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excellent agreement with the exact solution which was obtained analytically. The influences 
of the flow parameters on the fluid temperature, concentration, and velocity are presented 
graphically and discussed. It is found that increasing viscous dissipation causes the increase 
in the fluid temperature, velocity, and skin friction on the surface of both channels. However, 
increasing the fluid viscosity retards the fluid motion and causes the decrease in the fluid 
temperature. 
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1. Introduction    

Natural convection with viscous dissipation has 

received a lot of attention because of its increasing 

practical application in areas of geological process, nuclear 

engineering, and heat exchangers, etc. Gebhart [1] 

investigated the importance of viscous dissipation in 

natural convection using perturbation technique for first 

time. It was shown that the viscous dissipation effect in 

natural convection is appreciable when the induced kinetic 

energy becomes appreciable as compared to the amount of 

transferred heat. Gebhart and Mollendorf [2] investigated 

the effect of viscous dissipation in the external natural 

convection with a class of similar boundary layer 

solutions. They considered the wide ranges of dissipation 

and Prandtl numbers. Soundalgekar [3] studied the effect 

of viscous dissipation on the unsteady free convective flow 

on an infinite vertical porous plate with the constant 

suction. Soundalgekar [3] used an approximate solution 

for the fluctuating parts of velocity, transient velocity, and 

temperature profiles. Soundalgekar [4] extended the study  
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conducted by Soundalgekar [3] with variable suction at the 

plate with approximate solutions for the fluctuating parts 

of the velocity, transient velocity, and temperature 

profiles. The results of this study revealed that greater 

dissipative heat causes a drop in the mean temperature of 

water and an increase in the mean velocity. Mahajan and 

Gebhart [5] investigated the viscous dissipation effects in 

the buoyancy induced flows with no restrictions on Prandtl 

number. They concluded that the viscous dissipation 

effects are smaller than the pressure effects for all values 

of Prandtl number. Pantokratoras [6] presented a similarity 

solution for the effect of viscous dissipation in the natural 

convection along a heated vertical plate. It was observed 

that the viscous dissipation has a strong influence on the 

results as it assists the upward flow and opposes the 

downward flow. Viscous dissipation effect on the natural 

convection flow along a vertical wavy surface has been 

investigated by Parveen et al. [7] numerically. Their results 

showed that increasing the viscous dissipation increases 
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the skin friction coefficient and decreases the heat transfer 

rate.  

In all the aforementioned studies, physical properties of 

fluid such as viscosity and thermal conductivity have been 

assumed constant. However, to predict accurately the flow 

behavior of fluid, it is very important to take into account 

the variations of viscosity and thermal conductivity with 

temperature. Meanwhile, major industrial problems 

involving fluid flows require variation of fluid properties 

with temperature. Raja et al. [8] investigated the effects of 

variable physical properties and viscous dissipation on a 

free convective flow over a vertical plate using Runge-

Kutta Gill method coupled with a shooting technique. 

They concluded that the viscous dissipation is significantly 

greater in the fluids with higher viscosities. Kairi et al. [9] 

studied the effect of viscous dissipation on the natural 

convection in a non-Darcian porous medium with the 

variable viscosity using a local non-similarity method. The 

above work reveals that increasing viscous dissipation lead 

to increase in both fluid temperature and velocity. Atul et 

al. [10] studied a free convection flow with the variable 

viscosity through horizontal channel using perturbation 

method. Their work shows that the fluid temperature 

increases with increasing the viscous dissipation. Singh 

[11] studied numerically the effects of variable fluid 

properties and viscous dissipation on the mixed convection 

fluid flow around a vertical plate. It was concluded that 

increasing viscous dissipation increases the fluid 

temperature and velocity. Rudraiah et al. [12] studied the 

effects of variable viscosity and viscous dissipation on 

Oberbeck Magnetoconvection in a chiral fluid using both 

perturbation and numerical methods. It was observed that 

increasing the fluid viscosity decreases the flow velocity. 

Mahanti and Gaur [13] investigated the effects of linearly 

varying viscosity and thermal conductivity on the steady 

free convective flow of a viscous incompressible fluid 

along an isothermal vertical plate in the presence of heat 

sink. They used the Runge-Kutta fourth order method with 

shooting technique to carry out their investigation. In the 

study of Choudhury and Hazarika [14], the effects of 

variable viscosity and thermal conductivity on the free 

convective oscillatory flow of a viscous incompressible 

and electrically conducting fluid are investigated using 

explicit finite difference method. It was observed that the 

Nusselt number decreases with increasing the thermal 

conductivity of the fluid. Uwanta and Hamza [15] 

investigated the hydromagnetic flow of reactive viscous 

fluid in a vertical channel with the thermal diffusion and 

temperature dependent properties using implicit finite 

difference scheme for both unsteady and steady states. 

Manjunatha and Gireesha [16] studied the effects of 

variable viscosity and thermal conductivity on MHD flow 

and heat transfer of a dusty fluid. They concluded that 

increase in the fluid viscosity decreases the velocity 

whereas increase in the thermal conductivity increases 

both fluid temperature and velocity. 

