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Analytical solutions of gaseous slip flow in a microchannel with different cross-sections play 
an important role in the understanding of the physical behavior of gases and other 
phenomena related to it. In this paper, the fully developed non-ideal gaseous slip flow in 
circular sector microchannel is investigated using the conformal mapping and the integral 
transform technique to obtain the analytical exact solution. Van der Waals equation is used 
as the equation of state for a non-ideal gas.It is developed the models for predicting the local 
and mean velocity, normalized Poiseuille number,and the ratio of density for conditions 
where the small radius of the circular sector cross-section is zero (r1*→0) and is the opposite 
of zero (r1*≠0, r1*=10µm).Rarefication process and effects of wall slippage are important 
physical phenomena that are studied. The results show that the rarefication process depends 
on Knudsen number, and cross-section geometry. In order to validate the analytical solution, 
the results of the problem are compared to the analytical and numerical solutions. Good 
agreement between the present study and other solutions has confirmed.  
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1. Introduction    

In the past years, extensive studies have been conducted 
on fluid flow in  microfluidic devices. The engineering 
applications of microfluidic devices include micro power 
plant, micro engines,  cooling of a microelectronic circuit, 
digital micro-compressors, high-frequency fluidic control 
systems, fuel cell technology, high heat-flux compact heat 
exchanger and so on. 

Important applications of the gas flow in a 
microchannel are known as gas chromatography, micro 
chemical gas reactor, microscale heat exchanger and micro 
gas regulators, ultrasensitive gas flow sensors. Few studies 
have been carried out in the analytical solution of gaseous 
slip flow in micro-channel and are mainly limited to ideal 
gas flow and micro-channel with simple cross-section 
such as rectangular, squares and circular. Todays, 
microchannels are fabricated with various cross-sectional 
geometry. Therefore, it is important to represent an 
analytical solution of non-ideal gaseous slip flow for 
microchannels with complex cross-sections to investigate 
the physical behavior of gases. For the specific problem 
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presented in this paper, there has been no analytical 
solution based on differential formulation so far. Arkilic et 
al.[1] analytically and experimentally analyzed gaseous 
flow in a two-dimensional long microchannel by using 
Navier-Stokes equations. They demonstrated the effects of 
compressibility and rarefication.An analysis of rarefied 
gas flows in rectangular and annular ducts has been 
performed using  an analytical method by Ebert and 
Sparrow [2]. The results show that the effects of slip 
decrease velocity distribution and pressure drop are 
increased by the effect of compressibility. Zohar et al.[3] 
studied compressible subsonic ideal gas flow in a two-
dimensional microchannel using the Navier- Stokes 
equations, analytically and experimentally. Their results 
were excellent agreements with the results of Arklik et 
al.[1]. 

 Ideal gas flow was analyzed in a two-dimensional 
rectangular microchannel by Shen et al.[4].  

They used degenerated Reynolds equation. The results 
were a good agreement with the DSMC numerical method. 
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The rarefaction effects on the pressure drop for 
incompressible flow in a silicon rectangular, trapezoidal or 
double-trapezoidal cross-section are evaluated by Morini 
et al.[5].The effects of the Knudsen number and the cross-
section aspect ratio in the friction factor reduction is 
discussed. Dongari et al.[6]  studied analytically ideal gas 
flow in a two-dimensional rectangular microchannel with 
the integral form of the Navier-Stokes equations. Their 
results are compared with the first-order boundary 
conditions and also less dependent on the Reynolds 
number. Also, their solution was considered as the most 
general solution for gas flow in long microchannel[7]. 
They analyzed analytically a gas flow in a two-
dimensional microchannel which included the mass flux 
term with non-slip boundary conditions and compared 
with the experimental results [8, 9]. Also, the isothermal 
gas flow was investigated in a two-dimensional 
microchannel in the continuous flow up to the transitional 
regime by Navier Stokes equations with the first-order 
Maxwell slip boundary conditions [10]. 

