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It is known that slip flow and temperature jump phenomena play a significant role in micro 
scale investigations. In this paper, exact analytical solutions for the flow and the convective 
heat transfer of gaseous flow passing through microtubes are derived for the first time in form 
of Whittaker function. Here, it is assumed that both flow and heat transfer is fully developed 
in a microtube with constant wall temperature. The solution is obtained by considering the 
Navier-slip conditions for flow and heat transfer at walls. Here, a modal analysis technique is 
employed to achieve possible solutions of this scenario. Due to the eigenvalue form of 
governing equations, obtaining the closed form exact solution for this problem is too difficult 
from mathematical point of view and previous studies have been restricted to numerical and 
approximate series expansion solutions. In this study, an additional constraint is introduced 
using the definition of the mean temperature and employed to obtain possible eigenvalues 
related to this problem. Finally, by implementing a scaling law of the Nusselt number of 
laminar flow in closed conduits, an exact analytical solution for temperature distribution and 
the heat transfer are derived. It was found that increasing the Prandtl number increases the 
Nusselt number and increasing the Knudson number decreases the Nusselt number. Based 
on the obtained solution, the effect of Prandtl number and Knudsen number on heat 
convection of microtubes is studied in detail. 
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1. Introduction    

During last decades, increasing attention has been 

allocated to mini and micro scale investigations stemming 

from high performance small-scale equipment in 

engineering and industry fields such as bio-related 

applications, medical diagnosis, refrigerant systems, 

chemical reactors and electronic component cooling 

systems. Previous studies which have been carried out on 

the fluid flow in micro scale geometries clearly revealed 

that the flow and the heat transfer characteristics are 

different in comparison with conventional macro scale 

flows. These characteristics of the flow are mainly related 

to slip situations appearing around the contact surface of a 

fluid and a solid which generally shows a direct relation 
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with the dimensionless parameter Knudsen number. This 

dimensionless number is defined as the ratio of the mean-

free molecular distance to the system macro length scale. 

The molecular distance in gases is much greater than in 

liquids so the Knudsen numbers in gases and liquids are 

generally categorized in the ranges of 0.001<Kn<0.1 and 

Kn<0.001, respectively, showing the concept that 

molecular distance in gases is greater than in liquids. It is 

pertinent to mention that while the Knudsen number 

obtains its value in range of 0.001<Kn<0.1 the continuum 

equations such as Navier-Stokes and Energy conservative 

equations are still applicable but they must be solved 

subject to the velocity slip and the temperature jump 

conditions around the contact surface of the fluid and the  
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 solid.                                                                      

There are many seminal works that have been focused 

on the non-slip situation for the flow and the heat transfer 

passing through conduits employing theoretical methods. 

Shah [1] investigated possible effects of the cross-section 

shape on the heat transfer inside plane conduits. He 

showed that in a constant heat flux situation making 

rounded the corner of the cross section can slightly 

influence the heat transfer. In a following research, Shah 

and London [2] studied effects of curvature using the finite 

difference method for fully developed conditions and 

showed the centrifugal force arising from the curvature 

increases the heat transfer. Ou et al. [3] and Hieber [4] 

studied the natural heat convection/transfer in isothermal 

pipes both in cooling and heating situations in large 

Prandtl number fluids by implementing the numerical 

method for a horizontal tube. 

In recent decades due to the increasing request in high 

performance small-scale equipment, some researchers 

concentrated their investigations on laminar slip flows 

with the temperature jump as an important phenomenon. 

Among these studies, Hettiarachchi et al. [5] used the 

finite volume method to investigate a three-dimensional 

laminar slip flow and its heat transfer in rectangular cross 

sections. They presented a correlation for the fully 

developed friction factor as a function of the Knudsen 

number and the aspect ratio. The obtained results indicate 

that the velocity slip increases the Nusslet number while 

the temperature jump decreases it. In a following research, 

Lee and Garimella [6] extended the problem to investigate 

effects of the entrance region of the rectangular micro-

channel employing a 3-dimensional numerical method. 

Moreover, they investigated different cross sections in the 

fully developed laminar flow and obtained both the local 

and the average values of the Nusselt numbers as a 

function of dimensionless axial distance and channel 

aspect ratio. Furthermore, Renksizbulut et al. [7] 

investigated the flow and the heat transfer in the entrance 

region of rectangular micro-channels numerically with the 

slip flow boundary condition using a control-volume 

method.  

Beside numerical methods, there are some empirical 

studies which can be more reliable and are generally used 

to validate solutions achieved by numerical methods [8]. 

As an example for empirical methods in the pipe, Sieder 

and Tate [9] reported an accurate correlation between the 

ratio of viscosity of the fluid stream to the viscosity of the 

fluid beside the wall with the heat transfer coefficient both 

in heating and cooling conditions. Morgan [10], Churchill 

and Chu [11] and Whitaker [12] derived experimental 

correlations that mainly correspond to the area and the 

time-averaged Nusselt number. Mori and Futagami [13] 

visualized the pattern of secondary flows arises from the 

buoyancy force to study and analyze effects of these 

phenomena on the heat convection of the laminar flow 

regime. 

