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solve the inverse heat conduction problem via the Pennes bioheat equation in an 
axisymmetric coordinate system, where the irregular region in the physical domain (r,z) was 
transformed into a rectangle in the computational domain (ξ, η). The performance of the 
algorithm was evaluated on a tested point located at the (5, 2) position, accounting for two 
temperature increments. The results confirmed the accuracy and viability of the algorithm, 
which makes this approach promising for the actual application for breast cancer treatment 
soon. 
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1. Introduction    

The notoriety of cancer makes it a popular research 

topic across the world, especially research on cancer 

treatments. Cancer treatment encompasses surgery, 

chemotherapy, radiation therapy. As cancer cannot be 

easily treated via conventional therapies, there is interest 

in developing new methods that could enhance the effects 

of conventional cancer treatment approaches. A practical 

method that can be used in conjunction with conventional 

therapies is the hyperthermia approach, where the 

temperature of tumor-loaded tissue is raised to 40-43oC 

for a preset period while leaving the healthy regions 

unheated. Exposure to higher temperatures renders the 

cancer cells more susceptible to radiation (radiotherapy) or 

chemicals (chemotherapy) [1]. Despite its promising 

premise, hyperthermia suffers from one glaring drawback: 

targeted temperature control, where the tumors are 

targeted and heated while the healthy cells are left intact. 

Hyperthermia has been reported to be useful for 

eliminating head and neck tumors, and chest, brain, 
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bladder, cervix, rectum, lung, vagina, and skin cancers. A 

mathematical model of heat transfer in a 3-layer tissue in 

a limited space was constructed to estimate the 

temperature control profiles in hyperthermia conditions. 

Hyperthermia is heavily dependent on the features of its 

respective heat sources. Also, due to the position of the 

tumors, hyperthermia can be utilized in three different 

ways; local hyperthermia, regional hyperthermia, and 

whole-body hyperthermia (WBH) vis-à-vis therapeutic 

applications for treating cancer [2]. Heat transfer with in 

multi-layer tissue is a complicated procedure [3] due to its 

inclusion of multiple mechanisms such as conduction in 

tissue, convective tissue in the blood, and diffusion of 

blood and its dissemination in micro-granular cells. The 

complexity of heat transfer with in living tissue makes it 

challenging to construct an accurate and representative 

mechanical model envisioning the entire process. 

Hypotheses and simplifications alongside essential 

features of the process need to be accounted for when 

constructing mechanical models to represent the above 
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mentioned cases. There are two types of heat conduction 

solution, which are direct and inverse methods [1, 4].   

Generally, there are three different models of heat 

transfer biomass equations: Pennes bioheat transfer model 

[5], thermal wave bioheat transfer model [6, 7], and dual-

phase-lag heat transfer model [8]. The Pennes bioheat 

equation was published in 1948 [5] and was deemed 

suitable due to its simplicity and applicability in specific 

conditions. The Pennes bioheat equation relies on critical 

factors such as equilibration site, blood perfusion, vascular 

architecture, and blood temperature [5]. Pennes was the 

first researcher to study tissue and blood temperature in the 

resting human forearm. Moreover Pennes was succeed to 

estimate an appropriate modification to the standard heat 

equation through introducing a blood perfusion term. Lu 

et al. [9] investigated to find a basic solution for thermal 

wave model of bioheat transfer and achieved this solution 

is complicated. Many researches has been done in different 

analytical and numerical methods to find the solution for 

the bioheat transfer problems [10]. Most of researches was 

done numerically. Ahmadikia et al. [11] used Laplac 

transform method and solve the Pennese bioheat equation 

while assuming the heat flux boundary conditions are 

constant, periodic and pulse train for skin as a semi-infinite 

and finite domain. Shih et al. [12] also applied Laplace 

transform method to solve the Pennes bioheat equation and 

analyzed the effect of the temperature response of the 

semi-infinite biological tissue. Same as these type of 

methods, Yuan [13] studied on biological tissue immersed 

in water with a sinusoidal temperature alternation on the 

skin surface to simulate the contrast therapy by accounting 

the transient temperature response. Tung et al.[14] 

suggested an improved 1-D Hyperbolic heat transfer 

equation (HHTE) and recommended significant changes 

to parabolic and hyperbolic models. Cotta et al. [15] 

suggested a ‘generalized integral transform technique’ 

(GITT) for solving the 1-D PBHE equation based on 

assumptions such as constant and lined thermo-physical 

characteristics and the amount of blood perfusion. Lee et 

al. [16] estimated the surface heat flux using an inverse 

hyperbolic heat conduction method in living tissue. They 

proposed an inverse algorithm based on the conjugate 

gradient method. The difference approach for solving the 

hyperbolic heat transfer problem was utilized to estimate 

the time-independent surface heat flux in a living tissue 

from the temperature measurement within the tissue. 

Mohammadiun et al. used the conjugate gradient method 

to estimate the time-dependent heat flux in multi-layers 

systems by solving the inverse method [17-19]. Jalali et 

al.[20] studied factors that affect living tissues via heat 

treatment. The premise of his work is the fact that 

temperature distribution and control are crucial vis-à-vis 

hyperthermia. Emanuei et al. [21] constructed a simplified 

1-D model of heat transfer of spherical biological living 

tissue based on the Pennes bioheat equation by taking into 

account the constant blood perfusion prevalent in heat 

transfer problems, while Baghban et al. [22] proposed a 

sequential technique to determine the heating power of an 

external source. Dutta and Kondu [2] proposed an exact 

analytical solution of a thermal profile of a 1-D Pennes’ 

bioheat equation (PBHE) in living tissue via the separation 

of variables method, and the solution is expected to 

influence thermal treatments. Dutta and Kondu [3] also 

proposed a 2-D Pennes’ bioheat equation (PBHE) to 

describe heat treatments using Fourier and non-Fourier 

heat transfer methods. 