Wimmer et al.[11] used Laplace transform method to 
examine gas flow in two parallel plates. They used the 
Oseen equation to investigate the flow and compared the 
results with the numerical method. Duan et al.[12, 13] 
investigated a slip-flow through the non-circular and 
elliptic microchannels. The results show that the accuracy 
of the developed model is 10% and 3% for elliptic and 
non-circular microchannels respectively. Rashidi et al.[14] 
analyzed an ideal gas flow in a two-dimensional 
rectangular microchannel by the VIM method and 
compared the accuracy and convergence of the VIM 
method with the numerical solution. Das and 
Tahmouresi[15] studied an ideal fully developed gaseous 
flow in an elliptic microchannel by using the integral 
transform technique. They investigated the effect of duct 
shape. The results show that normalized Poiseuille, 
friction factor and Reynolds number are good 
improvement with the previous results of rectangular and 
elliptic microchannels.   

kurkin et al.[16] simulated an ideal gas flow in a 
uniform two-dimensional microchannel, Their results 
indicate that there is a good agreement between analytical 
and numerical solution in velocity and pressure profiles. 
Duan and Yovanovich[17] represented a simple model to 
predict the friction factor and Reynolds number product   
in different cross-section microchannels for slip flow. The 
results show that the accuracy of Poiseuille number is 
4.2% for all common duct shapes. Ihle and Kroll[18] 
analyzed a non-ideal gas flow in a microchannel. They 
proposed several distribution functions to show the non-
ideal gas and potential energy effects in the thermal lattice 
Boltzmann method with potential energy. Reddy and 
Reddy[19] drove an analytical solution to investigate the 
effect of velocity slip and Joule heating on peristaltic flow 
of MHD Newtonian fluid in a porous channel with elastic 
wall properties. They discussed the emerging flow 
parameters on the velocity, temperature and heat transfer 
coefficient. Gas flow in a circular microchannel with a 

sudden expansion was analyzed by Huang and Lu[20]. 
They used the lattice Boltzmann method. The results show 
good agreement with an analytical solution for smooth and 
straight circular microchannel. Tahmouresi and Das[21] 
presented the fully developed gaseous slip-flow in 
symmetric and non-symmetric parabolic micro-channels 
by applying the method of separation of variables. 
Normalized Poiseuille number, mass flow rate, and 
pressure distribution are compared with previous results. 
For a small aspect ratio, it is found that results are a good 
agreement with rectangular micro-channels. Huang et 
al.[22]  examined a gas flow in a long circular 
microchannel using the lattice Boltzmann method. The 
results show that with the increase of Pr, the 
compressibility effects increase. A rarefied gas flow model 
in a long circular microchannel with different input and 
output pressure ratios at low Mach numbers was carried 
out Yang and Garimella[23].The model shows that there is 
a good agreement between these two methods in the mass 
flow rate and pressure drop.  

Hong et al.[24] experimentally evaluated nitrogen flow 
through a rectangular microchannel with silicon wafers 
and capped with glass surface properties. It was performed 
to achieve the local values of Mach number, temperature 
and friction factor. When stagnation pressure due to flow 
acceleration increases, the pressure and temperature 
decrease and the Mach number improves. In through the 
microchannel, with increasing the Reynolds number, the 
value of  sudden rises. Li and Hrnjak[25] investigated the 
effect of the channel’s diameter and length of the flow 
through microchannel evaporators, experimentally and 
numerically. It was found that the larger channel diameter 
and longer channel reveal less flow reversal with a lower 
frequency. In another study, they analyzed the effect of 
refrigerant specific volume differences and heat of 
vaporization on flow in microchannel evaporators. Their 
results show that fluids with lower heat of vaporization and 
higher specific volume difference between vapor and 
liquid phase produce more reversed vapor flow[26]. 
Monsivais et al.[27] presented asymptotically and 
numerically the conjugate heat transfer creep between a 
rarified gas flow and the lower wall of a thin horizontal 
microchannel. The results show that the velocity and 
temperature profiles for the gas phase and the temperature 
profiles for the solid wall are predicted as functions of the 
involved dimensionless parameters and the main results 
confirm that the phenomenon of conjugate thermal creep 
exists whenever the temperature of the lower wall varies 
linearly or nonlinearly. Das et al.[28] numerically 
investigated the free convective slip flow of a viscous 
incompressible couple–stress fluid in a vertical stretching 
sheet with thermal radiation. The results show that fluid 
velocity improves due to the buoyancy force and reduces 
due to thermal radiation. Thermal boundary layer 
thickness is the function of the thermal radiation and the 
Prandtl number. When the values of Grashof number 
increases, the momentum boundary layer thickness 
reduces. Sarojamma et al.[29] analyzed the effects of non-
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Newtonian rheology, slip velocity, thermal radiation, heat 
generation/absorption, and first-order chemical reactions 
on the unsteady MHD mixed convective heat and mass 
transfer of an incompressible Casson fluid over a wedge 
under the influence of a magnetic field. The results show 
that increasing the values of the Casson Parameter leads to 
improve the values of velocity, temperature, and reduce 
the concentration. Also, the slip parameters increase the 
velocity and decrease the temperature and species 
concentration. Rahmati and Nejati[30] presented the 
analytical solution for incompressible thermal flow in a 
micro-Couette under the transition regime. They used the 
Burnett equations with first-and second-order slip 
boundary conditions. The results show that an increasing 
Knudsen number increases the slip on the wall, Poiseuille, 
and Nusselt numbers and decreases the curvature of the 
profile.   

