Analytical Solution of Non-ideal Gaseous Slip Flow in Circular Sector Micro-channel
Mahdi Motamedian, Ahmad Reza Rahmati *

Department of Mechanical Engineering, University of Kashan, Iran.

PAPER INFO

Paper history:
Received: 2019-11-15
Revised: 2020-06-05
Accepted: 2020-06-16

Keywords:
Slip flow; Microchannel; Circular sector; Integral transform; Conformal mapping.

ABSTRACT

Analytical solutions of gaseous slip flow in a microchannel with different cross-sections play an important role in the understanding of the physical behavior of gases and other phenomena related to it. In this paper, the fully developed non-ideal gaseous slip flow in circular sector micro-channel is investigated using the conformal mapping and the integral transform technique to obtain the analytical exact solution. Van der Waals equation is used as the equation of state for a non-ideal gas. It is developed the models for predicting the local and mean velocity, normalized Poiseuille number, and the ratio of density for conditions where the small radius of the circular sector cross-section is zero \(r_1^* \to 0 \) and is the opposite of zero \(r_1^* \neq 0, r_1^* = 10 \mu m \). Rarefication process and effects of wall slippage are important physical phenomena that are studied. The results show that the rarefication process depends on Knudsen number, and cross-section geometry. In order to validate the analytical solution, the results of the problem are compared to the analytical and numerical solutions. Good agreement between the present study and other solutions has confirmed.

DOI: 10.22075/jhmtr.2020.19129.1259

© 2020 Published by Semnan University Press. All rights reserved.

1. Introduction

In the past years, extensive studies have been conducted on fluid flow in microfluidic devices. The engineering applications of microfluidic devices include micro power plant, micro engines, cooling of a microelectronic circuit, digital micro-compressors, high-frequency fluidic control systems, fuel cell technology, high heat-flux compact heat exchanger and so on.

Important applications of the gas flow in a microchannel are known as gas chromatography, micro chemical gas reactor, microscale heat exchanger and micro gas regulators, ultrasensitive gas flow sensors. Few studies have been carried out in the analytical solution of gaseous slip flow in micro-channel and are mainly limited to ideal gas flow and micro-channel with simple cross-section such as rectangular, squares and circular. Todays, microchannels are fabricated with various cross-sectional geometry. Therefore, it is important to represent an analytical solution of non-ideal gaseous slip flow for microchannels with complex cross-sections to investigate the physical behavior of gases. For the specific problem presented in this paper, there has been no analytical solution based on differential formulation so far. Arkilic et al.[1] analytically and experimentally analyzed gaseous flow in a two-dimensional long microchannel by using Navier-Stokes equations. They demonstrated the effects of compressibility and rarefaction. An analysis of rarefied gas flows in rectangular and annular ducts has been performed using an analytical method by Ebert and Sparrow [2]. The results show that the effects of slip decrease velocity distribution and pressure drop are increased by the effect of compressibility. Zohar et al.[3] studied compressible subsonic ideal gas flow in a two-dimensional microchannel using the Navier-Stokes equations, analytically and experimentally. Their results were excellent agreements with the results of Arklik et al.[1].

Ideal gas flow was analyzed in a two-dimensional rectangular microchannel by Shen et al.[4]. They used degenerated Reynolds equation. The results were a good agreement with the DSMC numerical method.

*Corresponding Author: Ahmad Reza Rahmati, Department of Mechanical Engineering, University of Kashan, Iran.
Email: ar_rahmati@kashanu.ac.ir
The rarefaction effects on the pressure drop for incompressible flow in a silicon rectangular, trapezoidal or double-trapezoidal cross-section are evaluated by Morini et al.[5]. The effects of the Knudsen number and the cross-section aspect ratio in the friction factor reduction is discussed. Dongari et al.[6] studied analytically ideal gas flow in a two-dimensional rectangular microchannel with the integral form of the Navier-Stokes equations. Their results are compared with the first-order boundary conditions and also less dependent on the Reynolds number. Also, their solution was considered as the most general solution for gas flow in long microchannel[7]. They analyzed analytically a gas flow in a two-dimensional microchannel which included the mass flux term with non-slip boundary conditions and compared with the experimental results [8, 9]. Also, the isothermal gas flow was investigated in a two-dimensional microchannel in the continuous flow up to the transitional regime by Navier Stokes equations with the first-order Maxwell slip boundary conditions [10].

Wimmer et al.[11] used Laplace transform method to examine gas flow in two parallel plates. They used the Oseen equation to investigate the flow and compared the results with the numerical method. Duan et al.[12, 13] investigated a slip-flow through the non-circular and elliptic microchannels. The results show that the accuracy of the developed model is 10% and 3% for elliptic and non-circular microchannels respectively. Rashidi et al.[14] analyzed an ideal gas flow in a two-dimensional rectangular microchannel by the VIM method and compared with the accuracy and convergence of the VIM with the numerical solution. Das and Tahmouresi[15] studied an ideal fully developed gaseous flow in an elliptic microchannel by using the integral transform technique. They investigated the effect of duct shape. The results show that normalized Poiseuille, friction factor and Reynolds number are good improvement with the previous results of rectangular and elliptic microchannels.