In presented research, the conjugate gradient method, 

coupled with an adjoint equation approach is employed, to 

solve the inverse heat conduction problem and to predict 

the power of the heat source using temperature distribution 

at two central points in a multi-layers system. The 

equations are solved using the finite difference method in 

an axisymmetric coordinate system. It is the first time 

where an axisymmetric model is employed to solve the 

Pennes equation within a multilayer system and is the most 

important innovation of the paper. The irregular region in 

the physical domain (r , z) is transformed into a rectangle 

in the computational domain (ξ , η). The present 

formulation is general and can be applied to the solution 

of boundary inverse heat conduction problems over any 

region that can be mapped into a rectangle. The governing 

equations are solved by employing the finite difference 

method. The obtained results show that the applied method 

causes high stability, even if the input data includes 

considerable noise.  

The next section details the problem formulation and 

geometry design, and Section 2. explained mathematical 

method of solution , then section four discusses the results, 

and section five concludes this paper. 

 

2. Problem formulation and Geometry 
Design 

The axisymmetric cylindrical coordinate system 

(r, 𝜙, z)was used to solve the problem on the z-axis. 

Therefore, the derivative of the variables with respect to 

𝜙is zero. Fig 1.a shows a 3D model of the breast, while 

Fig1.b shows the boundary conditions and different layers 

of the problem. The geometry of the breast was assumed 

to be a hemisphere, as shown in Fig.1.a. 
The energy equation was set into a cylindrical 

coordinate system (r,z), then transformed into a physical 

coordinate system (r; z); the results are shown in Fig 2. By 

rotating the model around the z-axis, a semispherical 

model was obtained. As shown in Fig. 2, the time-

dependent heating power source is employed on the 

exterior surface, while the heat source is located in the 

tissue. 

It is necessary to predict the unknown heating power 

source 𝐺𝑝(𝑡) on the external surface during0 ≤ 𝑡 ≤ 𝑡𝑓, 

where 𝑡𝑓 is the final time, using the temperature 

distribution at a specific point. It should also be pointed 

out that noise affects the input data in this case. The 

numerical solution was obtained using the general 

coordinate method.  
The results garnered from solving the problem in the 

rectangular coordinate system (𝜉, 𝜂) was transformed to  



 M. Shariatmadar tehrani/ JHMTR 7 (2020) 117- 129 119 

 

Table 1. Physical properties of breast tissue 

 

 

                                                  (a) 

 

(b) 

Figure 1. a) Geometry of breast b) boundary conditions of 
the problem 

 

 

(a) 

 

(b) 

Figure 2. a) Physical and b) computational domains 

 

the physical coordinate system (r,z), with the 

computational plane shown in Fig 2.b, and its related 

boundary conditions presented in Fig. 3. 

3. Mathematical Method 

In this work, the definition of heat transfer in soft tissue 

is based on the Pennes bioheat equation [5], where it was 

assumed that the total energy exchange of the flowing 

blood is related to the volumetric heat flow and the blood 

and tissue temperature gradient. 

3.1. Direct problem 

The equation for describing the 3-D expression of the 

Pennes bioheat in a living tissue when the physical 

properties remains unchanged is: 

∇2(𝐾𝑇) + 𝜌𝑏𝐶𝑏𝑊̇𝑏(𝑇𝑎0 − 𝑇) + 𝑞′′′𝑚

+ 𝐺𝑝(𝑡)𝛿(𝑟 − 𝑟∗∗)𝛿(𝑧 − 𝑧∗∗)

= 𝜌𝑐
𝜕𝑇

𝜕𝑡
 

(1) 

 

Where T is the temperature, K is the tissue thermal 

conductivity,𝜌
𝑏
 is the blood density, 𝐶𝑏 is the blood 

specific heat, 𝑊̇𝑏 is the blood perfusion rate, 𝑇𝑎0 is the 

arterial temperature,𝑞′′′
𝑚

 is the metabolic heat generation 

rate, 𝛿 is the Dirac delta function, t is the time, 𝜌is the 

tissue density, and c is the tissue-specific heat. The real 

values that can describe the physical properties of the 

breast tissue are tabulated in Table 1[23-27]. 

In the cylindrical coordinate system, the Pennes bioheat 

equation, considering the axisymmetric condition, is: 

1

𝑟

𝜕

𝜕𝑟
(𝐾𝑟

𝜕𝑇

𝜕𝑟
) +

𝜕

𝜕𝑧
(𝐾

𝜕𝑇

𝜕𝑧
)

+ 𝜌𝑏𝐶𝑏𝑊̇𝑏(𝑇𝑎0
− 𝑇) + 𝑞′′′𝑚

+ 𝐺𝑝(𝑡)𝛿(𝑟 − 𝑟∗∗)𝛿(𝑧 − 𝑧∗∗)

= 𝜌𝐶
𝜕𝑇

𝜕𝑡
 

(2) 

 

 

Figure 3. Boundary condition in a computational plane 

 h (mm) k (W/mK) ρ (kg/m3) C(J/kgK) 𝒒𝒎
′′′(W/m3) 

Fat 5.0[25] 0.21[23] 930[24] 2770[24] 400[23] 
Gland 43.4[25] 0.48[23] 1050[24] 3770[24] 700[23] 

Muscle 15[25] 0.48[23] 1100[24] 3800[26] 700[23] 
Tumor -- 0.48[23] 1050[24] 3852[26] 5000[27] 
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K is not dependent on temperature and is different in 

the case of each tissue.  