A lot of techniques have been used to solve the 

nonlinear and coupled equations. Some of these techniques 

are Runge-kutta shooting, finite difference, finite element, 

perturbation, Homotopy perturbation, Adomian 

decomposition, He-Laplace, and differential 

transformation methods. The differential transformation 

method has been proven to be accurate and more efficient 

which requires less computational effort in comparison to 

other methods mentioned above. The differential 

transformation method (DTM) is a strong mathematical 

tool to solve the problems with linear and nonlinear 

differential equations which requires significantly less 

computational resources since it does not need any 

auxiliary parameter, initial guess, and small parameter like 

“p" in Homotopy perturbation method (HPM). Zhou [17] 

introduced the differential transformation method to solve 

the linear and nonlinear initial value problems in an 

electrical circuit theory for the first time. Chen and Ho [18] 

also developed the DTM for partial differential equations 

and developed a closed form series solutions for the linear 

and nonlinear initial value problems. Umavathi and Shekar 

[19] investigated the combined effects of variable 

viscosity and thermal conductivity on the free convection 

flow of a viscous fluid in a vertical channel using the 

DTM. The efficiency of the DTM was compared with the 

Runge-Kutta method and the results revealed that both 

methods agree to the order of10-6. Hatami et al. [20] 

carried out a comparison between the DTM and HPM for 

the Newtonian and Non-Newtonian fluid flows. They 

concluded that the DTM is very effective and can achieve 

more suitable results than HPM in some areas of equations 

in engineering and science problems. Oke [21] 

investigated the convergence of DTM for the ordinary 

differential equation. 

Jha and Ajibade [22] investigated the free convection 

heat and mass transfer in a vertical channel with the 

Dufour effect. The steady state of the problem is 

independent of Dufour effect. The fluid viscosity and 

thermal conductivity were assumed constant and viscous 

heating was not taken into account. The assumptions made 

by Jha and Ajibade [22] are used in the current study in 

order to present the realistic conditions in which the fluid 

flow is correctly predicted. Indeed, the study of Jha and 

Ajibade [22] is reformulated to capture a real problem in 

which the fluid viscosity and thermal conductivity can 

vary with temperature change and the viscous heating near 

the walls is also considered. The governing equations of 

the flow fields are solved by the DTM. The effects of 

different physical parameters on the velocity, temperature, 

concentration, skin friction, and heat transfer rate are 

presented graphically and discussed. 

 

2. Mathematical Formulation 

In this study, a steady flow of an incompressible fluid with 

viscous dissipation between two vertical parallel plates 

positioned at  𝑦′=0  and 𝑦′=h  with the uniform 

temperatures of T1  and T0  on the hot and cold walls is 

considered. The flow is assumed to be in the 𝑥′ -direction 

which is taken vertically upward along the vertical plates  
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Figure 1. Schematic diagram of fluid flow 

and the  𝑦′ -axis is taken normal to the plates as shown in 

figure 1. The plates have infinite lengths and as a result, 

the velocity, temperature, and concentration fields are only 

the function of 𝑦′. 

All fluid properties are considered constant except the 

viscosity and thermal conductivity that can be varied 

linearly with the temperature. The viscous dissipation, heat 

generation, chemical reaction, and the temperature 

dependent viscosity and thermal conductivity are 

incorporated into the momentum, temperature, and 

concentration equations. In the absence of slip and 

boundary jump, the steady natural convection fully 

developed heat and mass transfer in a vertical channel 

under the Boussinesq’s approximation is governed by the 

following equations: 

1

ρ0

𝑑

𝑑𝑦′
(μ

𝑑𝑢′

𝑑𝑦′
) + 𝑔β(𝑇′ − 𝑇0

′) + 𝑔β(𝐶′ − 𝐶0
′)

= 0 

(1) 

1

ρ0𝑐𝑝

𝑑

𝑑𝑦′ (𝑘
𝑑𝑇′

𝑑𝑦′) +
𝑄0

ρ0𝑐𝑝
(𝑇′ − 𝑇0

′) +

μ

ρ0𝑐𝑝
(

𝑑𝑢′

𝑑𝑦′)
2

= 0                                 
(2) 

𝐷𝑚
𝑑2𝐶′

𝑑𝑦′2 − 𝐾𝑟
′(𝐶′ − 𝐶0

′) = 0                                                                        (3) 

The boundary conditions for these equations are: 

 𝑢′ = 0,𝑇′ = 𝑇1
′ ,𝐶′ = 𝐶1

′                   at  𝑦′ = 0   

 𝑢′ = 0,𝑇′ = 𝑇0
′ ,𝐶′ = 𝐶0

′                    at   𝑦′ = ℎ 

                            
(4) 

where 𝑄0  is the internal heat generation constant which 

may be either positive (heat source) or negative (heat sink). 

g is the acceleration due to gravity.  𝑐𝑝,  𝜌0,  𝜇, and 𝜅  

indicate the specific heat at constant pressure, the constant 

density, viscosity, and thermal conductivity of the fluid, 

respectively. 𝜅𝑟
′  is the chemical reaction constant. The 

following linear relationships are used for the temperature 

variable viscosity and thermal conductivity [12, 15]: 

μ = μ0[1 − 𝑎(𝑇′ − 𝑇0
′)]      and  

 𝑘 = 𝑘0[1 + 𝑏(𝑇′ − 𝑇0
′)]                             

(5) 

    In the above relationships, the cases of a<0 and a>0 

are considered for gasses and liquids, respectively. In 

addition, the case of b>0 is considered for fluids such as 

water and gases, while the case of b<0 can be used for 

fluids such as lubricating oils. From equation (5), the 

viscosity and thermal conductivity can be written in the 

following form: 

𝜇 = 𝜇0(1 − 𝜆𝜃)       and      𝐾 = 𝑘0(1 + 𝛾𝜃) (6) 

In this study, the viscosity and thermal conductivity are 

varied in the ranges of −0.7 ≤ 𝜆 ≤ 0, 0 ≤ 𝛾 ≤ 6 for the 

air, 0 ≤ 𝜆 ≤ 0.6, 0 ≤ 𝛾 ≤ 0.12  for the water, and 0 ≤

𝜆 ≤ 3, −0.1 ≤ 𝛾 ≤ 0  for the lubricating oil [16]. 