Kurkin et al.[16] simulated an ideal gas flow in a uniform two-dimensional microchannel. Their results indicate that there is a good agreement between analytical and numerical solution in velocity and pressure profiles. Duan and Yovanovich[17] represented a simple model to predict the friction factor and Reynolds number product in different cross-section microchannels for slip flow. The results show that the accuracy of Poiseuille number is 4.2% for all common duct shapes. Ihle and Kroll[18] analyzed a non-ideal gas flow in a microchannel. They proposed several distribution functions to show the non-ideal gas and potential energy effects in the thermal lattice Boltzmann method with potential energy. Reddy and Reddy[19] drove an analytical solution to investigate the effect of velocity slip and Joule heating on peristaltic flow of MHD Newtonian fluid in a porous channel with elastic wall properties. They discussed the emerging flow parameters on the velocity, temperature and heat transfer coefficient. Gas flow in a circular microchannel with a sudden expansion was analyzed by Huang and Lu[20]. They used the lattice Boltzmann method. The results show good agreement with an analytical solution for smooth and straight circular microchannel. Tahmouresi and Das[21] presented the fully developed gaseous slip-flow in symmetric and non-symmetric parabolic micro-channels by applying the method of separation of variables. Normalized Poiseuille number, mass flow rate, and pressure distribution are compared with previous results. For a small aspect ratio, it is found that results are a good agreement with rectangular micro-channels. Huang et al.[22] examined a gas flow in a long circular microchannel using the lattice Boltzmann method. The results show that with the increase of Pr, the compressibility effects increase. A rarefied gas flow model in a long circular microchannel with different input and output pressure ratios at low Mach numbers was carried out Yang and Garimella[23]. The model shows that there is a good agreement between these two methods in the mass flow rate and pressure drop.

Hong et al.[24] experimentally evaluated nitrogen flow through a rectangular microchannel with silicon wafers and capped with glass surface properties. It was performed to achieve the local values of Mach number, temperature and friction factor. When stagnation pressure due to flow acceleration increases, the pressure and temperature decrease and the Mach number improves. In through the microchannel, with increasing the Reynolds number, the value of sudden rises. Li and Hrnjak[25] investigated the effect of the channel’s diameter and length of the flow through microchannel evaporators, experimentally and numerically. It was found that the larger channel diameter and longer channel reveal less flow reversal with a lower frequency. In another study, they analyzed the effect of refrigerant specific volume differences and heat of vaporization on flow in microchannel evaporators. Their results show that fluids with lower heat of vaporization and higher specific volume difference between vapor and liquid phase produce more reversed vapor flow[26]. Monsivais et al.[27] presented asymptotically and numerically the conjugate heat transfer creep between a rarefied gas flow and the lower wall of a thin horizontal microchannel. The results show that the velocity and temperature profiles for the gas phase and the temperature profiles for the solid wall are predicted as functions of the involved dimensionless parameters and the main results confirm that the phenomenon of conjugate thermal creep exists whenever the temperature of the lower wall varies linearly or nonlinearly. Das et al.[28] numerically investigated the free convective slip flow of a viscous incompressible couple–stress fluid in a vertical stretching sheet with thermal radiation. The results show that fluid velocity improves due to the buoyancy force and reduces due to thermal radiation. Thermal boundary layer thickness is the function of the thermal radiation and the Prandtl number. When the values of Grashof number increases, the momentum boundary layer thickness reduces. Sarojamma et al.[29] analyzed the effects of non-
Newtonian rheology, slip velocity, thermal radiation, heat generation/absorption, and first-order chemical reactions on the unsteady MHD mixed convective heat and mass transfer of an incompressible Casson fluid over a wedge under the influence of a magnetic field. The results show that increasing the values of the Casson Parameter leads to improve the values of velocity, temperature, and reduce the concentration. Also, the slip parameters increase the velocity and decrease the temperature and species concentration. Rahmati and Nejati[30] presented the analytical solution for incompressible thermal flow in a micro-Couette under the transition regime. They used the Burnett equations with first-and second-order slip boundary conditions. The results show that an increasing Knudsen number increases the slip on the wall, Poiseuille, and Nusselt numbers and decreases the curvature of the profile.

In this paper, a fully developed non-ideal gas flow through a circular sector microchannel is analytically analyzed. This study takes on the application of conformal mapping to solve the momentum equation(namely Laplace and Poisson) using integral transform technique. The effects of wall slippage in the range of slip flow regime have been investigated. Firstly, the general problem will be introduced to demonstrate the governing equations, the geometry of fluid flow and boundary condition equations. Secondly, the method will be applied in the circular sector microchannel with Robin boundary condition and the results will be validated by the exact solution and numerical solution. Finally, the results will be discussed.

2. Analytical solution

A fully developed gaseous slip flow is considered in a straight circular sector microchannel with a uniform cross-section(Fig.1a). In this study, the assumptions of the gaseous slip flow include the fully developed, steady-state, laminar, compressible and constant fluid physical properties. Body force is neglected and the momentum equation in z-axis(coincides with the main flow direction) is:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{\mu} \frac{dp}{dz}$$

(1)

Barron et al.[31] and Maxwell[32] have been represented the slip velocity for gas flow in the directions parallel to the wall:

$$u = u_s = -\beta_v \lambda \frac{\partial u}{\partial n}$$

(2)

$$\beta_v$$ is defined:

$$\beta_v = \frac{2 - \sigma_v}{\sigma_v}$$

(3)

In Eqs(2), $u_s, \beta_v, \sigma_v, \lambda$ and n are defined as the slip velocity, the general slip parameter, the tangential momentum accommodation coefficient $(\sigma_v = 0.87 - 1)$ [33]), the molecular mean free path and normal direction to the wall of dimensional circular sector microchannels.