It is assumed that the variables are dimensionless, and 

K is constant for every type of tissue:  

𝑟∗ =
𝑟

𝑅
, 𝜃 =

𝑇 − 𝑇𝑎0

𝑞𝑅
𝐾⁄

, 𝑡∗ =
𝛼𝑡

𝑅2
, 𝑍∗ =

𝑧

𝑅
 (3) 

Where 𝜃 is the elevation temperature. 

The following equation, derived in the dimensionless 

form is: 

𝜕2𝜃

𝜕𝑟∗2 +
1

𝑟∗

𝜕𝜃

𝜕𝑟∗
+

𝜕2𝜃

𝜕𝑧∗2 −
𝜌𝑏𝐶𝑏𝑊̇𝑏𝑅2

𝐾
𝜃 +

𝑞′′′𝑅

𝑞0

+ 𝐺𝑝(𝑡∗)𝛿(𝑟∗ − 𝑟∗∗)𝛿(𝑧∗

− 𝑧∗∗) =
𝜕𝜃

𝜕𝑡∗
 

(4) 

The boundary conditions are detailed below: 

On the left and down boundaries: 

𝜕𝜃

𝜕𝑛
= 0 (5) 

On the outer boundary: 

𝑞 − 𝑞𝑐 = 0     →     𝑞 =  𝑞𝑐 (6) 

On the other hand: 

−k
𝜕T

𝜕n
= h(T − T∞) 

𝑇 =
𝑞0𝑅

𝐾
𝜃 + 𝑇𝑎0

→
𝜕𝑇

𝜕𝑛
=

𝑞0𝑅

𝐾

𝜕𝜃

𝜕𝑛
+ 0 

(7) 

−𝐾
𝜕𝑇

𝜕𝑛
= −𝑞0𝑅

𝜕𝜃

𝜕𝑛
 

𝜃∞ =
T∞ − 𝑇𝑎0

𝑞0𝑅

𝐾

→ T∞ =
𝑞0𝑅

𝐾
𝜃∞ + 𝑇𝑎0

 
(8) 

𝑇 − T∞ =
𝑞0𝑅

𝐾
(𝜃 − 𝜃∞) (9) 

Combining equations (7), (8), and (9), we obtain: 

−𝑞0𝑅
𝜕𝜃

𝜕𝑛
= ℎ

𝑞0𝑅

𝐾
(𝜃 − 𝜃∞) (10) 

Furthermore, by applying the boundary conditions on 

to the top boundary, we obtain:  

𝜕𝜃

𝜕𝑛
= −

ℎ

K
(𝜃 − 𝜃∞) (11) 

𝜃(𝑧∗, 𝑟∗, 0) = 0 (12) 

Where the unit for h is
𝑊

𝑚2𝐾
 ,while the unit for K is 

𝑊

𝑚𝐾
 . 

The transformation of the physical domain to the 

computational domain are discussed in details in the 

Appendix. 

The boundary conditions in the computational domain 

are: 

ξ = 1 →
1

𝐽𝛼
1

2

(𝛼𝜃𝜉 − 𝛽𝜃𝜂) = 0 (13) 

ξ = nz →
1

𝐽𝛼
1

2

(𝛼𝜃𝜉 − 𝛽𝜃𝜂) = −
ℎ

𝑘
(𝜃 − 𝜃∞) (14) 

η = 1, η = nr →
1

𝐽𝛾
1

2

(−𝛽𝜃𝜉 − 𝛾𝜃𝜂) = 0 (15) 

In the interface of tissues shown in Fig. 3, the following 

relations are used, while Fig 3. a, b, and c represent the 

muscle, glands, and fat tissues, respectively. 

𝑞𝜉𝑖𝑛 + 𝑞𝜂𝑖𝑛 = 𝑞𝜉𝑜𝑢𝑡 + 𝑞𝜂𝑜𝑢𝑡 (16) 

𝑘𝐴(𝜃𝑖,𝑗 − 𝜃𝑖−1,𝑗) +
2𝑘𝐴𝑘𝐵

𝑘𝐴 + 𝑘𝐵

(𝜃𝑖,𝑗 + 𝜃𝑖−1,𝑗)

= 𝑘𝐵(𝜃𝑖+1,𝑗 − 𝜃𝑖,𝑗)

+
2𝑘𝐴𝑘𝐵

𝑘𝐴 + 𝑘𝐵

(𝜃𝑖,𝑗+1 + 𝜃𝑖,𝑗) 

(17) 

𝑘𝐵(𝜃𝑖,𝑗 − 𝜃𝑖−1,𝑗) +
2𝑘𝐶𝑘𝐵

𝑘𝐶 + 𝑘𝐵

(𝜃𝑖,𝑗 + 𝜃𝑖−1,𝑗)

= 𝑘𝐶(𝜃𝑖+1,𝑗 − 𝜃𝑖,𝑗)

+
2𝑘𝐶𝑘𝐵

𝑘𝐶 + 𝑘𝐵

(𝜃𝑖,𝑗+1 + 𝜃𝑖,𝑗) 

(18) 

3.2. Inverse problem 
The time-dependent heating power source in the 

inverse problem can be solved by accounting for the 

measured transient temperatures, estimated in the location 

of two sensors at two specific points. The following 

function must be minimized to solve the inverse problem 

[28]:  

𝑆[𝐺𝑝(𝑡∗)] =
1

2
∫

𝑡∗=0

𝑡∗=𝑡𝑓
∗

∑
𝑚=1

𝑁𝑠

[𝜃(𝜉𝑚 , 𝜂𝑚, 𝑡∗, 𝐺𝑝)

− 𝑌𝑚(𝑡∗)]2𝑑𝑡∗ 

(19) 

Where 𝜃(𝜉𝑚, 𝜂𝑚, 𝑡∗, 𝐺𝑝)is the predicted temperature 

and 𝑌𝑚(𝑡∗) is the measured temperature. The number of 

sensors, Ns, is 2. 