In this paper, a fully developed non-ideal gas flow 
through a circular sector microchannel is analytically 
analyzed. This study takes on the application of conformal 
mapping to solve the momentum equation(namely Laplace 
and Poisson) using integral transform technique. The 
effects of wall slippage in the range of slip flow regime  
have been investigated. Firstly, the general problem will 
be introduced to demonstrate the governing equations, the 
geometry of fluid flow and boundary condition equations. 
Secondly, the method will be applied in the circular sector 
microchannel with Robin boundary condition and the 
results will be validated by the exact solution and 
numerical solution. Finally, the results will be discussed. 

 
2. Analytical solution 

A fully developed gaseous slip flow is considered in a 
straight circular sector microchannel with a uniform cross-
section(Fig.1a). In this study, the assumptions of the 
gaseous slip flow include the fully developed, steady-state, 
laminar, compressible and constant fluid physical 
properties. Body force is neglected and the momentum 
equation in z-axis(coincides with the main flow direction) 
is: ∂��∂�∗� + ∂��∂�∗� = 1� ��� (1) 

Barron et al.[31] and Maxwell[32] have been 
represented the slip velocity for gas flow in the directions 
parallel to the wall:  � = �� = −��� ∂�∂�∗ (2) 

��is defined: 

�� = 2 − ����  (3) 

In Eqs(2), ��, ��, ��, �and �∗ are defined as the slip 
velocity, the general slip parameter, the tangential 
momentum accommodation coefficient (�� = (0.87 −1) [33]), the molecular mean free path and normal 
direction to the wall of dimensional circular sector 
microchannels.   

 

                                                           (a) 

 
                                                          (b) 

Figure 1. (a) Gas flow in circular sector microchannel, (b) 

Dimentionless transferred microchannel 

2.1.	Non-dimensional	parameters	

Considering non-dimensionless the following 
parameters: 	 � = �∗

� !  (4) 

� = �∗
� ! (5) 

" = "∗
� ! (6) 

� = �∗
� ! (7) 

# = #∗ (8) 

In above equation(Eqs.(4)-(8)),  ! is area of the cross-
section of circular sector microchannels. Substituting 
Eqs.(4) and (5) into Eq.(1):  $��$�� + $��$�� = % (9) 

Where 

% = (� !)�� ��� (10) 

Also, Substituting Eq.(7) into Eq.(2): 
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� = �� = −��&� $�$� (11) 

Knudsen number is defined as follows: &� = �� ! (12) 

2.2.	Mathematical	Formulation	

Arfken transform is considered to solve the momentum 
equation(Eq.(9)). Cylindrical coordinates  (',(, z) are 
defined in terms of Cartesian coordinates system (x,y,z) 
by: 

)� = *+,-�(� = *+�.�(� = � / (13) 

The coefficients ℎ', ℎ(, ℎ� and Jacobian transform is 
defined as: ℎ+ = ℎ1 = *+ (14) ℎ2 = 1 (15) 

3 = �*4 5$(�, �)$(', ()5 = *�+ (16) 

The infinitesimal element area is: � = *�+�'�( (17) 

Substituting above equation in Eqs.(9) and applying 
boundary conditions for upper half cross- section 
microchannel, the momentum and boundary condition 
equations become: $��$'� + $��$(� = *�+ . % (18) 

789
:;:1 = 0           at  ( = 0 (19) 

� = ?@ABC89
:;:1    at  ( = # (20) 

� = ?@ABC8D
:;:+     at  ' = E�"7 (21) 

� = ?@ABC8D
:;:+     at  ' = E�"� (22) 

Substituting Eq.(14) in to Eqs.(19)-(22): $��$'� + $��$(� = *�+% (23) 

:;:1 = 0                                      at  ( = 0 (24) 

� = −*?+��&� :;:1                 at ( = #             (25) 

� = −*?+��&� :;:+                  at  ' = E�"7 (26) 