2.1. Non-dimensional parameters

Considering non-dimensionless the following parameters:

$$x = \frac{x^*}{A_c}$$

(4)

$$y = \frac{y^*}{\sqrt{A_c}}$$

(5)

$$r = \frac{r^*}{\sqrt{A_c}}$$

(6)

$$n = \frac{n^*}{\sqrt{A_c}}$$

(7)

$$\theta = \theta^*$$

(8)

In above equation(Eqs.(4)-(8)), A_c is area of the cross-section of circular sector microchannels. Substituting Eqs.(4) and (5) into Eq.(1):

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = P$$

(9)

Where

$$P = \frac{(\sqrt{A_c})^2}{\mu} \frac{dp}{dz}$$

(10)

Also, Substituting Eq.(7) into Eq.(2):
\[u = u_e = -\beta_v K_n \frac{\partial u}{\partial n} \]

(11)

Knudsen number is defined as follows:

\[Kn = \frac{\lambda}{\sqrt{A_c}} \]

(12)

2.2. Mathematical Formulation

Arfken transform is considered to solve the momentum equation (Eq.(9)). Cylindrical coordinates \((\xi, \eta, z)\) are defined in terms of Cartesian coordinates \((x, y, z)\) by:

\[
\begin{align*}
 x &= e^{\xi} \cos \eta \\
 y &= e^{\xi} \sin \eta \\
 z &= z
\end{align*}
\]

(13)

The infinitesimal element area is:

\[
dA = e^{2\xi} \, d\xi \, d\eta
\]

(17)

Substituting above equation in Eqs.(9) and applying boundary conditions for upper half cross-section microchannel, the momentum and boundary condition equations become:

\[
\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} = e^{2\xi} \cdot P
\]

(18)

\[
\frac{1}{h_\eta} \frac{\partial u}{\partial \eta} = 0 \quad \text{at} \quad \eta = 0
\]

(19)

\[
u = -\beta_v K_n \frac{\partial u}{\partial \eta} \quad \text{at} \quad \eta = \theta
\]

(20)

\[
u = -\frac{\beta_v K_n}{h_\xi} \frac{\partial u}{\partial \xi} \quad \text{at} \quad \xi = \ln r_1
\]

(21)

\[
u = -\frac{\beta_v K_n}{h_\xi} \frac{\partial u}{\partial \xi} \quad \text{at} \quad \xi = \ln r_2
\]

(22)

Substituting Eq.(14) in to Eqs.(19)-(22):

\[
\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} = e^{2\xi} \cdot P
\]

(23)

\[
\frac{\partial u}{\partial \eta} = 0 \quad \text{at} \quad \eta = 0
\]

(24)

\[
u = -\frac{\beta_v K_n}{h_\eta} \frac{\partial u}{\partial \eta} \quad \text{at} \quad \eta = \theta
\]

(25)

\[
u = -\frac{\beta_v K_n}{h_\xi} \frac{\partial u}{\partial \xi} \quad \text{at} \quad \xi = \ln r_1
\]

(26)

\[
u = -\frac{\beta_v K_n}{h_\xi} \frac{\partial u}{\partial \xi} \quad \text{at} \quad \xi = \ln r_2
\]

(27)

2.3. Method of Separation of Variables

In this section, the homogeneous equation (Eq.(23)) is solved by applying the method of separation of variables and finally, a specific solution to the equation is obtained. Then,

\[
\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} = 0
\]

(28)

To solve Eq.(28), it is assumed that velocity is a function of the product \(X(\xi)\) and \(Y(\eta)\), then:

\[
u(\xi, \eta) = X(\xi)Y(\eta)
\]

(29)

Substituting Eq.(29) in to Eq.(28):

\[
X'' Y(\eta) + X(\xi)Y''(\eta) = 0
\]

(30)

Defining:

\[
\frac{X''(\xi)}{X(\xi)} = -\frac{Y''(\eta)}{Y(\eta)} = \delta^2
\]

(31)

From Eq.(31), the following equation is obtained:

\[
Y''(\eta) + \delta^2 Y(\eta) = 0
\]

(32)

Solving Second-order homogeneous differential equation(Eq.(32)) is:

\[
Y(\eta) = a_n \cos(\delta_n \eta) + b_n \sin(\delta_n \eta)
\]

(33)

Applying the boundary condition Eqs.(24) and (25):

\[
b_n = 0
\]

(34)

\[
\delta_n \tan(\delta_n \theta) = \frac{e^{\xi}}{\beta_v K_n}
\]

(35)

From solving equation(Eq.(35)), The results show that the variations of the \(\delta_n\) are negligible with the variation of \(\xi\) and for different Knudsen number. then, \(\delta_n\) is independent of \(\xi\) and Knudsen number and its values are constant approximately (Table 1: \(\delta_n = [2.97, 2.99]\), \(\delta_n = \text{cte}\)). If values of \(\delta_n\) would be a function of \(\xi\), \(\eta\), the analytical solution would be difficult to solve.