In recent years, there has been an increasing attention 

in experimental investigations to achieve non-dimensional 

correlations between variables and the flow fields and the 

heat transfer in micro-channels. These correlations have an 

important value in designing, constructing and controlling 

high efficient heating and cooling equipment. Colin et al. 

[14], investigated the slip flow situation using a second-

order boundary condition in rectangular ducts analytically. 

In the second part of the investigation, they employed an 

experimental approach to show the accuracy of the 

presented solution. Hetsroni et al. [15,16] presented 

experimental and theoretical analysis for the fluid flow and 

the heat transfer in micro-channels. They presented results 

relating to small Knudsen number cases in circular, 

triangular, rectangular and trapezoidal micro ducts. The 

effect of the geometry and the axial heat flux on the energy 

dissipation is investigated. Furthermore, Chen et al. [17] 

performed an experimental study to investigate 

characteristics of the fluid flow and the heat transfer in a 

micro-channel  heat sink with different hydraulic 

diameters ranging from 57𝜇𝑚 to 267𝜇𝑚. They found that 

the surface roughness, the viscosity and the channel 

geometry are the most effective parameters on flow 

characteristics in micro scale channels. 

In the recent years, Shahmardan et al. [18] achieved 

exact analytical solution for the convective heat transfer in 

straight rectangular ducts and validated it for both H1 and 

H2 boundary conditions under constant heat flux at the 

duct wall. Norouzi and Davoodi [19] have derived an exact 

analytical solution for forced convective heat transfer 

inside straight pipes under an isothermal boundary 

condition using modal analysis of the eigenvalue form of 

the heat transfer equation. The main difference between 

current study and Norouzi and Davoodi work [18] is that 

the presented exact analytical solution in this paper 

accounts for the temperature jump and the velocity slip 

conditions at wall for gaseous fluid flow through 

microtubes. Unfortunately, finding the exact analytical 

solutions for a complex situation is not possible in most of 

times and it restricts into solutions of some simple 

scenarios. Therefore, some researchers use approximate 

analytical methods such as standard perturbation, 

homotopy perturbation methods, differential transform 

method and stochastic techniques. Among the studies that 

used approximate analytical approaches, Morton [20], 

Hanratty [21], Iqbal and Stachiewicz [22, 23] and Faris 

and Viskanta [24] used a series expansion method to show 

the effects of the free and the forced convection using the 

Rayleigh number as a perturbation parameter. A general 

model for predicting the pressure drop in micro-channels 

of an arbitrary cross section has been reported by Bahrami 

et al. [25]. Their results showed a good agreement with 

experimental and numerical data for a wide variety of 

situations. Khan and Yovanovich [26] studied the laminar 

forced convection in 2-dimensional rectangular micro and 

nano channels under both hydrodynamically and thermally 

fully developed conditions in the slip-flow regime. They 

solved the momentum and the energy equations with a first 

order velocity slip and a temperature jump conditions at 

the wall of the channel and presented a closed form 
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solution for the Nusselt number in terms of effective 

parameters such as the Reynolds number, the Knudsen 

number and the Prandtl number. In recent years, Hooman 

et al. [27] obtained an analytical solution based on a 

perturbation method for fully developed flow in both 

circular and parallel plates. They studied the scaling effect 

of the variable property, the viscous dissipation, the 

velocity slip, and the temperature jump on the slip flow 

forced convection of gaseous flows. The slip flow heat 

transfer in annular micro-channels has been analyzed by 

Duan and Muzychka [28]. They found that for the slip flow 

cases, the Nusselt number decreases by increasing the 

Knudsen number and it is lower than those for the 

continuum flow. Yu and Ameel [29, 30] studied the 

laminar forced convection in a thermally developing slip 

flow for both constant wall temperature and heat flux 

boundary conditions using the integral transient technique. 

Laminar fully developed flows in mini and micro-channels 

for hyper-elliptical and regular polygonal cross sections 

have been studied analytically by Tamayol and Bahrami 

[37]. Shomali and Rahmati [32] developed Cascaded 

Lattice Boltzmann Method with second order slip 

boundary conditions to study gas flows in a microchannel 

in the slip and transition flow regimes with a wide range 

of Knudsen numbers. They consider the effect of wall 

confinement on the effective mean free path of the gas 

molecules using a function with nonconstant Bosanquet 

parameter instead of the constant one. Rahmati and Najati 

[38] investigated an incompressible thermal flow in a 

micro-Couette in the presence of a pressure gradient 

utilizing the analytical solution of the Burnett equations 

with first-order and second-order slip boundary 

conditions. Barik and Nayak [39] investigated the laminar 

forced convective heat transfer and fluid flow 

characteristics for Al2O3-water nanofluid flowing in 

different bend (i.e., 180o and 90o) pipes numerically in a 

three-dimensional computational domain using the finite 

volume technique. Tajik et al. [40] carried out an 

experimental study to investigate the effect of adding Al 

and Cu nanoparticles to the base fluid (water) on the heat 

transfer rate in a spirally coiled tube. 