� = −*?+��&� :;:+                at  ' = E�"� (27) 

2.3. Method	of	Seperation	of	Variables	

In this section, the homogeneous equation(Eq.(23)) is 
solved by applying the method of separation of variables 
and finally, a specific solution to the equation is obtained. 
Then,  $��$'� + $��$(� = 0 (28) 

To solve Eq.(28), it is assumed that velocity is a 
function of the product F(')and G((), then: �(', () = F(')G(() (29) 

Substituting Eq.(29) in to Eq.(28): F′′(')G(() + F(')G′′(() = 0 (30) 

Defining : F′′(')F(') = − G′′(()G(() = I� (31) 

From Eq.(31), the following equation is obtained:  G′′(() + I�G(() = 0 (32) 

Solving Second-order homogeneous differential 
equation(Eq.(32)) is: G(() = JC,-�(IC() + KC�.�(IC() (33) 

Applying the boundary condition Eqs.(24) and (25):  

KC = 0 (34) 

IC4J�(IC#) = *+��&� (35) 

From solving equation(Eq.(35)), The results show that 
the variations of the I�are negligible with the variation of L and for different Knudsen number. then, I� is 
independent of L and Knudsen number and its values are 
constant approximately (Table 1: I�=[-2.97,-2.99], I�=cte). If values of I� would be a function of ', (, the 
analytical solution would be difficult to solve. 

Thus, Eq.(23) is converted to the following equation: 

�(', () = M FC('),-�(IC()N
CO7  (36) 

Substituting Eq.(36) into Eq.(23), the following 
equation is obtained: 

M(F′′C(') − IC�FC(')) × ,-�(IC()N
CO7 = *�+% (37) 

Using orthogonality principles [17], the following 
integral equation is represented: 

(F′′C(') − IC�FC(')) × Q ,-�   � (IC()�(R
S

= *�+% Q ,-�R
S

(IC()�( 

(38) 

In general, two non-zero functions fi(x), fj(x) are 
perpendicular when the following relation exists in the J ≤ � ≤ K interval: 

Q UV(�). UW(�) = X0 . ≠ Z, > 0 . = Z\
]  (39) 

Obviously, under the condition, the integral relation 
becomes: 

Q UV(�). UV(�)�� =\
] Q (UV

\
] (�))��� > 0 (40) 
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Table 1. values of IC for various of L and Kn 

Kn (r 1
*→0) r1

*≠0(r1
*=10µm) 

0.001 -2.997071247 -2.99532911 
0.005 -2.985413476 -2.986791194 
0.01 -2.970969768 -2.983945293 
0.05 -2.970484694 -2.973869919 
0.1 -2.970306174 -2.970042528 

 

To solve the integral in Eq.(38), it has to be proven that 

^ cos(IC().RS cos(Ib()�( is perpendicular. If I� = Ic, 

^ cos(IC().RS cos(Ib()�(=^ cos�(IC()�(RS =

^ 7defg(�hi1)� �(RS =
7� (#jd + 7�hik?

s in(2 ICn? #od)pqqrqqs?pqqqqrqqqqsd
) ≻ 0 

By integrating Eq.(38): F′′C(') − IC�FC(')
= 2�.�(IC#)(IC# + �.�(IC#),-�(IC. #)) *�+% 

(41) 

Solving Second-order nonhomogeneous differential 
equation Eq.(41) becomes: 

FC(') = ,C7*(hi+) + ,C�*(?hi+) − u7 *�+% (42) 

where u7 = 2�.�(IC#)(IC� − 4)(IC# + �.�(IC#),-�(IC. #)) (43) 

Applying the boundary condition Eqs. (26) and (27): 

,C7 = u7u�% (44) ,C� = u7uw% (45) 

Coefficients of u2and u3 are:  

u� = "�( 7yz)hi(2�&� + "�)(1 − hi@BCyz )
(y�yz)hi(1 + hi@BCy� )(1 − hi@BCyz )  

… −"7( 7y�)hi(2�&� + "7)(1 − hi@BCy� )
−(yzy�)hi(1 + hi@BCyz )(1 − hi@BCy� )  

(46) 

uw = "7"�hi(2�&� + "7) |1 + hi@BCy� }
(y�yz)hi(1 + hi@BCy� )(1 − hi@BCyz )  

… −"�"7hi(2�&� + "�) |1 + hi@BCyz }
−(yzy�)hi(1 + hi@BCyz )(1 − hi@BCy� )  

(47) 