Thus, Eq.(23) is converted to the following equation:

\[
u(\xi, \eta) = \sum_{n=1}^{\infty} X_n(\xi) \cos(\delta_n \eta)
\]

(36)

Substituting Eq.(36) into Eq.(23), the following equation is obtained:

\[
\sum_{n=1}^{\infty} \left(X''_n(\xi) - \delta_n^2 X_n(\xi) \right) \times \cos(\delta_n \eta) = e^{2\xi} \cdot P
\]

(37)

Using orthogonality principles [17], the following integral equation is represented:

\[
\left(X''_n(\xi) - \delta_n^2 X_n(\xi) \right) \times \int_{0}^{\theta} \cos(\delta_n \eta) \, d\eta
\]

(38)

In general, two non-zero functions \(f(x)\), \(f(x)\) are perpendicular when the following relation exists in the \(a \leq x \leq b\) interval:

\[
\int_{a}^{b} f_i(x) \cdot f_j(x) \, dx = \int_{a}^{b} (f_i(x))^2 \, dx > 0
\]

(39)

Obviously, under the condition, the integral relation becomes:

\[
\int_{a}^{b} f_i(x) \cdot f_j(x) \, dx = \int_{a}^{b} (f_i(x))^2 \, dx = 0
\]

(40)
To solve the integral in Eq.(38), it has to be proven that
\[
\int_0^\theta \cos(\delta_n \eta) \cos(\delta_m \eta) d\eta = \delta_{m}.
\]
\[
\int_0^\theta \cos(\delta_n \eta) \cos(\delta_m \eta) d\eta = \frac{1}{2} \cos^2(\delta_n \eta) d\eta = \frac{1}{2} \theta + \frac{1}{2} \frac{\sin(2 \delta_n \theta)}{2 \delta_n}.
\]
By integrating Eq.(38):
\[
X''_n(\xi) - \delta_n^2 X_n(\xi) = \frac{2\sin(\delta_n \theta)}{(\delta_n^2 - 4)(\delta_n + \sin(\delta_n \theta) \cos(\delta_n \theta))} e^{2\xi p}
\]
(41)
Solving Second-order nonhomogeneous differential equation Eq.(41) becomes:
\[
X_n(\xi) = c_{n1} e^{(\delta_n \xi)} + c_{n2} e^{(-\delta_n \xi)} - I_1 e^{2\xi p}
\]
(42)
where
\[
I_1 = \frac{2\sin(\delta_n \theta)}{(\delta_n^2 - 4)(\delta_n + \sin(\delta_n \theta) \cos(\delta_n \theta))}
\]
(43)
Applying the boundary condition Eqs. (26) and (27):
\[
c_{n1} = I_1 I_2 P
\]
(44)
\[
c_{n2} = I_1 I_3 P
\]
(45)
Coefficients of \(I_2\) and \(I_3\) are:
\[
I_2 = \frac{r_2(\frac{1}{r_1})^{\delta_n}(2\beta Kn + r_2) (1 - \frac{\delta_n \beta Kn}{r_1})}{(\frac{2}{r_1})^{\delta_n}(1 + \frac{\delta_n \beta Kn}{r_2}) (1 - \frac{\delta_n \beta Kn}{r_1})}
\]
(46)
\[-r_2(\frac{1}{r_1})^{\delta_n}(2\beta Kn + r_2) (1 - \frac{\delta_n \beta Kn}{r_1})
\]
(47)
\[-r_2(\frac{1}{r_1})^{\delta_n}(2\beta Kn + r_2) (1 + \frac{\delta_n \beta Kn}{r_1})
\]
(48)
Substituting Eq.(42) in Eq.(36), velocity equation is obtained:
\[
\frac{u(\xi, \eta)}{P} = \sum_{n=1}^{\infty} I_1 (I_2 e^{(\delta_n \xi)} + I_3 e^{(-\delta_n \xi)} - e^{2\xi} \cos(\delta_n \eta))
\]
(49)
Table 1. values of \(\delta_n\) for various of \(\zeta\) and \(Kn\)

<table>
<thead>
<tr>
<th>(Kn)</th>
<th>(r_1^*\rightarrow\theta)</th>
<th>(r_1^*\rightarrow10\mu m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>-2.997071247</td>
<td>-2.99532911</td>
</tr>
<tr>
<td>0.005</td>
<td>-2.98543476</td>
<td>-2.986791194</td>
</tr>
<tr>
<td>0.01</td>
<td>-2.97096768</td>
<td>-2.983945293</td>
</tr>
<tr>
<td>0.05</td>
<td>-2.970484694</td>
<td>-2.973869919</td>
</tr>
<tr>
<td>0.1</td>
<td>-2.970306174</td>
<td>-2.970042528</td>
</tr>
</tbody>
</table>

The mean velocity is defined in the following expression:
\[
u_m = \frac{1}{A \xi \eta} \int u dA \xi \eta = \frac{\int_0^\theta \int_{r_{inr}}^{r_{h}} u e^{2\xi} d\xi d\eta}{\int_0^\theta \int_{r_{inr}}^{r_{h}} e^{2\xi} d\xi d\eta}
\]
(49)
Substituting velocity equation in Eq.(49) and integration across the section of the microchannel mean velocity expression leads to:
\[
u_m = \sum_{n=1}^{\infty} \frac{2I_1 P}{\delta_n \theta} \sin(\delta_n \theta) \left(\frac{I_2}{(\delta_n + 2)(r_2 \delta_n)} - r_1 \delta_n + \frac{I_3}{(\delta_n + 2) (\frac{1}{r_2} \delta_n)} - \frac{1}{4} (r_2^2 + r_1^2) \right)
\]
(50)