The following non-dimensional parameters are used: 

𝑢 =
𝑢′

𝑢0
, 𝑦 =

𝑦′

ℎ
 ,𝜃 =

𝑇′−𝑇0
′

𝑇1
′−𝑇0

′, 𝐶 =
𝐶′−𝐶0

′

𝐶1
′−𝐶0

′, 

𝜆 = 𝑎(𝑇1
′ − 𝑇0

′)               

𝐾𝑐 =
𝐾𝑟

∗ℎ2

𝑣0
 , 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
, 𝑆𝑐 =

𝑣0

𝐷
,  

𝑄 =
𝑄0ℎ2

𝑣0𝑘0
,   𝑁 =

𝛽(𝐶1
′−𝐶0

′)

𝛽(𝑇1
′−𝑇0

′)
 

  𝑢0 =
𝑔𝛽ℎ2(𝑇1

′−𝑇0
′)

𝑣0
 , 𝑃𝑟0 =

𝜇0𝑐𝑝

𝑘0
, 

𝑃𝑟 =
𝜇𝑐𝑝

𝑘
=

𝑃𝑟0(1−𝜆𝜃)

(1+𝛾𝜃)
    𝛾 = 𝑏(𝑇1

′ − 𝑇0
′), 

 𝐸𝑐 =
𝑢0

2

𝑐𝑝(𝑇1
′−𝑇0

′)
 

 

(7) 

By using the above equations, Eqs (1) to (4) can be 

rewritten in the following non-dimensional forms: 

(1 − λθ)
𝑑2𝑢

𝑑𝑦2 − λ
𝑑θ

𝑑𝑦

𝑑𝑢

𝑑𝑦
+ θ + 𝑁𝐶 = 0                                                     (8) 

(1 + γθ)
𝑑2θ

𝑑𝑦2
+ γ (

𝑑θ

𝑑𝑦
)

2

+ 𝑄θ + Pr. 𝐸𝑐(1

+ γθ) (
𝑑𝑢

𝑑𝑦
)

2

= 0 

(9) 

1

𝑆𝑐

𝑑2𝐶

𝑑𝑦2 − 𝐾𝑐𝐶 = 0                                                                        (10) 

The non-dimensional forms of the boundary conditions 

are: 

 𝑢 = 0,  𝜃 = 1, 𝐶 = 1,         at       𝑦 = 0  

𝑢 = 0, 𝜃 = 0,   𝐶 = 0,        at        𝑦 = 1 
(11) 

where Pr, Ec, N, and Sc are the Prandtl number, Eckert 

number, buoyancy parameter, and Schmidt number, 

respectively. Kc and Q are the chemical reaction parameter 

and the heat source/ heat sink parameter, respectively. 

Furthermore, the Prandtl number is a function of viscosity 

and thermal conductivity. As the Prandtl number is varied, 

both fluid viscosity and thermal conductivity are varied 

across the boundary layer [14]. From Eq. (9), the viscosity 

parameter is removed. 

 

3. Differential Transformation Method 
The transformation of the 𝐾𝑡ℎ  derivative of a function 

can be defined by: 

 𝐹(𝐾) =
1

𝑘!
[

𝑑𝑘𝑓(𝜂)

𝑑𝑛𝑘 ]
𝜂=𝜂0

 (12) 

where 𝑓(𝜂)  and  𝐹(𝐾)  are the original the transformed 

functions, respectively. The differential inverse transform 

of 𝐹(𝐾)  is given by: 

                                                                                             

                                             'x                                 

                                                                                                   g   

                                   0, u                                     
'y                0, u  

                                  1TT                                                          0TT   

                                  1CC                                                         0CC   

  'u  

 

  

                                           0' y                                      hy '
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Table 1. The operations of differential transformation method [19] 

    Original function Transformed Function 

1.𝑓(𝑦) = 𝑔(𝑦) ± ℎ(𝑦)  

2. 𝑓(𝑦) = λ𝑔(𝑦) 

3. 𝑓(𝑦) =
𝑑𝑛𝑔(𝑦)

𝑑𝑦𝑛  

4. 𝑓(𝑦) = 𝑔(𝑦)ℎ(𝑦) 

5. 𝑓(𝑦) = 𝑔(𝑦)
𝑑ℎ(𝑦)

𝑑𝑦
 

6. 𝑓(𝑦) = 𝑔(𝑦)
𝑑2ℎ(𝑦)

𝑑𝑦2 .  

𝐹(𝑘) = 𝐺(𝑘) ± 𝐻(𝑘) 

𝐹(𝑘) = λ𝐺(𝑘) 

 

𝐹(𝑘) = (𝑘 + 1)(𝑘 + 2). . . . . . (𝑘 + 𝑟)𝐺(𝑘 + 𝑟) 

 

𝐹(𝑘) = ∑ 𝐺(𝑟)𝐻(𝑘 − 𝑟)

𝑘

𝑟=0

 

 

 

𝐹(𝑘) = ∑(𝑘 − 𝑟 + 1)𝐻(𝑘 − 𝑟 + 1)𝐺(𝑟)

𝑘

𝑟=0

 

 

𝐹(𝑘) = ∑(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)𝐻(𝑘 − 𝑟 + 2)𝐺(𝑟)

𝑘

𝑟=0

 

𝑓(𝜂) = ∑ 𝐹(𝐾)(𝜂 − 𝜂0)

∞

𝑘=0

𝑘

 (13) 

The concept of differential transformation is derived 

from a Taylor series expansion and in real applications; the 

function 𝑓(𝜂)  is expressed by a finite series as follows: 

𝑓(𝜂) = ∑ 𝐹(𝐾)(𝜂 − 𝜂0)

𝑚

𝑘=0

𝑘

 (14) 

where the value of m is determined by the convergence 

of the series coefficient. The operations used by the DTM 

for different functions are listed in Table 1. 