3.3. Adjoint problem 
The conjugate gradient method can be used to minimize 

equation (19). Determining the direction of an unidentified 

heating power source in the conjugate algorithm depends 

on the gradient of the error function and the solution by the 

adjoint equations [28-30], best described by the equation 

below: 

𝜕2𝜆

𝜕𝑟∗2 +
1

𝑟∗

𝜕𝜆

𝜕𝑟∗
+

𝜕2𝜆

𝜕𝑧∗2 −
𝜌𝑏𝑐𝑏𝑊̇𝑏𝑅2

𝐾
𝜆

+ ∑  

𝑚=1

𝑁𝑠

[𝜃(𝜉, 𝜂, 𝑡∗, 𝐺𝑝)

− 𝑌𝑚(𝑡)]𝛿(𝜂 − 𝜂𝑚)𝛿(𝜉

− 𝜉𝑚) =
𝜕𝜆

𝜕𝑡∗
 

(20) 

In the interface of the materials, using the model shown 

in Fig. 3, the reactions below are used: 

𝑘𝐴(𝜆𝑖,𝑗 − 𝜆𝑖−1,𝑗) +
2𝑘𝐴𝑘𝐵

𝑘𝐴 + 𝑘𝐵

(𝜆𝑖,𝑗 + 𝜆𝑖−1,𝑗)

= 𝑘𝐵(𝜆𝑖+1,𝑗 − 𝜆𝑖,𝑗)

+
2𝑘𝐴𝑘𝐵

𝑘𝐴 + 𝑘𝐵

(𝜆𝑖,𝑗+1 + 𝜆𝑖,𝑗) 

(21) 
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 𝑘𝐵(𝜆𝑖,𝑗 − 𝜆𝑖−1,𝑗) +
2𝑘𝐶𝑘𝐵

𝑘𝐶 + 𝑘𝐵

(𝜆𝑖,𝑗 + 𝜆𝑖−1,𝑗)

= 𝑘𝐶(𝜆𝑖+1,𝑗 − 𝜆𝑖,𝑗)

+
2𝑘𝐶𝑘𝐵

𝑘𝐶 + 𝑘𝐵

(𝜆𝑖,𝑗+1 + 𝜆𝑖,𝑗) 

(22) 

The boundary conditions are as follows: 

𝜕𝜆

𝜕𝑛
= 0 (23) 

𝜆(𝑧∗, 𝛾∗, 𝑡𝑓
∗) = 0 (24) 

Where n is the normal vector at the surface. 

The boundary conditions in the computational plane, 

shown in Fig. 3 are as follows: 

ξ = 1, ξ = 𝑛𝑧 →
1

𝐽𝛼
1

2

(𝛼𝜆𝜉 − 𝛽𝜆𝜂) = 0 (25) 

η = 1, η = 𝜂𝑧 →
1

𝐽𝛼
1

2

(−𝛽𝜆𝜉 − 𝛾𝜆𝜂) = 0 (26) 

3.4. Sensitivity problem 
The perturbing 𝐺𝑝(t∗)is changed by𝛥𝐺𝑝(t∗), and in the 

same manner by𝜃(𝑟∗, 𝑧∗, 𝑡∗)andΔ𝜃(𝑟∗, 𝑧∗, 𝑡∗)to obtain the 

sensitivity equation. Therefore, in direct solving method 

the variables 𝜃(𝑟∗, 𝑧∗, 𝑡∗) and 𝐺𝑝(t∗) are replaced by 

[𝜃(r∗, 𝑧∗, 𝑡∗) + Δ𝜃(r∗, 𝑧∗, 𝑡∗)]  and [𝐺𝑝(t∗) + 𝛥𝐺𝑝(t∗)] 
respectively, and its final expression can be subtracted 

from the direct problem [28], resulting in: 
𝜕2𝛥𝜃

𝜕𝑟∗2 +
1

𝑟∗

𝜕𝛥𝜃

𝜕𝑟∗
+

𝜕2𝛥𝜃

𝜕𝑧 ∗2
−

𝜌𝑏𝐶𝑏𝑊̇𝑏𝑅2

𝐾
𝛥𝜃

+
𝑞′′′𝑅

𝑞0

+ 𝛥𝐺𝑝(𝑡)𝛿(𝑟∗ − 𝑟∗∗)𝛿(𝑧∗

− 𝑧∗∗) =
𝜕𝛥𝜃

𝜕𝑡∗
 

(27) 

Where Δ𝜃 is the sensitivity temperature. In the interface 

of the materials, using the model shown in Fig. 3, the 

equations below were used: 
𝑘𝐴(𝛥𝜃𝑖,𝑗 − 𝛥𝜃𝑖−1,𝑗)

+
2𝑘𝐴𝑘𝐵

𝑘𝐴 + 𝑘𝐵

(𝛥𝜃𝑖,𝑗 + 𝛥𝜃𝑖−1,𝑗)

= 𝑘𝐵(𝛥𝜃𝑖+1,𝑗 − 𝛥𝜃𝑖,𝑗)

+
2𝑘𝐴𝑘𝐵

𝑘𝐴 + 𝑘𝐵

(𝛥𝜃𝑖,𝑗+1 + 𝛥𝜃𝑖,𝑗) 

(28) 