3. Slip-Flow Models

Poiseuille number is described as the dimensionless mean wall shear stress and depends on hydraulic diameter\([12, 13]\):
\[
PO_{LC} = \frac{\delta \frac{dp}{dx}}{\mu u_m} = \frac{f Re u_c}{2}
\]
(51)
If Hydraulic diameters are defined:
\[
L_c = D_n = \frac{4A}{\text{perimeter}}
\]
(52)
where \(A\) and Perimeter:
\[
A = \theta (r_2^2 - r_1^2)
\]
(53)
\[
\text{perimeter} = r_2^2 (\theta^2 + 2) + r_1^2 (\theta^2 - 2)
\]
(54)
Substituting Eq.(52) and mean velocity Eq.(50) in Eq.(51), the following relationship is obtained:
\[
PO = \frac{2\theta (r_2^2 - r_1^2) / (r_2 (\theta^2 + 2))}{\sum_{n=1}^{\infty} \frac{2I_1}{\delta_n \theta} \sin(\delta_n \theta) \left(\frac{I_2}{(\delta_n + 2)(r_2 \delta_n - r_1 \delta_n)} + \frac{I_3}{(\delta_n + 2) (\frac{1}{r_2} \delta_n - \frac{1}{r_1} \delta_n - \frac{1}{4} (r_2^2 + r_1^2))} \right)}
\]
(55)
Duan and Muzyczka\([12, 13]\), Duan and Yovanovich\([17]\), Das and Tahmouresi\([21]\) have indicated that the square root of flow area\([\sqrt{A}]\) is also more appropriate for non-dimensionalizing gaseous slip flows and non-Newtonian flows, respectively, then:
If Hydraulic diameters are defined:
\[L_c = D_n = \sqrt{A} \]
\[P_D = \frac{\sum_{n=1}^{\infty} \frac{2l_i}{\delta_n \theta} \sin(\delta_n \theta) \left(\frac{l_2}{\delta_n + 2} \right) (r_2 \delta_n - r_1 \delta_n)}{\sqrt{2}(r_2(\theta + 2) + r_1(\theta - 2))} \]
\[\cdots + \frac{l_i}{(\delta_n + 2)} \left(\frac{1}{r_2} \delta_n - \frac{1}{r_1} \delta_n \right) \times \frac{1}{4} (r_2^2 + r_1^2) \]

\[\frac{2l_i}{\delta_n \theta} \sin(\delta_n \theta) \left(\frac{l_2}{\delta_n + 2} \right) (r_2 \delta_n - r_1 \delta_n) \]

To validate the analytical solution, Poiseuille number in Eq.(57) is solved under the conditions: ideal gas \((b = 0)\), \(r_1 \rightarrow 0\) and \(\theta = 2\pi\) (Circular microchannel). Eq.(57) (present model) has been validated with analytical solution ideal gaseous slip flow in circular microchannel: Po, Kandlikar[34] and Po, Duan[13]. Table 2 compares values of Po between the present study (Eq.(57)) with those of Kandlikar[34] and Duan[13]. The results show that the error percentage is less than 3%. There is a good agreement between the results of the present study Eq.(57) and those of Kandlikar [34] and Duan [13].

4. Density equation

Van der Waals Equation is one of the important state equations for non-ideal gas Eq.(58):

\[p = \rho RT \left(1 + B \rho + C \rho^3 + D \rho^5 \right) \]
\[B = \left(b - \frac{a}{RT} \right) \]
\[C = b^3 \]
\[D = b^3 \]
\[a = \frac{27 R^3 T_C^2}{64 \frac{P_c}{R^3}} \]
\[b = \frac{RT_C}{8 P_c} \]

In Eqs.(62) and (63), \(R, T_C, P_c \) are defined as the specific gas constant, critical temperature, and critical pressure, respectively. The general form of the mass flow rate equation is as follows:

\[u_m = \frac{\dot{m}}{\rho A} \]

Derivation of the sides of equation (58) to \(z \):

\[\frac{dp}{dz} = RT \left(1 + 2B \rho + 3C \rho^3 + 4D \rho^5 \right) \frac{d\rho}{dz} \]

Substituting Eq (65) in to Eq.(50), mean velocity equation is:

\[u_m = \sum_{n=1}^{\infty} \frac{2l_i}{\delta_n \theta} \sin(\delta_n \theta) \left(\frac{l_2}{\delta_n + 2} \right) (r_2 \delta_n - r_1 \delta_n) \]

\[+ \frac{l_3}{(-\delta_n + 2)} \left(\frac{1}{r_2} \delta_n - \frac{1}{r_1} \delta_n \right) \times \frac{1}{4} (r_2^2 + r_1^2) \]

\[\frac{RTA}{\mu} \left(1 + 2B \rho + 3C \rho^3 + 4D \rho^5 \right) \frac{d\rho}{dz} \]

Replacing Eq.(66) in Eq.(64) and integral in terms \(z \):

\[u_m = \sum_{n=1}^{\infty} \frac{2l_i}{\delta_n \theta} \sin(\delta_n \theta) \left(\frac{l_2}{\delta_n + 2} \right) (r_2 \delta_n - r_1 \delta_n) \]

\[+ \frac{l_3}{(-\delta_n + 2)} \left(\frac{1}{r_2} \delta_n - \frac{1}{r_1} \delta_n \right) \times \frac{1}{4} (r_2^2 + r_1^2) \]

\[\frac{RTA}{\mu} \left(1 + 2B \rho + 3C \rho^3 + 4D \rho^5 \right) \frac{d\rho}{dz} \]