 

4. Solution with differential 
transformation method 

By using the differential transforms of Eqs (10) to (13), 

the following equations can be achieved: 

𝑈(𝑘 + 2) =
1

(𝑘+1)(𝑘+2)
[𝜆 ∑ (𝑘 − 𝑟 + 1)(𝑟 +𝑘

𝑟=0

1)𝑈(𝑘 − 𝑟 + 1)𝜃(𝑟 + 1) +     𝜆2 ∑ ∑ (𝑘 −𝑟
𝑠=0

𝑘
𝑟=0

𝑟 + 1)(𝑟 − 𝑠 + 1)𝑈(𝑘 − 𝑟 + 1)𝜃(𝑟 − 𝑠 + 1) −

𝜃(𝑘) − 𝜆 ∑ 𝜃(𝑘 − 𝑟)𝜃(𝑟) − 𝑁𝐶(𝑘)𝑘
𝑟=0 −

𝜆𝑁 ∑ 𝜃(𝑘 − 𝑟)𝐶(𝑟)𝑘
𝑟=0 ]                                                                                        

𝜃(𝑘 + 2) =
1

(𝑘+1)(𝑘+2)
[−𝛾 ∑ (𝑘 − 𝑟 +𝑘

𝑟=0

1)(𝑟 + 1)𝜃(𝑘 − 𝑟 + 1)𝜃(𝑟 + 1) + 

 𝛾2 ∑ ∑ (𝑘 − 𝑟 + 1)(𝑟 − 𝑠 + 1)𝜃(𝑘 −𝑟
𝑠=0

𝑘
𝑟=0

𝑟 + 1)𝜃(𝑟 − 𝑠 + 1)𝜃(𝑠) −

𝑄𝜃(𝑘) + 𝑄𝛾 ∑ 𝜃(𝑘 − 𝑟)𝜃(𝑟)𝑘
𝑟=0  

(15) 

−𝑃𝑟. 𝐸𝑐 ∑(𝑘 − 𝑟 + 1)(𝑟 + 1)𝑈(𝑘 − 𝑟

𝑘

𝑟=0

+ 1)𝑈(𝑟 + 1)] 

(16) 

𝐶(𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)
[𝑆𝑐. 𝐾𝑐𝐶(𝑘)] (17) 

where 𝑈(𝑘),  𝜃(𝑘), and 𝐶(𝑘)  are the differential 

transforms of  𝑈(𝑦),  𝜃(𝑦), and  C(y), respectively. 

 respectively. The transformed boundary conditions 

are: 

𝑈(0) = 0, 𝑈(1) = 𝑎  

𝜃(0) = 1, 𝜃(1) = 𝑏 𝐶(0) = 1, 𝐶(1) = 𝑐 
(18) 

where a, b, and c are the constants computed from the 

boundary conditions in equation (11). The above equations 

for the temperature, velocity, and concentration are solved 

and the results obtained are presented graphically in 

figures 2 to 13, and numerically in tables 2 and 8 for 

different parameters. 

 

5. Solution with exact method 

By considering the zero values for the viscosity 

parameter (𝜆)  and thermal conductivity parameter (𝛾) 

Eqs (8) to (10) are reduced into the following form: 
𝑑2𝑈

𝑑𝑦2 + 𝜃 + 𝑁𝐶 = 0  (19) 

𝑑2𝜃

𝑑𝑦2 + 𝑄𝜃 = 0   (20) 

𝑑2𝐶

𝑑𝑦2 − 𝑆𝑐. 𝐾𝑐𝐶 = 0  (21) 

The following relationships can be achieved by solving 

Eqs (19) to (21) with the corresponding boundary 

condition of Eq (11): 

 𝜃(𝑦) = 𝐴2𝑒𝑖√𝑄𝑦 + 𝐴1𝑒−𝑖√𝑄𝑦 (22) 

𝐶(𝑦) = 𝐴4𝑒√𝑆𝑐𝐾𝑐𝑦 + 𝐴3𝑒−√𝑆𝑐𝐾𝑐𝑦 (23) 

𝑈(𝑦) = 𝐴6𝑦 + 𝐴5 +
𝐴2𝑒𝑖√𝑄𝑦

𝑄
+

𝐴1𝑒−√𝑄𝑦

𝑄

−
𝑁𝐴4𝑒√𝑆𝑐𝐾𝑐𝑦

𝑆𝑐𝐾𝑐

−
𝑁𝐴3𝑒−√𝑆𝑐𝐾𝑐𝑦

𝑆𝑐𝐾𝑐
 

(24) 

𝑑𝜃

𝑑𝑦
= 𝐴2𝑖√𝑄𝑒𝑖√𝑄𝑦 − 𝐴1𝑖√𝑄𝑒−𝑖√𝑄𝑦   (25) 
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𝑑𝑈

𝑑𝑦
= 𝐴6 +

𝐴2𝑖𝑒𝑖√𝑄𝑦

√𝑄
−

𝐴1𝑖𝑒−𝑖√𝑄𝑦

√𝑄

−
𝑁𝐴4𝑒√𝑆𝑐𝐾𝑐𝑦

√𝑆𝑐𝐾𝑐

+
𝑁𝐴3𝑒−√𝑆𝑐𝐾𝑐𝑦

√𝑆𝑐𝐾𝑐
 

 