Substituting Eq.(42) in Eq.(36), velocity equation is 
obtained: 

�(', ()% = M u7(u�*(hi+) + uw*(?hi+)N
CO7 − *(�+)),-�(IC() 

(48) 

The mean velocity is defined in the following 
expression: 

�b = 1 +1 Q �� +1 = ^ ^ �*�+�'�(~Cy�~Cyz
RS^ ^ *�+�'�(~Cy�~Cyz

RS
 (49) 

Substituting velocity equation in Eq.(49) and 
integration across the section of the microchannel mean 
velocity expression leads to: 

�b = M 2u7%IC# �.�(IC#)( u�(IC + 2) ("�hi
N

CO7 − "7hi) + uw(−IC + 2) (( 1"�) �i

− ( 1"7) �i) − 14 ("�� + "7�)) 

(50) 

 
 
3. Slip-Flow Models 

Poiseuille number is described as the dimensionless 
mean wall shear stress and depends on hydraulic 
diameter[12, 13]. 

%-�� = ( ?���yVb���y ���2)�!��b = U�*��2  (51) 

If  Hydraulic diameters are defined: �! = �8 = 4 *".c*4*" (52) 

where A and Perimeter: 

 = #∗("�∗� − "7∗7)2  (53) 

*".c*4*" = "�∗(#∗ + 2) + "7∗(#∗ − 2) (54) 

Substituting Eq.(52) and mean velocity Eq.(50) in 
Eq.(51), the following relationship is obtained: 

%- = 2#("�� − "7�)/("�(# + 2)∑ ��zhiR sin (IC#)( ��(hid�) ("�hi − "7hi)NCO7  

… +"7(# − 2))�
+ ��(?hid�) (( 7y�) �i − ( 7yz) �i) − 7� ("�� + "7�)) 

     (55) 

Duan and Muzychka[12, 13], Duan and 
Yovanovich[17], Das and Tahmouresi[21] have indicated 
that the square root of flow area(√ ) is also more 
appropriate for non-dimensionalizing gaseous slip flows 
and non-Newtonian flows, respectively. then: 

If  Hydraulic diameters are defined:  
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�! = �8 = √  (56) 

%- = �#("�� − "7�)∑ ��zhiR sin (IC#)( ��(hid�) ("�hi − "7hi)NCO7  

… /√2�"�(# + 2) + "7(# − 2)�+ ��(?hid�) (( 7y�) �i − ( 7yz) �i) − 7� ("�� + "7�)) 

     (57) 

To validate the analytical solution, Poiseuille number 
in Eq.(57) is solved under the conditions:ideal gas (b = 0), 
r1→0 and θ=2π (Circular microchannel). Eq.(57) (present 
model) has been validated with analytical solution ideal 
gaseous slip flow in circular microchannel: Po, 
Kandikar[34] and Po, Duan[13]. Table 2 compares values 
of Po between the present study (Eq.(57)) with those of  
Kandlikar[34] and Duan[13]. The results show that the 
error percentage is less than 3%. There is a good 
agreement between the results of the present 
study(Eq.(57)) and those of Kandikar [34] and Duan [13]. 

4. Density equation 

Van der Waals Equation is one of the important state 
equations for non-ideal gas(Eq.(58)):  =  ���(1 + �� + ��� + ��w) (58) 

In Eq.(58), coefficients of B, C and D are:   � = |K − J��} (59) 

� = K� (60) � = Kw (61) 

J = 2764 ���� �
%�  (62) 

K = ���8 %� (63) 

In Eqs.(62) and (63), �, ��, %�are defined as the 
specific gas constant, critical temperature, and critical 
pressure, respectively. The general form of the mass flow 
rate equation is as follows: �b = c��  (64) 

Derivation of the sides of equation (58) to z: ��� = ��(1 + 2�� + 3��� + 4��w) ���� (65) 

Substituting Eq (65) in to Eq.(50), mean velocity 
equation is:  

�b = M 2u7IC# sin (IC#)( u�(IC + 2) �"�hi − "7hi�N
CO7  

+ uw(−IC + 2) (( 1"�) �i − ( 1"7) �i ) 

− 14 ("�� + "7�)) × �� � (1 + 2�� + 3��� + 4��w) ����  

(66) 

Replacing Eq.(66) in Eq.(64) and integral in terms z:  

�b = M 2u7IC# �.�(IC#)( u�(IC + 2) ("�hi − "7hi)N
CO7  

+ uw(−IC + 2) (( 1"�) �i − ( 1"7) �i) 