𝑘𝐵(𝛥𝜃𝑖,𝑗 − 𝛥𝜃𝑖−1,𝑗)

+
2𝑘𝐶𝑘𝐵

𝑘𝐶 + 𝑘𝐵

(𝛥𝜃𝑖,𝑗 + 𝛥𝜃𝑖−1,𝑗)

= 𝑘𝐶(𝛥𝜃𝑖+1,𝑗 − 𝛥𝜃𝑖,𝑗)

+
2𝑘𝐶𝑘𝐵

𝑘𝐶 + 𝑘𝐵

(𝛥𝜃𝑖,𝑗+1 + 𝛥𝜃𝑖,𝑗) 

(29) 

boundary conditions on the left and down boundaries 

are: 

𝜕𝛥𝜃

𝜕𝑛
= 0 (30) 

on the top boundary: 

𝜕𝛥𝜃

𝜕𝑛
= −

ℎ

K
𝛥𝜃 (31) 

The boundary condition in the computational plane are: 

ξ = 1 →
1

𝐽𝛼
1

2

(𝛼Δ𝜃𝜉 − 𝛽Δ𝜃𝜂) = 0 (32) 

ξ = nz →
1

𝐽𝛼
1

2

(𝛼Δ𝜃𝜉 − 𝛽Δ𝜃𝜂) = −
ℎ

𝑘
Δ𝜃 (33) 

η = 1, η = nr →
1

𝐽𝛾
1

2

(−𝛽Δ𝜃𝜉 − 𝛾Δ𝜃𝜂) = 0 (34) 

The gradient equation is: 

∇𝑆[𝐺𝑝(𝑡∗)] = 𝜆(𝜉, 𝜂, 𝑡∗) (35) 

There is a dependency between the above equality and 

the position of the unknown function. 

3.5. Iterative method 
The estimation of the heat source power 𝐺𝑝(t∗) as an 

unknown function is realized via function minimization.  

The repetitive function for estimating 𝐺𝑝(t∗) is [28, 29, 

31] 

𝐺𝑝
𝑘+1(𝑡∗) = 𝐺𝑝

𝑘(𝑡∗) − 𝛽𝑘𝑑𝑘(𝑡∗) (36) 

Moreover , k  is assumed to be the iteration number.  
 

The estimation of 𝑑𝑘(t∗) as the direction of descent is 

estimated to be [28, 30, 31]: 

𝑑𝑘(𝑡∗) = ∇𝑆[𝐺𝑝
∗(𝑡∗)] + 𝛾𝑘𝑑𝑘−1(𝑡∗) (37) 

Where γk is the conjugate coefficient [28, 29, 32], and 

can be acquired by: 

𝛾𝑘 =
∫

𝑡∗=0

𝑡𝑓
∗

{∇𝑆[𝐺𝑝
𝑘(𝑡∗)]}2𝑑𝑡∗

∫
𝑡∗=0

𝑡𝑓
∗

{∇𝑆[𝐺𝑝
𝑘−1(𝑡∗)]}2𝑑𝑡∗

 (38) 

β𝑘 =
∫ ∑ [𝜃(𝜉𝑚 , 𝜂𝑚 , 𝑡∗, 𝐺𝑝

𝑘) − 𝑌𝑚(𝑡∗)]
𝑁𝑠
𝑚=1 Δ𝜃(𝜉𝑚, 𝜂𝑚 , 𝑡∗, 𝑑∗)

𝑡𝑓
∗

𝑡∗=0
𝑑𝑡∗

∫ ∑ [∆𝜃(𝜉𝑚 , 𝜂𝑚 , 𝑡∗, 𝑑∗)]2𝑁𝑠
𝑚=1

𝑡𝑓
∗

𝑡∗=0
𝑑𝑡∗

 (39) 

Where γ0 is assumed to be zero.  

The searching rate,𝛽𝑘
 , can be determined by minimizing 

𝑆[𝐺𝑝
𝑘+1(𝑡∗)]and considering 𝛽𝑘to be: (39) 

In the above equation, the assumption of 𝛥𝐺𝑝
𝑘(𝑡∗) =

𝑑𝑘(𝑡∗) help realizesΔ𝜃(𝜁𝑚, 𝜂𝑚, 𝑡∗; 𝑑∗)the sensitivity 

problem. 
Whenever the stop condition occurs, the mentioned 

iterative procedure will end. The definition of stopping 

criterion is: 

𝑆[𝐺𝑝(𝑡∗)] ≤ 𝜀 (40) 

In the equation (40), 𝑆[𝐺𝑝(𝑡∗)]is obtained using 

equation (19). The value of ε should be chosen, and while 

errors exist in the measured data, the results would be 

accurate.  

3.6. Computational algorithm 
The computational process to determine the hidden 

heating power source is summarized as follows [28]: 

1. Select a primary presumption, for instance 𝐺𝑝
0(𝑡∗), in 

the function 𝐺𝑝(𝑡∗), by setting k as zero. 
2. Calculate 𝜃(𝑧∗, 𝑟∗, 0)by solving the direct problem 

based on 𝐺𝑝
𝑘(𝑡∗) (Eqs. (1–15, A1-A16)). 
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3. Continue if the stop condition does not occur, or else 

stop (Eq. (40)). 