5. Results and Discussion

The assumptions of the flow geometry and the physical properties of carbon dioxide gas are \(R=188.92(J/Kg.K) \), \(\mu=1.74\times10^{-7}(N.s/m^2) \), \(\rho=1.517(Kg/m^3) \), \(\nu=0.002139(m^3/Kg) \), \(T=350 K \), \(r_i=5\times10^{-10} \text{(Kg/s)} \), \(\alpha=1 \). Tables 3 and 4 show the values in terms of the microchannel length in different Knudsen numbers (Kn=10-3, Kn=10-2, Kn=10-1) for r1≠0 and r1≠0 (r1*=0μm), respectively. Dimensions of micro-channel geometry include 0=π/6, r2*=15μm, r1*=0 and r1*=0 (r1*=10μm), respectively. According to the tables 3 and 4 with the increase in the length of the microchannel at various Knudsen numbers and as well as the increase of Knudsen number in a specified length, the values of the ratio of density to inlet density decrease and increase,
respectively. A comparison between the ratio of density to inlet density for r1≠0 and r1=0 shows that the values in condition of r1≠0 (r1=10µm) are more than r1=0 for all various length and Knudsen numbers. In other words, the rarefication process of the gas flow in r1=0 condition is faster than r1≠0 (r1=10µm).

According to the results, the rarefication process is a function of the Knudsen number and the cross-section geometry. That way, in a specific length, the rarefication process decreases with increasing Knudsen number and narrowing cross-section geometry (r1≠0). In gas sensors, the use of circular sector microchannel (r1≠0) is appropriate because the rarefication process occurs later. In sensors where the rate of rarefication process is important, the use of circular sector microchannel (r1=0) is appropriate.

According to results, the rarefication process is a function of the Knudsen number and the cross-section geometry. That way, in a specific length, the rarefication process decreases with increasing Knudsen number and narrowing cross-section geometry (r1≠0). In gas sensors, the use of circular sector microchannel (r1≠0) is appropriate because the rarefication process occurs later. In sensors where the rate of rarefication process is important, the use of circular sector microchannel (r1=0) is appropriate.

Tables 5 and 6 represent the Π values in terms of the microchannel length for various angles in Kn=0.05, r1≠0 and r1=0, respectively. The results show that with the increase of the length of the microchannel at various angles, the values of the ratio of density to inlet density decline. In specified length, the reduction of angles leads to decrease values of Π when r1≠0 and increases when r1=0. According to results, in specified length and Knudsen number, when angles decrease, the rate of rarefication process is a function of the cross-section geometry and changing the small radius of the circular sector (r1). In gas sensor, the use of the circular sector microchannel with θ=π/6 and r1≠0 is appropriate because the rarefication process occurs later.

Table 7 indicates comparison values of Π between the ideal and non-ideal gaseous slip flow in L=5µm. According to results, for an ideal gas, Π values of circular sector microchannel in the condition of r1≠0 (r1=10µm) are more than r1=0. Also, Π values of an ideal gas are more than non-ideal gas in different Knudsen numbers. Therefore, the rarefication process of the non-ideal gas is faster than the ideal gas. Then, in gas sensor, it is appropriate to use gases that are closer to behavior of non-ideal gas.

Figs. 2 and 3 show the fully developed velocity profiles in different Knudsen numbers when θ=π/6, r1=0 and r1≠0 (r1=10µm), respectively. According to Figs. 2 and 3 with the increase of the Knudsen number, velocity values increase. In the specified Knudsen number, velocity values increase firstly and then decrease. Also, with increasing Knudsen number, slippage velocity values are more than others. This indicates that an increase of Knudsen number results in the increase of the pressure drop caused by the slip, so that the fluid flow in these microchannels should be within the lower Knudsen number range.

Figs. 4 and 5 show the fully developed velocity profiles in under various angles at Kn=0.05, r1≠0 and r1=0 (r1=10µm), respectively. According to Fig. 4, with the increase of the radius, velocity values increased and then decrease. The maximum velocity is θ=π/9. With decreasing θ, the slippage velocity values increase for r1≠0. This indicates that the reduction of angle of circular sector micro-channel results in an increase of the micro-channel pressure drop. It is appropriate to choose the circular sector microchannel with the maximum angle. In Fig. 5, velocity values have a state of fluctuation when radius increases.

Conclusion

In this paper, the momentum equation is solved for the circular sector microchannel under the fully developed non-ideal gaseous slip flow using the conformal mapping and integral transform technique. It is presented the models for predicting the local and mean velocity, normalized Poiseuille number, and the ratio of density. It was shown that present values of normalized Poiseuille number model are in good agreement for previous results for circular microchannels. Also, the rarefication process is a function of the Knudsen number and the cross-section geometry and is a weak function of the type of gases. Poiseuille number is independent of fluid material properties, velocity, temperature and is a function of the cross-section shape. Poiseuille number in terms of dimensionless radius for various Knudsen number, r1=0, and r1≠0 (r1=10µm) are shown in Figs. 6 and 7, respectively. Fig. 6 shows that logarithmic function of Poiseuille number decreases with the increase of the radius and also, with the increasing Knudsen number, values of poiseuille decrease. The process of changes is different in Fig. 7. With the increase of the radius Poiseuille numbers increase. According to the fluid flow in the microchannel is assumed laminar, when the friction factor is constant, the using of circular sector microchannel with r1≠0 (r1=10µm) is appropriate.