− 14 ("�� + "7�)) × 

Q �� �� (� + 2��� + 3��w + 4���)���
��

= Q c� ���
S  

  (67) 

Integrating Eq.(67), the following relationship is 
obtained: ��∏� + ��∏� + �w∏w + ��∏�= 1/�7 + �/�7 

(68) 

Where  �7
= ��#("�∗� − "7∗�)�2�c� � [M u7IC �.�(IC#)( u�(IC + 2)

N
CO7  

("�hi − "7hi) 

+ uw(−IC + 2) (( 1"�) �i − ( 1"7) �i) − 14 

("�� + "7�))] 

 

       
(69) 

∏ = �/�V (70) 

�� = 12 �V� (71) 

�w = 23 ��Vw (72) 

�� = 34 ��V� (73) 

�� = 45 ��V� (74) 

�/�7 = �� + �w + �� + �� (75) 

 
5. Results and Discussion 

The assumptions of the flow geometry and the physical 
properties of carbon dioxide gas are R=188.92(J/Kg. K), 
μ=1.74×10-7(N.s/m2), 
ρi=1.517(Kg/m3),  =0.002139(m3/Kg), T=350 K, 
ṁ=5×10-10 (Kg/s), σ=1. Tables 3 and 4 show the  values 
in terms of the microchannel length in different Knudsen 
numbers (Kn=10-3, Kn=5×10-3, Kn=10-2, Kn=5×10-2, 
and Kn=10-1) for r1*→0 and r1*≠0 (r1*=10μm), 
respectively. Dimensions of micro-channel geometry 
include θ=π/6, r2*=15μm, r1*→0 and r1*≠0 (r1*=10μm), 
respectively. According to the tables 3 and 4 with the 
increase in the length of the microchannel at various 
Knudsen numbers and as well as the increase of Knudsen 
number in a specified length, the values of the ratio of 
density to inlet density  decrease and increase, 
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respectively. A comparison between the ratio of density to 
inlet density for r1*→0 and r1*≠0 shows that the   values 
in condition of r1*≠0 (r1*=10μm) are more than r1*→0 
for all various length and Knudsen numbers. In other 
words, the rarefication process of  the gas flow in r1*→0 
condition is faster than r1*≠0 (r1*=10µm).  

According to the results, the rarefication process is a 
function of the Knudsen number and the cross-section 
geometry. That way, in a specific length, the rarefication 
process decreases with increasing Knudsen number and 
narrowing cross-section geometry (r1*≠0). In gas sensors, 
the use of circular sector microchannel (r1*≠0) is 
appropriate because the rarefication process occurs later. 
In sensors where the rate of rarefication process is 
important, the use of circular sector microchannel (r1*=0) 
is appropriate. 

Tables 5 and 6 represent the Π values in terms of the 
microchannel length for various angles in Kn=0.05, r1

*→0 
and r1*≠0, respectively. The results show that with the 
increase of the length of the microchannel at various 
angles, the values of the ratio of density to inlet density 
decline. In specified length, the reduction of angles leads 
to decrease values of Π when r1*→0 and decreases and 
then increases when r1

*≠0. According to results, in 
specified length and Knudsen number, when angles 
decrease, the rate of rarefication process is a function of 
the cross-section geometry and changing the small radius 
of the circular sector (r1

*). In gas sensor, the use of the 
circular sector microchannel with θ=π/6 and r1*≠0 is 
appropriate because the rarefication process occurs later.   

Table 7 indicates comparison ∏ values between the 
ideal and non-ideal gaseous slip flow in L=5μm. 
According to results, for an ideal gas, ∏ values of circular 
sector microchannel in the condition of  r1

*≠0 (r1*=10µm) 
is more than r1*→0. Also, ∏ values of an ideal gas are 
more than non-ideal gas in different Knudsen numbers. 
Therefore, the rarefication process of the non-ideal gas is 
faster than the ideal gas.Then, in gas sensor, it is 
appropriate to use gases that are closer to behavior of non-
ideal gas.  

Figs. 2 and 3 show the fully developed velocity profiles 
in different Knudsen numbers when θ=π/6, r1*→0 and 
r1

*≠0 (r1*=10µm), respectively. According to Figs. 2 and 3 
with the increase of the Knudsen number, velocity values 
increase.In the specified Knudsen number,velocity values 

increase firstly and then decrease.Also,with increasing 
Knudsen number,slippage velocity values are more than 
others. This indicates that an increase of Knudsen number 
results in the increase of the pressure drop caused by the 
slip, so that the fluid flow in these microchannels should 
be within the lower Knudsen number range. 