4. Find the solution of the adjoint problem, and calculate 

𝜆(𝑧∗, 𝑟∗, t∗) by knowing 𝜃(𝜉𝑚, 𝜂𝑚 , 𝑡∗, 𝐺𝑝) and the term 

𝑌𝑚(𝑡∗) (Eqs. (20-26)). 
5. Calculate ∇𝑆[𝐺𝑝

𝑘(𝑡∗)] in Eq. (35) by using achieved 

𝜆(𝜉𝑚, 𝜂𝑚, 𝑡∗) from the previous step. 
6. Calculate 𝛾𝑘

and 𝑑𝑘(𝑡∗) from Eq. (38) and Eq. (37), 

respectively, using achieved ∇𝑆[𝐺𝑝
𝑘(𝑡∗)] from the 

previous step. 
7. Calculate 𝛥𝜃(𝜉𝑚, 𝜂𝑚, 𝑡∗, d∗) in the sensitivity problem 

by setting 𝛥𝐺𝑝
𝑘(𝑡∗) = 𝑑𝑘(𝑡∗) Eq. (39)). 

Table 2. The RMS errors between the exact and estimated 
values for the different functions 

8. Knowing 𝛽𝑘
 from Eq. (39) based on achieved 

𝛥𝜃(𝜉𝑚, 𝜂𝑚, 𝑡∗, d∗). 
9. Knowing β𝑘 and 𝑑𝑘(𝑡∗), compute 𝐺𝑝

𝑘+1(𝑡∗), then back 

to number 1 (Eq. (36)) 

 

4. Results and discussion 

This work is predicated on determining the most 

suitable heat power source that can be used to kill tumors 

without damaging healthy cells. The heating time was 

determined to be~10 minutes. The governing equations 

were discretized using the finite-difference technique, 

where a uniform 35×35 dimension mesh size was selected 

in the numerical method.  The prediction of the power 

source was estimated by measuring the temperature at two 

points. Fig. 2.a. shows the mesh and locations of the 

sensors. 

4.1. Grid sensitivity 
In order to elucidate the independence of the problem 

from the dimension of the selected mesh, the behavior of 

presented algorithm is evaluated on three different mesh 

sizes, such as 35 × 35, 30 × 30 and 25 ×25 and the results 

are shown in Fig. 4.  According to the results, there is no 

dependency between the size of the mesh and the achieved 

results. No significant change in the results are observed 

for three grids of 35 × 35 and 30 × 30 and 25 × 25. Hence 

the suitable grid for this problem is considered as 35 × 35. 

The time step was set to be ∆t = 0.01. In order to evaluate 

the accuracy of the existing solution, three linear functions 

step, and a combination of sine and cosine functions were 

employed. It should be pointed out that the discontinuous 

and sharp corner functions are known to be ill-posed (as  

 

Figure 4. Effect ofes the mesh size on the final results 

shown in Fig. 5.b and Fig. 5.c), and in order to determine 

the accuracy of the solutions, the functions below 

(equations 41-43) were selected [28]:  

ℎ𝑗 = 𝑘(𝑐/2)−1 (41) 

ℎ𝑗 = 𝑘(𝑐/2)−1 (42) 

ℎ𝑗 = 𝑘(𝑐/2)−1 (43) 

4.2. Sensitivity against noise 
The problem sensitivity against noise was evaluated to 

determine the stability of the presented method. Fig. 5 (a-

f) shows a comparison of the estimated heating power 

source with the exact functions (linear, step, and sin-

cosine) with and without noise. 

Figs 5. a-c show the comparison of the exact functions of 

linear, step, and sin-cosine  according to the  Eq. (41-43) 

respectively and the related estimated heating power 

source. It is clear that reaction of the proposed method 

against step function has a little error comparing other two 

examined functions however it makes satisfactory. Overall 

error is negligible and it is mostly related to the high level 

values or sudden changes.  In order to elucidate the actual 

performance of the proposed solution, another simulation 

with noisy data was conducted, and the calculation of the 

noisy data is illustrated by Eq. (44) by applying the noise 

to data by the amount of 𝜎 = 0.01𝑇max, where Tmax is the  

maximum temperature, 𝜔 is the standard deviation of the 

normal distribution where -2.625<𝜔< 2.625, and  is the 

standard deviation of the measured error. 

ℎ𝑗 = 𝑘(𝑐/2)−1 (44) 

Figs 5.d-f shows the influence of noise on the suggested 

solution performance. Regardless of the noise data, the 

results look promising. The stability of the algorithm 

against noise is well, especially for the sin-cosine and step 

functions, it can be said there is no obvious difference 

between without noise and with noise results. In the linear 

function, there is a little difference between mentioned 

results and adding noise makes some error in the results 

however it is acceptable yet. 

In order to determine the performance of the proposed 

method, Fig. 6 shows the contours of comparing the 

estimated heating power source with the exact functions. 

According to the contours showing in this figure, there are 

a great match between the estimated heating power source 

that are shown in Fig 6.a-c and the exact function of 

temperature distribution showing in Fig 6. d-f. The RMS  

𝝈 function RMS Error 

0 

Linear 0.121 

Sin-Cos 0.273 

step 0.312 

0.01𝑇𝑚𝑎𝑥 

Linear 0.553 

Sin-Cos 0. 117 

step 0.332 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5. Estimated heating power source compared to the exact function for linear, step, and sin-cosine functions in a three-layer 

tissue, Figs a-c illustrate the functions without noise, while Figs d-f consist of functions with noise.

errors between the exact and estimated values for the 

different functions of heating power source are tabulated 

in Table 2 and estimated by: 

Where 𝐺𝑒𝑥(𝑡𝑖)is the heating power source. 

ℎ𝑗 = 𝑘(𝑐/2)−1 (45) 

According to the results in Table 2, it could be assumed 

that the proposed method behaves well against both data 

with and without noise. As the step function is known for 

being highly ill-posed, the related RMS errors are 

maximum among the examined functions, with the data 

with the noise and linear function reporting maximum  

RMS errors. This means that the noise significantly affects 

the linear distribution function. The sine-cosine function 

reported the minimum RMS value. 