<table>
<thead>
<tr>
<th>Kn</th>
<th>Po, Dm = √A</th>
<th>Po, Kandlikar[34]</th>
<th>Po, Duan[13], r1 = 0</th>
<th>ERROR%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>15.9647412385</td>
<td>15.8730158730</td>
<td>15.87826257</td>
<td>0.57</td>
</tr>
<tr>
<td>0.003</td>
<td>15.732319765</td>
<td>15.625</td>
<td>15.62671297</td>
<td>0.72</td>
</tr>
<tr>
<td>0.005</td>
<td>15.5204692019</td>
<td>15.3846153846</td>
<td>15.38562</td>
<td>0.87</td>
</tr>
<tr>
<td>0.01</td>
<td>15.0011411590</td>
<td>14.8148148148</td>
<td>14.8152894</td>
<td>1.24</td>
</tr>
<tr>
<td>0.03</td>
<td>13.0898001887</td>
<td>12.9032258064</td>
<td>12.90335362</td>
<td>1.42</td>
</tr>
<tr>
<td>0.05</td>
<td>11.1613287181</td>
<td>11.4285714285</td>
<td>11.42863455</td>
<td>2.39</td>
</tr>
<tr>
<td>0.07</td>
<td>9.9599949826</td>
<td>10.2564102564</td>
<td>10.25644787</td>
<td>2.97</td>
</tr>
<tr>
<td>0.1</td>
<td>8.78265117204</td>
<td>8.8888888888</td>
<td>8.88890298</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Table 3. Values of \(\Pi \) in terms of circular sector microchannel length at \((r_1^* \to 0) \)

<table>
<thead>
<tr>
<th>X(mm)</th>
<th>(Kn=10^{-3})</th>
<th>(Kn=5\times10^{-3})</th>
<th>(Kn=10^{-2})</th>
<th>(Kn=5\times10^{-2})</th>
<th>(Kn=10^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
</tr>
<tr>
<td>10</td>
<td>0.9731212253</td>
<td>0.9735690615</td>
<td>0.9740817711</td>
<td>0.977335766</td>
<td>0.9810293464</td>
</tr>
<tr>
<td>20</td>
<td>0.9454807317</td>
<td>0.9464233535</td>
<td>0.947511557</td>
<td>0.9549500393</td>
<td>0.961684636</td>
</tr>
<tr>
<td>30</td>
<td>0.9170079967</td>
<td>0.9184328867</td>
<td>0.9201461441</td>
<td>0.9316098227</td>
<td>0.9414966591</td>
</tr>
<tr>
<td>40</td>
<td>0.8876229523</td>
<td>0.895850205</td>
<td>0.8919424741</td>
<td>0.907669928</td>
<td>0.9217844897</td>
</tr>
<tr>
<td>50</td>
<td>0.8572318039</td>
<td>0.8597703385</td>
<td>0.8628179245</td>
<td>0.8830817956</td>
<td>0.9011716126</td>
</tr>
<tr>
<td>100</td>
<td>0.6853629817</td>
<td>0.6916927066</td>
<td>0.6992404091</td>
<td>0.7481228016</td>
<td>0.7900862300</td>
</tr>
</tbody>
</table>

Table 4. Values of \(\Pi \) in terms of circular sector microchannel length at \(r_1^* \neq 0 (r_1^*=10\mu m) \)

<table>
<thead>
<tr>
<th>X(mm)</th>
<th>(Kn=10^{-3})</th>
<th>(Kn=5\times10^{-3})</th>
<th>(Kn=10^{-2})</th>
<th>(Kn=5\times10^{-2})</th>
<th>(Kn=10^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
</tr>
<tr>
<td>10</td>
<td>0.9993270555</td>
<td>0.9993490190</td>
<td>0.9993753977</td>
<td>0.9995502769</td>
<td>0.9997028768</td>
</tr>
<tr>
<td>20</td>
<td>0.9986551832</td>
<td>0.9986991392</td>
<td>0.9987519299</td>
<td>0.9991018754</td>
<td>0.9994071891</td>
</tr>
<tr>
<td>30</td>
<td>0.9979828584</td>
<td>0.9980485842</td>
<td>0.9981280099</td>
<td>0.9986503927</td>
<td>0.9991114153</td>
</tr>
<tr>
<td>40</td>
<td>0.9973100812</td>
<td>0.9973981092</td>
<td>0.9975038259</td>
<td>0.9982044693</td>
<td>0.9988155508</td>
</tr>
<tr>
<td>50</td>
<td>0.9966368496</td>
<td>0.9967495834</td>
<td>0.9968791887</td>
<td>0.9977545633</td>
<td>0.998519605</td>
</tr>
<tr>
<td>100</td>
<td>0.9932638527</td>
<td>0.9934848042</td>
<td>0.9937501151</td>
<td>0.9950739394</td>
<td>0.9970385317</td>
</tr>
</tbody>
</table>

Table 5. Values of \(\Pi \) in terms of circular sector microchannel length for various angles at \(Kn=0.05, r_1^* \to 0 \)

<table>
<thead>
<tr>
<th>X(mm)</th>
<th>(\theta = \pi/6)</th>
<th>(\theta = \pi/7)</th>
<th>(\theta = \pi/8)</th>
<th>(\theta = \pi/9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
</tr>
<tr>
<td>10</td>
<td>0.977335766</td>
<td>0.968511429</td>
<td>0.9571799417</td>
<td>0.9433458440</td>
</tr>
<tr>
<td>20</td>
<td>0.9549500393</td>
<td>0.9360485842</td>
<td>0.9123553530</td>
<td>0.8830684387</td>
</tr>
<tr>
<td>30</td>
<td>0.9316098227</td>
<td>0.9023768090</td>
<td>0.8652130480</td>
<td>0.8183660169</td>
</tr>
<tr>
<td>40</td>
<td>0.907699928</td>
<td>0.8673996925</td>
<td>0.8153511899</td>
<td>0.7480913771</td>
</tr>
<tr>
<td>50</td>
<td>0.8830817956</td>
<td>0.8309524481</td>
<td>0.7622363710</td>
<td>0.6704951270</td>
</tr>
<tr>
<td>100</td>
<td>0.7481228016</td>
<td>0.6172557240</td>
<td>0.7051340166</td>
<td>0.4789866382</td>
</tr>
</tbody>
</table>