(26) 

where: 

𝐴1 =
𝑒𝑖√𝑄

𝑒𝑖√𝑄 − 𝑒−𝑖√𝑄
, 𝐴2 = 1 − 𝐴1, 

 𝐴3 =
𝑒√𝑆𝑐𝐾𝑐

𝑒√𝑆𝑐𝐾𝑐−𝑒−𝑖√𝑆𝑐𝐾𝑐
, 𝐴4 = 1 − 𝐴3  

 

The dimensionless skin frictions for the hot plate (𝑦 =

0)  and the cold plate (𝑦 = 1)  are given by: 

𝜏0 = (1 − 𝜆𝜃) (
𝑑𝑢

𝑑𝑦
)

𝑦=0
and   

      𝜏1 = −(1 − 𝜆𝜃) (
𝑑𝑢

𝑑𝑦
)

𝑦=1
   

(27) 

The Nusselt numbers for the hot plate (𝑦 = 0)  and the 

cold plate (𝑦 = 1)  can be calculated by: 

𝑁𝑢0 = −(1 + 𝛾𝜃) (
𝑑𝜃

𝑑𝑦
)

𝑦=0
and 

   𝑁𝑢1 = −(1 + 𝛾𝜃) (
𝑑𝜃

𝑑𝑦
)

𝑦=1
 

(28) 

The volumetric flow rate is given by: 

𝑉𝑚 = ∫ 𝑢(𝑦)𝑑𝑦

1

0

 (29) 

The results for the volumetric flow rate, skin friction, 

and heat transfer are presented in tables 5 to 8. 

 

6. Validation and convergence of 
differential transformation method 

In order to verify the accuracy of the present method 

(DTM), the results for the skin friction at both boundary 

walls for different values of Buoyancy ratio parameter (N) 

are compared with the results reported by Jha and Ajibade 

[22] for the free convection heat and mass transfer in a 

vertical channel. The verification is conducted in the 

absence of variable viscosity, thermal conductivity, heat 

source/sink, viscous dissipation, and chemical reaction and 

the Dufour effect is also considered. The results of this 

comparison are shown in table 2. It can be seen that there 

is excellent agreement between the current results with 

those reported by Jha and Ajibade [22]. As a result, the 

DTM can be used in this study. 

The convergence of the DTM was established by Oke 

[21]. It is shown that the solution obtained through DTM 

can converge to exact solution when the problem is linear 

[21]. In this Study, The comparison of the DTM with the 

exact and numerical methods is carried out on the 

temperature, velocity, and concentration fields for 

different parameters in the boundary walls. Based on the 

data presented in table 3, the results achieved by the DTM 

shows a strong convergence with the results obtained by 

the exact method when viscosity and thermal conductivity 

parameters as well as Eckert number are zero. The data in 

table 4 also reveal a strong convergence to five decimal 

places of the DTM with the numerical method for different 

parameters. The Dsolve/Numeric for BVP from Maple 

application package is used to obtain the numerical 

solution. 

 

7. Results and discussion 

In this study, the effects of viscous dissipation on the 

free convection heat and mass transfer through a vertical 

channel with temperature dependent viscosity and thermal 

conductivity are investigated. The nonlinear coupled 

governing equations have been solved by DTM to obtain 

the results for temperature, velocity, and concentration 

fields. In addition, the results of exact and numerical 

methods are also compared with the results achieved by 

DTM. The temperature, velocity, and concentration fields 

are presented graphically for different parameters. The 

values of Pr=0.71 (air) and Sc= 0.94 (carbon dioxide) are 

considered for the Prandtl and Schmidt numbers. Note that 

the binary mixture of CO2 in air is considered as the 

working fluid.   

The effects of viscous dissipation, Ec, on the 

temperature and velocity profiles for the temperature-

dependent viscosity and thermal conductivity are 

investigated in figures 2 and 3. When the viscous heating 

is important, a transversal temperature gradient develops 

near the walls to dissipate the heat through the boundaries. 

This temperature increase leads to a decrease in the 

viscosity and accordingly, an increase in the flow velocity 

can be observed. This velocity increase produces an 

increase in the velocity gradients near the walls, and a 

further increase in the initial temperature occurs. It is 

evidently clear that both fluid temperature and velocity 

increase with increasing the Eckert number in the channel. 

Physically this trend is true since the viscous dissipation 

produces heat as a result of hindrance caused between the 

fluid particles which can increase the initial temperature of 

fluid. The increase in the temperature strengthens the 

buoyancy force, which causes an increase in fluid velocity 

[6].  

Figures 4 and 5 show the effects of variable 

viscosity (𝜆) on the velocity and temperature profiles. It 

can be seen that both fluid temperature and velocity 

decrease in the channel with increasing the viscosity (𝜆 <

0). This is physically true since boosting the viscosity can 

create impedance in the free flow of fluid particles and as 

a result, the fluid velocity is decreased. This consequently 

diminishes the viscous dissipation heating across the fluid 

sections and accordingly, the fluid temperature decreases 

with increasing the viscosity [19]. 