Considering presented contours in Fig.6, the same 

results are achieved and for the step function there is more 

error comparing other two examined functions and sin-

cosine function bring better response among all other 

examined functions. The results indicate same nature of 

temperature distribution as depicted in case of Fig. 5. But 

in this case a sharp difference between estimated 

temperature distribution and estimated temperature  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 6. Contours of the exact temperature distribution across a three-layer tissue for linear, step, and sin-cosine functions (a-c), 

Figures (d-f) illustrates  the estimated temperature distribution.

distribution for step function (Figs.6 f, c) has been 

magnified. In fact there is almost a little variation with 

respect to all. In other hand the temperature distribution 

across tissue in all functions in the exact and estimated one 

are satisfied. 

4.3. Time Dependent Heat Source Estimation 
The performance of the algorithm was evaluated on 

a tested point located at position (5, 2) in the physical 

coordinate system via two different examinations. In 

the first examination, the temperature was increased 

from Ta0=310K to T=318K for 10 minutes. The heat 

equation was transformed into a dimensionless heat 

equation. It should be pointed out that the 

dimensionless temperature variable went from 𝜃 = 0 
to 𝜃 = 3.84 in a dimensionless time of t*=0.0176. The 

dimensionless temperature distribution obeys the 

parabolic form, as per the following relation: 

ℎ𝑗 = 𝑘(𝑐/2)−1 (46) 

after estimating the coefficient “a,” it was rewritten 

to: 
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(a) 

 
(b) 

Figure 7.  The estimated heating power source for data 

without noise (a) and with noise (b) 

 

ℎ𝑗 = 𝑘(𝑐/2)−1 (47) 

In order to determine the function of 𝐺𝑝
 
, the problem 

was solved using the conjugate gradient method and  
heating power source is achieved, and the results shown in 

Fig. 7.a, b for both data without and with noise 

respectively.  
To validate the obtained results, 𝐺𝑝 is considered as the 

direct input of the problem and therefore, the temperature 

distribution at preferred point is found. A comparison 

between the calculated temperature distribution, and the 

preferred one, which is the exact one, is illustrated in Fig. 

8.  

Therefore Fig. 8 shows the results from comparing the 

estimated dimensionless temperature distribution with the 
Therefore Fig. 8 shows the results from comparing the 

estimated dimensionless temperature distribution with the 

exact temperature distribution for both data with and 

without noise for 10 minutes. The results show excellent 

agreements between the predicted and real values, which 

means that the algorithm is suitable for use in determining 

the heating power source. According to the complex 

presented estimating algorithm, it can follow the changing 

temperature during the time by pleasing accuracy. The 

same as the previous examinations, the noise stability 

examination is applied and the result is shown in Fig. 8.b. 

and the same accuracy as without noise examination result 

is achieved. Moreover Fig. 9 shows the related  

 
(a) 

 
(b) 

Figure 8.  The comparison of the estimated dimensionless 
temperature distribution with the exact temperature 

distribution for data without (a) and with noise (b) for a 
temperature distribution time of~10 mins. 

temperature contours. The temperature contours are good 

evaluation to determine that the temperature distribution 

phenomena in biological tissues is satisfied. There is a 

considerable temperature difference between target point 

and surrounding regions. Hence, it is a good evidence to 

prove the presented method is practical.  
In the next examination, the temperature increment 

time was assumed to be~30 minutes. It should be pointed 

out that the dimensionless temperature variable went from 

𝜃 = 0 to 𝜃 = 3.84 in a dimensionless time of t*=0.0528. 

The temperature distribution function is similar to that of 

the first examination, but the coefficient “a” is rewritten 

to: 

ℎ𝑗 = 𝑘(𝑐/2)−1 (48) 

The required 𝐺𝑝
 
was determined to be similar to that of 

the previous examination, and the results of this 

examination are shown in Fig. 10. 

 With the aim of calculating the function of 𝐺𝑝
 , the 

conjugate gradient method is applied and the results is 

shown in Fig. 10. a., b. for both data without and with noise 

respectively. To endorse the achieved results, 𝐺𝑝
  is 

considered as the direct input of the problem and same as 

previous examination the temperature distribution at 

selected point is found. 

Fig. 11 shows the comparison of the estimated 

dimensionless temperature distribution with the exact  
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(a) 

 
(b) 

Figure 9. The related contours of the temperature 
distribution without noise (a) and with noise (b). 

 

 
(a) 

 
(b) 

Figure 10.  The estimated heating power source for data 

without noise 

(a) and with noise (b) 

 
(a) 

 
(b) 

Figure 11.  Comparison of the estimated dimensionless 

temperature distribution with the exact temperature 

distribution for both data without (a) and with noise (b) for a 

temperature distribution time of~30 mins. 

 
(a) 

 
(b) 

Figure 12.  The related contours of the temperature 

distribution without noise (a) and with noise (b). 
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temperature distribution for both data with and without 

noise, while Fig. 12 shows the related temperature 

contours. 

Similar to the previous examination, the results 

confirmed the high accuracy of the proposed method.it 

means the proposed method is time independent and the 

results bring acceptable accuracy in any heating time 

consideration. However, contours of temperature 

distribution in 30 minutes examination is more accurate 

compare to 10 minute examination. Perhaps, it is related 

to slower changes in temperature which makes it more 

accurate. 

 

Conclusion 

In this work, the adjoint problem in conjunction with 

the conjugate gradient method was used to solve the 

inverse heat conduction equation for predicting heating 

power sources. Two sensors measured the temperature 

distribution at two different points to increase the accuracy  

of the solution. The breast was represented by an 

axisymmetric model within the general coordinate system. 