Table 6. Values of \(\Pi \) in terms of circular sector microchannel length for various angles at \(Kn=0.05, r_1^* \neq 0 (r_1^*=10\mu m) \)

<table>
<thead>
<tr>
<th>X(mm)</th>
<th>(\theta = \pi/6)</th>
<th>(\theta = \pi/7)</th>
<th>(\theta = \pi/8)</th>
<th>(\theta = \pi/9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
<td>0.9999984771</td>
</tr>
<tr>
<td>10</td>
<td>0.9995502769</td>
<td>0.9995502769</td>
<td>0.9995502769</td>
<td>0.9995502769</td>
</tr>
<tr>
<td>20</td>
<td>0.9991018754</td>
<td>0.9991018754</td>
<td>0.9991018754</td>
<td>0.9991018754</td>
</tr>
<tr>
<td>30</td>
<td>0.9986532731</td>
<td>0.9986532731</td>
<td>0.9986532731</td>
<td>0.9986532731</td>
</tr>
<tr>
<td>40</td>
<td>0.9982044693</td>
<td>0.9982044693</td>
<td>0.9982044693</td>
<td>0.9982044693</td>
</tr>
<tr>
<td>50</td>
<td>0.9977545633</td>
<td>0.9977545633</td>
<td>0.9977545633</td>
<td>0.9977545633</td>
</tr>
<tr>
<td>100</td>
<td>0.9950739394</td>
<td>0.9950739394</td>
<td>0.9950739394</td>
<td>0.9950739394</td>
</tr>
</tbody>
</table>

Table 7. Comparison of \(\Pi \) values between ideal and non-ideal gaseous flow for first boundary conditions in \(L=5\mu m \)

<table>
<thead>
<tr>
<th>Microchannel</th>
<th>(Kn=10^{-3})</th>
<th>(Kn=10^{-2})</th>
<th>(Kn=10^{-1})</th>
<th>(Kn=10^{-3})</th>
<th>(Kn=10^{-2})</th>
<th>(Kn=10^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1^* \to 0)</td>
<td>0.85732662</td>
<td>0.86290902</td>
<td>0.90123742</td>
<td>0.85732662</td>
<td>0.86290902</td>
<td>0.90123742</td>
</tr>
<tr>
<td>(r_1^* \neq 0 (r_1^*=10\mu m))</td>
<td>0.9964055</td>
<td>0.99688273</td>
<td>0.99852088</td>
<td>0.9964055</td>
<td>0.99688273</td>
<td>0.99852088</td>
</tr>
</tbody>
</table>
Figure 2. The velocity profile of circular sector microchannel under different Knudsen numbers in θ=π/6, r_1*→0

Figure 3. The velocity profile of circular sector microchannel under different Knudsen numbers in θ=π/6, r_1*≠0 (r_1*=10µm)

Figure 4. The velocity profile of circular sector microchannel under different angles in Kn=0.05, r_1*→0

Figure 5. The velocity profile of circular sector microchannel under different angles in Kn=0.05, r_1*≠0 (r_1*=10µm)

Figure 6. Poiseuille number in terms of dimensionless radius for 10^{-3} ≤ Kn ≤ 10^{-1}, r_1*→0

Figure 7. Poiseuille number in terms of dimensionless radius for 10^{-3} ≤ Kn ≤ 10^{-1}, r_1*≠0 (r_1*=10µm)
Nomenclature

Symbols

- **u**: Gaseous velocity component (m/s)
- **r^*, θ^***: Polar coordinates (m)
- **r, θ**: Dimensionless polar coordinates
- **z**: Coordinate in flow direction (m)
- **x^*, y^***: Cartesian coordinates (m)
- **x, y**: Dimensionless cartesian coordinates
- **p**: Pressure (N/m2)
- **D_h**: Hydraulic diameter (m)
- **r_1**: Radius of circular sector microchannel (m)
- **r_2**: Radius of circular sector microchannel (m)
- **Kn**: Knudsen number (l/D_h)
- **A_c**: Cross-sectional area (m2)
- **h**: Coefficient
- **J**: Jacobian transform
- **R**: Specific gas constant (J/Kg.K)
- **T**: Temperature (K)
- **\bar{u}_m**: Mean velocity
- **\dot{m}**: Mass flow rate (Kg/s)
- **Po**: Poiseuille number
- **ν_c**: Critical Specific Volume

Subscripts

- **r**: r direction
- **θ**: θ direction
- **z**: Z direction
- **i**: Inlet

Greek symbols

- **ρ**: Gas density (Kg/m3)
- **μ**: Dynamic viscosity (N.s/m2)
- **σ**: Tangential momentum accommodation coefficient
- **λ**: Molecular mean free path (m)
- **ξ, η**: Dimensionless cartesian coordinates
- **δ**: Eigenvalue

References

11. VIMMR, J., KLÁŠTERKA, H. & HAJŽMAN, M. 2012. Analytical solution of gaseous slip flow between two parallel plates described by the...