The effects of thermal conductivity parameter  (𝛾) on 

the velocity and temperature profiles are shown in figures 

6 and 7. As shown in these figures, increasing the thermal 

conductivity leads to an increase in both fluid temperature  
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Figure 2. The temperature profile for binary mixture of 
carbon dioxide in air at different values of Eckert number 

(𝑄 = −10, 𝑁 = 1, 𝐾𝑐 = 0.7, 𝜆 = −0.1 and 𝛾 = 0.5)   

 

Figure 3. The velocity profile for binary mixture of carbon 
dioxide in air at different values of Eckert number (𝑄 =

−10, 𝐾𝑐 = 0.7, 𝑁 = 1, 𝜆 = −0.1 and𝛾 = 0.5) 

 

 

Figure 4. The velocity profile for binary mixture of carbon 
dioxide in air at different values of viscosity parameter (𝑄 =

−10, 𝐾𝑐 = 0.7, 𝑁 = 1, 𝐸𝑐 = 0.2 and 𝛾 = 0.5) 

                           

 

Figure 5. The temperature profile for binary mixture of 
carbon dioxide in air at different values of viscosity 

parameter (𝑄 = −10, 𝐾𝑐 = 0.7, 𝑁 = 1, 𝐸𝑐 = 3 and𝛾 = 0.5   

 

Figure 6. The temperature profile for binary mixture of 
carbon dioxide in air at different values of thermal 

conductivity parameter (𝑄 = −10, 𝑁 = 1, 𝐾𝑐 = 0.7, 𝜆 = −0.1 
and 𝐸𝑐 = 0.2)      

  

                             

Figure 7. The velocity profile for binary mixture of carbon 
dioxide in air at different values of thermal conductivity 

parameter (𝑄 = −10, 𝑁 = 1, 𝐾𝑐 = 0.7, 𝜆 = −0.1 and𝐸𝑐 =
0.2) 
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Figure 8. The temperature profile for binary mixture of carbon 

dioxide in air at different values of heat source/heat sink 

parameter (𝛾 = 0.5, 𝑁 = 1, 𝐾𝑐 = 0.7, 𝜆 = −0.1 and 𝐸𝑐 = 0.2)    

      

 

Figure 9. The velocity profile for binary mixture of carbon 
dioxide in air at different values of heat source/heat sink 

parameter (𝛾 = 0.5, 𝑁 = 1, 𝐾𝑐 = 0.7, 𝜆 = −0.1 and 𝐸𝑐 = 0.2)   

    

 

Figure 10. The velocity profile for binary mixture of carbon 
dioxide in air at different values of Buoyancy ratio parameter 

(𝛾 = 0.5, 𝑄 = −10, 𝐾𝑐 = 0.7, 𝜆 = −0.1 and 𝐸𝑐 = 0.2) 

                         

 

Figure 11. The concentration profile for binary mixture of 

carbon dioxide in air at different values of chemical reaction 

parameter 

 

 

Figure 12. The velocity profile for binary mixture of carbon 
dioxide in air at different values of chemical reaction 

parameter (𝛾 = 0.5, 𝑁 = 1, 𝑄 = −10, 𝜆 = −0.1 and 𝐸𝑐 = 0.2)   

                       

 

Figure 13. The temperature profile at different values of 
Prandtl number (𝛾 = 0.5, 𝐸𝑐 = 0.2, 𝑁 = 1, 𝜆 = −0.1 and𝑄 =

−10) 
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Figure 14. The velocity profile at different values of Prandtl 
number (𝛾 = 0.5, 𝐾𝑐 = 0.7, 𝑁 = 1, 𝐸𝑐 = 0.2, 𝜆 = −0.1and𝑄 =

−10) 

and velocity in the channel. This is expected since the 

thermal flux received by the fluid is increased as a result 

of increase in thermal conductivity. This strengthens the 

convection currents and as a result, the fluid velocity 

increases with increasing the thermal conductivity [15]. 
The effects of heat source/sink parameter (𝑄) on the 

velocity and temperature profiles are illustrated in figures 

8 and 9. It is observed that the fluid temperature and 

velocity are increased in the channel with increasing the 

heat source parameter (𝑄 > 0) . This is physically true 

since increasing the heat source parameter amplifies the 

applied temperature, which causes an increase in the fluid 

temperature. In addition, the convection current is 

strengthened in the channel as the heat source parameter 

increases and this leads to an increase in fluid velocity. 

Furthermore, increasing heat sink (𝑄 < 0) decreases both 

fluid temperature and velocity [13]. 

The influences of Buoyancy ratio parameter  (𝑁)   and 

chemical reaction parameter (𝐾𝐶)  on the velocity and 

temperature profiles are illustrated in figures 10 to 12. It 

can be seen that an increase in the buoyancy ratio increases 

the fluid velocity, while increasing the chemical reaction 

parameter decreases both fluid velocity and temperature. 

In general, increasing the Buoyancy ratio parameter 

increases the buoyancy due to the mass transfer and hence, 

an increase in fluid velocity can be observed (See figure 

10). In addition, increasing the chemical reaction causes a 

decrease in the fluid concentration (See figure 11) and this 

weakens the convection due to the mass transfer and 

decreases the fluid velocity as shown in figure 12. 

The effects of Prandtl number (Pr)  on the temperature 

and velocity profiles are illustrated in figures 13 and 14. 

As shown in these figures both fluid temperature and 

velocity increase with increasing the Prandtl number. This 

is physically true since the thermal diffusivity of the 

working fluid decreases with increasing the Prandtl 

number. This is therefore a hindrance to the diffusion of 

heat generated by the viscous dissipation at every section 

of fluid in the channel, which leads to heat accumulation 

and accordingly, increase in the temperature. In addition, 

the increase in the temperature achieved by the 

strengthening of the convection current causes an increase 

in the fluid velocity. 

