knudsen number (Knm). Confirming to the figure, 

the present results are in good agreement with the 

benchmark results [7, 28, 48] for most of the Knms. For 

larger Knms there are some discrepancies between our 

model and these solutions. The reason here may be that the 

solutions of the Boltzmann equation of Cercignani et al. 

[28]  and Ohwada et al. [7] assumed a linear pressure 

distribution along the channel and the pressure ratio 

between the inlet and outlet is very small. These may be 

the reasons for the small discrepancy between the present 

CLBM and these solutions. However, the proposed CLBM 

indicates a clear improvement in predicting the mass flow 

rate for LBE Methods.  

 

Conclusion 

In this paper, a Cascaded Lattice Boltzmann Method 

with a nonconstant Bosanquet parameter model was 

developed in order to investigate microchannel gas flows 

in the slip and transition flow regimes with a wide range 

of Knudsen numbers. The CBBSR boundary scheme with 

a second-order slip boundary condition was applied. The 

nonlinearity of Knudsen number in accordance with the 

channel and the effects of wall confinement are deliberated 

as well. This paper suggested applying the nonconstant 

Bosanquet parameter instead of the constant one. The 

constant-force-driven and pressure-driven flow 

microchannel were simulated under different conditions. 

The velocity profile, pressure distribution, and mass flow 

rate were inspected, and the results were in good 

agreement with the benchmark solutions and experimental 

data reported in the literature. The proposed CLBM 

reveals a clear improvement in predicting the flow 

behaviors of microchannel gas flows for the previous 

classic and CLBMs. The Knudsen minimum phenomenon 

was also well captured by the present model. The main
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Figure 8. Pressure deviation along the channel (Left), and u- velocity at the outlet (Right). Knout = 0.0194, pin/pout = 1.4. 

 

 

 

Figure 9. Pressure deviation along the channel (Left), and u- velocity at the outlet (Right). Knout = 0. 194, pin/pout = 2. 

 

Figure 10. Pressure deviation along the channel (Left), and u- velocity at the outlet (Right).  Knout = 0. 388, pin/pout = 2. 
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Figure 11. Pressure contour for Kn=0.388 in a microchannel 
with pressure boundary conditions. 

Figure 12. Normalized mass flow rates for different average 
Knudsen number. 

findings of this paper are summarized as below: 

 The proposed CLBM indicates a clear improvement in 

predicting the flow behaviors of microchannel gas flows 

for the previous classic and CLBM. 

 The proposed CLBM can be applied for the widest 

range of Knudsen number.  

 For the first time, the effect of wall confinement is 

considered employing a function with the nonconstant 

Bosanquet parameter as a substitute for the constant 

one.  

 The results of the proposed model are in good 

agreement with the benchmark solutions and the 

experimental data reported in the literature 

 The Knudsen minimum phenomenon was also well 

captured by the proposed model. 

 

Nomenclature 

All variable using this manuscript, listed in 

nomenclature. 

λ Mean free path 

λe Effective mean free path 

L Length of channel 

H Height of channel 

Kn Knudsen number 

Knout Knudsen number at the outlet 

ei Velocity field 

c Speed in lattice units 

cs Speed in lattice units 

t Time 

x Position in coordinate system 

∂t Discrete time step 

∂x Lattice 

τs Relaxation time 

fi Particle density distribution function 

fieq Equilibrium density distribution function 

ρ Density of fluid 

μ Dynamic viscosity of fluid 

μe Effective viscosity 

F Body force term 

K orthogonal transformation matrix 

si Relaxation rate 

sϑ Shear viscosity relaxation rate 

sb Bulk viscosity relaxation rate 

sq Relaxation rate of third order moments 

υ Kinematic viscosity of fluid 

u Streamwise velocity 

v Normal velocity 

U Average velocity 

w Weight coefficient 

P Pressure 

Pin Pressure at the inlet 

Pout Pressure at the outlet 

R Universal gas constant 

Ψ Wall-distance function 

T Temperature 

a Bosanquet Parameter 

t Tangential direction 

n Normal direction 

κ Central velocity moment 

κ' Raw velocity moment 

Ω Collision operator 

S Source term 

g Collision kernel 

T non-orthogonal transformation matrix 

us slip velocity 

w Quantitiy at the wall 

σv Tangential momentum 
 accommodation coefficient 

Ai Coefficients of second order slip  
boundary conditions 

Bi Modified coefficients of second order slip 
boundary conditions 

rb The portion of the bounce-back part 
 in the combination of boundary conditions. 
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