Figs. 4 and 5 show the fully developed velocity profiles 
in under various angles at Kn=0.05, r1*→0 and r1*≠0 
(r1

*=10µm), respectively. According to Fig. 4, with the 
increase of the radius, velocity values increased and then 
decrease. The maximum velocity is θ=π/9. With 
decreasing θ, the slippage velocity values increase for 
r1

*→0. This indicates that the reduction of angle of circular 
sector micro-channel results in an increase of the micro-
channel pressure drop. It is approprate to choose the 
circular sector microchannel with the maximum angle. In 
Fig. 5, velocity values have a state of fluctuation when 
radius increases. 

 
Conclusion 

In this paper, the momentum equation is solved for the 
circular sector microchannel under the fully developed 
non-ideal gaseous slip flow using the conformal mapping 
and integral transform technique. It is presented the 
models for predicting the local and mean velocity, 
normalized  Poiseuille number, and the ratio of density. It 
was shown that present values of normalized Poiseuille 
number model are in good agreement for previous 
results[13, 34] for circular microchannels. Also, the 
rarefication process is a function of the Knudsen number 
and the cross-section geometry and is a weak function of 
the type of gases. Poiseuille number is independent of fluid 
material properties, velocity, temperature and is a function 
of the cross-section shape.      
Poiseuille number in terms of dimensionless radius for 
various Knudsen number, r1*→0 , and r1*≠0 (r1*=10µm) 
are shown in Figs. 6 and 7, respectively. Fig. 6 shows that 
logarithmic function of Poiseuille number decreases with 
the increase of the radius and also, with the increasing 
Knudsen number, values of poiseuille decrease. The 
process of changes is different in Fig. 7. With the increase 
of the radius Poiseuille numbers increase. According to the 
fluid flow in the microchannel is assumed laminar, when 
the friction factor is constant, the using of circular sector 
microchannel with r1*≠0 (r1*=10µm) is appropriate. 

 

Table 2. Comparison of values of Po,Dh=√A with those of Kandlikar[34] and Duan[13]. 

Kn ¢£, ¤¥ = √¦ ¢£, §¨©ª«¬¨®[¯°] ¢£, ¤±¨©[²¯], ®² = ³ ERROR% 

0.001 15.9647412385 15.8730158730 15.87826257 0.57 

0.003 15.7392319765 15.625 15.62671297 0.72 

0.005 15.5204692019 15.3846153846 15.38562 0.87 
0.01 15.0011411590 14.8148148148 14.8152894 1.24 
0.03 13.0898901887 12.9032258064 12.90335362 1.42 
0.05 11.1613287818 11.4285714285 11.42863455 2.39 
0.07 9.95999449826 10.2564102564 10.25644787 2.97 
0.1 8.78265117204 8.88888888888 8.888909298 1.2 
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Table 3. Values of Π in terms of circular sector microchannel length at (r1*→0) 

X(mm) Kn=10-3 Kn=5×10-3 Kn=10-2 Kn=5×10-2 Kn=10-1 
0 0.9999984771 0.9999984771 0.9999984771 0.9999984771 0.9999984771 

10 0.9731212253 0.9735690615 0.9741081771 0.9777335766 0.9810293946 

20 0.9454807317 0.9464023353 0.9475111557 0.9549500393 0.9616864636 
30 0.9170079967 0.9184328867 0.9201461441 0.9316098227 0.9419466591 
40 0.8876229523 0.8895850205 0.8919424741 0.9076699928 0.9217844897 
50 0.8572318039 0.8597703385 0.8628179245 0.8830817956 0.9011716126 
100 0.6853629817 0.6916927066 0.6992404091 0.7481228016 0.7900862300 

 
Table 4. Values of Π in terms of circular sector microchannel length at r1*≠0(r1*=10µm) 

X(mm) Kn=10-3 Kn=5×10-3 Kn=10-2 Kn=5×10-2 Kn=10-1 
0 0.9999984771 0.9999984771 0.9999984771 0.9999984771 0.9999984771 