Table 5 represents the skin friction, heat transfer rate, 

and volumetric flow rate for different values of Eckert 

number (𝐸𝑐). Increasing the viscous dissipation leads to 

an increase in the volumetric flow rate as well as the skin 

friction on the surface of both walls of the channel. This is 

the transitive effect of increase in the temperature achieved 

by the thermal accumulation that characterizes increasing 

the viscous dissipation and the fluid velocity. The 

consequent increase in the velocity leads to the increase in 

the volumetric flow rate and skin friction. It is also 

observed that amplifying the viscous dissipation causes a 

decrease in the heat transfer on the heated plate and an 

increase in the heat transfer on the cold plate. This is linked 

to the increase in the temperature in the channel, which 

affects the temperature gradients on the channel plates. 

Table 6 shows the skin friction, heat transfer rate, and 

the volumetric flow rate for different values of viscosity 

parameter (𝜆 < 0). With increasing the viscosity of the 

fluid, the volumetric flow rate and the skin friction on the 

surface of both plates are decreased. However, the heat 

transfer rate increases on the heated wall  (𝑦 = 0), while 

it decreases on the cold wall (𝑦 = 1) with increasing the 

fluid viscosity. This is physically true since an increase in 

the fluid viscosity causes a decrease in the velocity, which 

can decrease the volumetric flow rate in the channel. The 

decrease in the fluid velocity caused by increasing the 

viscosity is also responsible for the reduction in the skin 

friction on the walls.  

Table 7 shows the skin friction, heat transfer rate, and 

volumetric flow rate for different values of thermal 

conductivity parameter (𝛾). With increasing the thermal 

conductivity of fluid, volumetric flow rate, the skin 

friction, and the heat transfer on both plates are increased. 

This is due to the physical fact that an increase in the 

thermal conductivity enhances the thermodynamics in the 

channel and this increases heat flux into the channel. The 

increase in temperature due to increase in thermal 

conductivity also strengths the convection current and 

increases the velocity. As a result, the mass flux and skin 

friction are increased on both plates. 

Table 8 shows the skin friction, heat transfer rate, and 

volumetric flow rate for different values of heat 

source/sink parameter (𝑄) . With increasing the heat 

source parameter  (𝑄 > 0), the volumetric flow rate and 

the skin friction are increased on both plates. It is also 

observed that the heat transfer rate decreases on the heated 

wall (𝑦 = 0), while it increases on the cold wall  (𝑦 = 1). 

In addition, increasing the heat sink parameter (𝑄 < 0)  

decreases the volumetric flow rate and the skin friction on 

the plates which, is due to the decrease in the velocity 

caused by increasing the heat sink. The heat transfer rate 

increases on the heated wall  (𝑦 = 0), while it decreases 

on the cold wall (𝑦 = 1)  with increasing the heat sink 

parameter.   
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Table 2. The comparison between the skin frictions of the present method (DTM) and those provided by Jha and Ajibade [22] at 𝜆 =
𝛾 = 𝑄 = 𝐸𝑐 = 𝐾𝑐 = 0  and different values of buoyancy parameter (N) 

 

𝑵 
Jha and Ajibade [22] , 𝒅𝒇 = 𝟎 

             𝝉𝟎                                    𝝉𝟏 

                    Present study 

                   𝝉𝟎                          𝝉𝟏 

0 

0.25 

0.5 

0.75 

1.0 

0.33333333                  0.16666667 

0.41666667                  0.20833333 

0.50000000                  0.25000000 

0.58333333                   0.29166667 

0.66666667                   0.33333333 

0.33333333                  0.16666667 

0.41666667                  0.20833333 

0.50000000                  0.25000000 

0.58333333                   0.29166667 

0.66666667                   0.33333333 

 

Table 3. The comparison between the skin frictions of the DTM method with those achieved by the exact solution at𝑦 = 0, = 𝛾 =
𝐸𝑐 = 0, 𝐾𝑐 = 0.7, 𝑁 = 1, and 𝑆𝑐 = 0.94 

      𝑸                DTM             EXACT 

0.1  0.655147833313604    0.655147833313541 

0.2  0.657435061832565    0.657435061832500 

0.3  0.659767268997745    0.659767268997679 

0.4  0.662145861842601    0.662145861842533 

0.5  0.664572307295862    0.664572307295786 

 

Table 4.  The comparison between the velocities of the DTM method with those achieved by the numerical method at𝜆 = −0.1, 𝛾 =
0.5, 𝐸𝑐 = 0.2, 𝑆𝑐 = 0.94, Pr = 0.71, 𝑁 = 1, 𝑄 = −0.5, and 𝐾𝑐 = 0.7 

𝒚          DTM     NUMERICAL 

0 0.000000000000000  0.000000000000000 

0.25 0.100388349549281  0.100388337919645 

0.5 0.116587533290355  0.116586744834451 

0.75 0.074151747280852  0.074148882742424 

1.0 0.000000000000000  0.000000000000000 

 

Table 5. The mass flow rates, skin frictions, and Nusselt numbers for different values of Eckert number (𝐸𝑐) at𝑆𝑐 = 0.94, 𝑁 = 1, 𝑄 =
−0.5, 𝐾𝑐 = 0.7, 𝜆 = −0.1, and 𝛾 = 0.5 

𝑬𝒄       𝑽𝒎       𝝉𝟎         𝝉𝟏        𝑵𝒖𝟎         𝑵𝒖𝟏 

0.1 0.07757924 0.66364140 0.32158317 1.41895531 1.15982965 

0.2 0.07760062 0.66377439 0.32167404 1.41420817 1.16239981 

0.3 0.07762213 0.66390844 0.32176270 1.40944297 1.16507948 

0.4 0.07764357 0.66404270 0.32184699 1.40466610 1.16781815 

0.5 0.07766472 0.66417628 0.32192474 1.39988409 1.17056471 

 