The heat conduction in the breast tissue was modeled using 

the Pennes bioheat equation. Three different functions 

were employed to simulate the heating power source, and 

the results were highly accurate, and in order to further 

confirm this accuracy, the sharp corner and discontinuous 

functions, which are known to be very ill-posed, were 

used. The final results from the use of the previously 

mentioned functions confirmed that the proposed method 

is highly accurate in its prediction, with a noise in the input 

data of up to 1% present. The results confirm the efficiency 

of the proposed technique for predicting the time-

dependent unidentified heating power source(s). 

 

Nomenclature 

A; B; C tissue names in computational plane 

c constant 

C tissue specific heat (J Kg-1 K-1) 

P Pressure [bar] 

𝐶𝑏 the blood specific heat   (J Kg-1 K-1) 

𝐾 tissue thermal conductivity (W-m-1K-1) 

𝜌 tissue density (Kg m-3) 

𝜌𝑏 blood density (Kg m-3) 

𝑊̇𝑏 the blood perfusion rate (Kg m-3 s-1) 

𝑇 temperature (K) 

𝑇𝑎0 the arterial temperature (K) 

𝑇∞ ambient temperature to which living tissue has been 
exposed (K) 

𝑞′′′𝑚  the metabolic heat generation rate (W-m-3) 

𝐺𝑝(𝑡) time-dependent heating power of source 

𝑟 normal distance from the z axis (m) 

𝑧 symmetric axis (m) 

𝛿 Dirac deltafunction 

𝑡 time (s) 

𝑅 radial distance from center (m) 

𝛼;  𝛽;  𝛾 computational coefficients 

𝑛 normal vector to the surface 

ℎ heat transfer coefficient (W-m-2 K-1) 

𝑑𝑘(𝑡) direction of descent 

𝐼 number of measurements 

𝑖; 𝑗 node positions in computational plane 

𝐽 Jacobian transformation 

𝑆 objective function 

𝛽𝑘 search step size 

𝛾𝑘 conjugate coefficient 

𝜂 vertical axis in computational plane 

𝜆 adjoint temperature (K) 

𝜉 horizontal axis in computational plane 

𝜎 standard deviation of measurement error 

𝜔 standard deviation of normal distribution 

𝜃∞ dimensionless constant temperature 

𝜃 elevation temprature defined as 
𝑇−𝑇𝑎0

𝑞𝑅/𝐾
 (K) 

 

Appendix 

The transformation of the physical domain to the 

computational domain, as illustrated in Fig. 2.b, via the 

general coordinate technique [18] is as follow: 

θ𝑧∗ =
1

𝐽
(𝑟𝜂

∗𝜃𝜉 − 𝑟𝜉
∗𝜃𝜂) (A1) 

θ𝑟∗ =
1

𝐽
(−𝑧𝜂

∗𝜃𝜉 − 𝑧𝜉
∗𝜃𝜂) (A2) 

∇2𝜃 =
1

𝐽2
[𝛼𝜃𝜉𝜉 − 2𝛽𝜃𝜉𝜂 + 𝛾𝜃𝜂𝜂]

+ [(𝛻2𝜉)𝜃𝜉 + (𝛻2𝜂)𝜃𝜂] 
(A3) 

α = 𝑧𝜂
∗2 + 𝑟𝜂

∗2 (A4) 

β = 𝑧𝜉
∗𝑧𝜂

∗ + 𝑟𝜉
∗𝑟𝜂

∗ (A5) 

γ = 𝑧𝜁
∗2 + 𝑟𝜁

∗2 (A6) 

∇2𝜉

=
𝑘1(𝑟𝜉𝜉

∗ 𝑧𝜂
∗ − 𝑧𝜉𝜉

∗ 𝑟𝜂
∗) + 𝑘2(𝑟𝜉𝜂

∗ 𝑧𝜂
∗ − 𝑧𝜉𝜂

∗ 𝑟𝜂
∗) + 𝑘3(𝑟𝜂𝜂

∗ 𝑧𝜂
∗ − 𝑧𝜂𝜂

∗ 𝑟𝜂
∗)

𝐽
 

(A7) 

∇2𝜂

=
𝑘1(𝑧𝜉𝜉

∗ 𝑟𝜂
∗ − 𝑟𝜉𝜉

∗ 𝑟𝜂
∗) + 𝑘2(𝑧𝜉𝜂

∗ 𝑟𝜉
∗ − 𝑟𝜉𝜂

∗ 𝑧𝜉
∗) + 𝑘3(𝑧𝜂𝜂

∗ 𝑟𝜉
∗ − 𝑟𝜂𝜂

∗ 𝑧𝜉
∗)

𝐽
 

(A8) 

𝑘1 =
1

𝐽2
(𝑧𝜂

∗2 + 𝑟𝜂
∗2) (A9) 

𝑘2 =
−2

𝐽2
(𝑧𝜉

∗𝑧𝑛
∗ + 𝑟𝜉

∗𝑟𝜂
∗) (A10) 

𝑘3 =
1

𝐽2
(𝑧𝜉

∗2 + 𝑟𝜉
∗2) (A11) 

ξ𝑧∗ =
1

𝐽
𝑟𝜂

∗ (A12) 

𝜉𝑟∗ = −
1

𝐽
𝑧𝜂

∗ (A13) 

𝜂𝑧∗ = −
1

𝐽
𝑟𝜉

∗ (A14) 
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𝜂𝑟∗ =
1

𝐽
𝑧𝜉

∗ (A15) 

J = 𝑧𝜉
∗𝑟𝜂

∗ + 𝑟𝜉
∗𝑧∗ (A16) 
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