10 0.9993270555 0.9993490190 0.9993753977 0.9995502769 0.9997028768 

20 0.9986551832 0.9986991392 0.9987519299 0.9991018754 0.9994071891 
30 0.9979828584 0.9980488361 0.9981280728 0.9986532731 0.9991114135 
40 0.9973100812 0.9973981092 0.9975038259 0.9982044693 0.9988155508 
50 0.9966368496 0.9967469583 0.9968791887 0.9977554633 0.9985196005 
100 0.9932638527 0.9934848042 0.9937501151 0.9955073994 0.9970385317 

Table 5. Values of Π in terms of circular sector microchannel length for various angles at Kn=0.05, r1*→0 

X(mm) θ=π/6 θ=π/7 θ=π/8 θ=π/9 
0 0.9999984771 0.9999984771 0.9999984771 0.9999984771 

10 0.9777335766 0.9685511429 0.9571799417 0.9433458440 

20 0.9549500393 0.9360485842 0.9123553530 0.8830684837 
30 0.9316098227 0.9023768090 0.8652130480 0.8183660169 
40 0.9076699928 0.8673996925 0.8153511899 0.7480913771 
50 0.8830817956 0.8309524481 0.7622363710 0.6704951270 
100 0.7481228016 0.6172557240 0.7051340166 0.4789866382 

 
Table 6. Values of Π in terms of circular sector microchannel length for various angles at Kn=0.05, r1*≠0 (r1*=10µm) 

X(mm) θ=π/6 θ=π/7 θ=π/8 θ=π/9 
0 0.9999984771 0.9999984771 0.9999984771 0.9999984771 

10 0.9995502769 0.9994715875 0.9994872579 0.9995552796 

20 0.9991018754 0.9989444205 0.9989757768 0.9991118852 
30 0.9986532731 0.9984169750 0.9984640343 0.9986682945 
40 0.9982044693 0.9978892509 0.9979520296 0.9982245068 
50 0.9977554633 0.9973612477 0.9974397617 0.9977805219 
100 0.9955073994 0.9947170312 0.9948744699 0.9955576282 

 
Table 7. Comparison of ∏ values between ideal and non ideal gaseous flow for first boundary conditions in L=5µm 

 Ideal Gas  Non-Ideal Gas  
Microchannel Kn=10-3 Kn=10-2 Kn=10-1 Kn=10-3 Kn=10-2 Kn=10-1 

r1
*→0 0.85732662 0.86290902 0.90123742 0.85723180 0.86281792 0.90117161 

r1
*≠0(r1*=10µm) 0.99664055 0.99688273 0.99852208 0.99663684 0.99687918 0.99851960 
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Figure 2. The velocity profile of circular sector microchannel 

under different Knudsen numbers in θ=π/6 , r1*→0 

 

 

Figure 3. The velocity profile of circular sector microchannel 
under different Knudsen numbers in θ=π/6, r1*≠0 

(r1*=10µm) 

 

Figure 4. The velocity profile of circular sector microchannel 
under different angles in Kn=0.05, r1*→0 

 

 

 

Figure 5. The velocity profile of circular sector microchannel 
under different angles in Kn=0.05, r1*≠0 (r1*=10µm) 

 

Figure 6. Poiseuille number in terms of dimensionless 
radius for 10-3 ≤ Kn ≤ 10-1, r1*→0 

 

Figure 7. Poiseuille number in terms of dimensionless 
radius for 10-3 ≤ Kn ≤ 10-1,r1*≠0 (r1*=10µm) 
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Nomenclature 

u Gaseous velocity component (m/s) 

r*, θ*  Polar coordinates (m) 

r , θ Dimenstionless polar coordinates 

z Coordinate in flow direction (m) 

x* , y*  Cartesian coordinates (m)  

x , y  Dimenstionless cartesian coordinates 

p Pressure (N/m2) 

Dh Hydraulic diameter (m)  

r1 Radius of circular sector microchannel  
radius (m) 

r2 Radius of circular sector microchannel  
radius (m) 

Kn Knudsen number (l/Dh) 

Ac Cross – sectional area (m2) 

h Coefficient 

J Jacobian transform 

R Specific gas constant ( J/Kg.K ) 

T Temperature (K) 

mu  Mean velocity 

&m  Mass flow rate (Kg/s) 

Po Poiseuille number 

cv  Critical Specific Volume 

Greek symbols 

ρ   Gas density (Kg/m3) 

µ   Dynamic viscosity (N.s/m2) 

σ   Tangential momentum accomondation 
 coefficient  

λ   Molecular mean free path (m) 

,ξ η Dimenstionless cartesian coordinates 

I eigenvalue 

subscripts 

r r direction 

# θ  direction 

z Z direction  

i inlet 
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