Table 6. The mass flow rates, skin frictions, and Nusselt numbers for different values of viscosity parameter (𝜆) at𝑆𝑐 = 0.94, 𝑁 = 1, 
𝑄 = −0.5, 𝐾𝑐 = 0.7, 𝛾 = 0.5, 𝐸𝑐 = 0.2, and Pr = 0.71 

𝝀          𝑽𝒎 𝝉𝟎           𝝉𝟏        𝑵𝒖𝟎         𝑵𝒖𝟏 

 

-0.1 0.07760062 0.66377439 0.32167404 1.41420817 1.16239981 

-0.3 0.06796781 0.64527341 0.30107759 1.41686210 1.16118637 

-0.5 0.05823279 0.59375553 0.27633396 1.41900036 1.16017950 

-0.7 0.04839651 0.56909664 0.24786360 1.42072362 1.15905503 

-0.9 0.03843201 0.38922403 0.21598969 1.42218034 1.15695493 
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Table 7. The mass flow rates, skin frictions, and Nusselt numbers for different values of conductivity parameter (𝛾) at𝑆𝑐 = 0.94, 𝑁 =
1, 𝑄 = −0.5, 𝐾𝑐 = 0.7, 𝜆 = −0.1, 𝐸𝑐 = 0.2, and Pr = 0.71 

𝜸      𝑽𝒎      𝝉𝟎        𝝉𝟏        𝑵𝒖𝟎         𝑵𝒖𝟏 

0.1 0.07519457 0.65068569 0.30815899 1.20617979 0.97297861 

0.3 0.07653434 0.65808657 0.31552162 1.30694111 1.06954100 

0.5 0.07760062 0.66377439 0.32167404 1.41420817 1.16239981 

0.7 0.07837943 0.66776749 0.32644243 1.53711823 1.24572372 

0.9 0.07885946 0.67006983 0.32962353 1.68603319 1.31381662 

 

Table 8. The mass flow rates, skin frictions, and Nusselt numbers for different values of heat source/heat sink parameter (𝑄) at 𝑆𝑐 =
0.94, 𝑁 = 1, 𝐾𝑐 = 0.7, 𝜆 = −0.1, 𝛾 = 0.5, 𝐸𝑐 = 0.2, and Pr = 0.71 

𝑸      𝑽𝒎      𝝉𝟎        𝝉𝟏        𝑵𝒖𝟎         𝑵𝒖𝟏 

0.5 0.08039954 0.67957648 0.33665198 1.11543975 1.32982654 

0.3 0.07981779 0.67629796 0.33352590 1.17687699 1.29429215 

0.1 0.07924708 0.67307884 0.33046553 1.23746401 1.25979947 

0.0 0.07896584 0.67149146 0.32895985 1.26744114 1.24293816 

-0.1 0.07868735 0.66991881 0.32747041 1.29720879 1.22633066 

-0.3 0.07813855 0.66681748 0.32454007 1.35612027 0.32454007 

-0.5 0.07760062 0.66377439 0.32167404 1.41420817 1.16239981 

Conclusion 

In this study, the influences of viscous dissipation on 

the natural convection through a vertical channel were 

investigated. The effects of chemical reaction, heat 

source/sink, and variations in the thermo-physical 

properties of fluid, such as temperature dependent 

viscosity and thermal conductivity, were taken into 

account.  The governing equations for temperature, 

velocity, and concentration fields were solved analytically 

using the DTM. The results were verified with the results 

from the exact and numerical methods and an excellent 

agreement was found. The main results are summarized as 

follows: 

1. Increasing the viscous dissipation causes an increase 

in both fluid temperature and velocity in the channel. 

2. Increasing the fluid viscosity decreases the fluid 

velocity and the temperature in the channel. 

3. Skin friction increases with increasing the thermal 

conductivity of the working fluid. 

4. The volumetric flow rate can be controlled effectively 

using the variations in the viscosity and the thermal 

conductivity of the working fluid. 

5. Increasing the heat source parameter causes an 

increase in the skin friction on the plates, while an 

inverse trend can be observed with increasing the heat 

sink parameter. 

6. The results achieved by this study are of great    

importance to science and technology especially in 

polymer industries. Furthermore, the viscous heating 

can provide basis for further investigation in magma, 

poiseuille, lava, and Coquette flows in tubes and 

channels. 

 

Nomenclature 

cp  specific heat at constant pressure 
 [w.k/kg.s] 

Dm              mass diffusivity 

Ec Eckert number 

g           acceleration due to gravity [m/s2] 

h  distance between the walls [m] 

Kc chemical reaction parameter 

k   thermal conductivity [W/m.k] 

K0 thermal conductivity at T=T0  [W/m.k] 

N buoyancy ratio parameter 

Nu0 Nusselt number at y=0 

Nu1 Nusselt number at y=1 

Pr   Prandtl number 

Q heat source parameter 

Sc Schmidt number 

T’ Temperature [K]   

T’1, T’0 hot wall/ cold wall temperature  [K]                 

 u’ dimensional velocity component              

 u dimensionless velocity component 

x’ vertical coordinate [m] 

y’ horizontal coordinate [m] 

Greek Symbols 
𝜇 viscosity of the fluid [kg.m-1.s-1] 

𝜇0 viscosity at T=T0   [kg.m-1.s-1] 

𝛽 thermal expansion coefficient of fluid [K-1] 

𝛽̅ volume expansion coefficient 

𝜌 Density [kg.m-3] 

𝜃 dimensionless temperature 

𝜆 viscosity parameter 
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𝛾 thermal conductivity parameter 

𝜐0 kinematic viscosity of fluid [m2.s-1] 

𝜏0 skin friction at y=0 

𝜏1 skin friction at y=1 
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