Usually exact analytical solutions are more reliable and 

can be used to check the accuracy of other methods but 

due to difficulties in solving the momentum and the energy 

equations, the analytical solutions are not always easy to 

obtain. As mentioned in the literature part, previous 

researches have mainly focused on numerical and series 

expansion analytical methods while in this study the 

momentum and energy equations have been solved 

directly. In this paper, a modal analysis technique is 

employed to achieve possible solutions of this scenario. 

Due to the eigenvalue form of governing equations, 

developing the closed form exact solution is too difficult 

and previous studies have been solved it numerically. In 

this study, an additional constraint is introduced using the 

definition of the mean temperature and employed to obtain 

possible eigenvalues related to this problem. In the current 

study, laminar fully developed flow and heat transfer in  

 

Figure 1. Geometry of microtube in current study. 

straight microtubes is investigated and an exact analytical 

solution for the velocity and temperature distributions 

corresponding to the temperature jump and the velocity 

slip conditions at wall for gaseous fluids are obtained in 

form of Whittaker function for the first time. Finally, the 

effect of Prandtl number and Knudsen number on heat 

convection of isothermal microtubes is studied in detail.  

 

2. Physics of Problem 

The problem is modeled as a circular microtube as 

shown in Fig. 1. The flow assumes to be steady, two- 

dimensional, incompressible, and laminar. In plain pipes, 

due to the symmetry situation and the fully developed 

condition both 𝑉𝑟 and 𝑉𝜃 are equal to zero. The flow 

condition is considered as viscous fluid flow conditions 

where derivatives of all of the parameters of the velocity 

with respect to z-direction are eliminated except the 

pressure. In this study slip, assumption, and symmetry at 

the center of pipe are considered and, the viscous 

dissipation energy is neglecting and the constant 

temperature is considered as wall boundary condition.   

 

3. Mathematics Modeling 

To facilitate analytical solutions for differential 

equations, defining the viscous flow problem, it is 

pertinent to employ non-dimensional variables. The 

relevant dimensionless parameters involved in the current 

study are defined as following: 

𝑟 =
�̃�

𝑟𝑜

 .   𝑧 =
�̃�

𝑟𝑜

  .   𝑢 =
�̃�

𝑈
  .   𝑝 =

𝑝. 𝑟𝑜

𝜇. 𝑈
  .    

𝐾𝑛 =
𝜆

𝑟𝑜

 .  𝑇 =
�̃� − �̃�𝑤

�̃�𝑚 − �̃�𝑤

  .  𝑁𝑢 =
ℎ𝐷

𝑘𝑓

 
(1) 

 

3.1. Flow solution 
The momentum and continuum equations can generally 

express as follows: 

∇. Ṽ = 0 (2a) 

𝜌Ṽ. ∇Ṽ = −∇�̃� + 𝜇∇2Ṽ 
 

(2b) 

The momentum equation in z direction can be 

expressed as: 
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−
𝜕𝑝

𝜕�̃�
+ 𝜇(

1

�̃�

𝜕

𝜕�̃�
(�̃�

𝜕�̃�

𝜕�̃�
)) = 0 

 
(3) 

After substituting dimensionless parameter introduced 

in (1) into (3) we have: 

−
𝜕𝑝

𝜕𝑧
+ (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
)) = 0 

 
(4) 

In the fully developed conditions, the pressure gradient 

in the axial direction can be expressed as: 

 

𝜕𝑃

𝜕𝑧
= 𝑐𝑡𝑒 < 0 (5) 

Therefore, 

𝜕𝑃

𝜕𝑧
= −𝐺 (6) 

where G is a constant value that represents absolute 

axial pressure drop.  

Considering slip assumption and symmetry at center of 

pipe, boundary conditions for solving the momentum 

equation may be presented as: 

𝑎𝑡  �̃� = 0 →
𝜕�̃�

𝜕�̃�
= 0 (7a) 

𝑎𝑡  �̃� = 𝑟𝑜 → �̃�𝑠 =
𝐹 − 2

𝐹
𝐾𝑛 𝑟𝑜

𝑑�̃�

𝑑�̃�
|

�̃�=𝑟𝑜

 (7b) 

where F and Kn represent the tangential momentum 

accommodation coefficient and the Knudsen number, 

respectively. Substituting corresponding dimensionless 

parameters, presented in (1) into (7), and defining a slip 

velocity coefficient as𝛽𝑣, the dimensionless form of slip 

boundary condition and symmetry constraint will be: 

𝑎𝑡  𝑟 = 0 →
𝜕𝑢

𝜕𝑟
= 0 (8a) 

𝑎𝑡  𝑟 = 1 → 𝑢𝑠 = − 𝛽𝑣

𝑑𝑢

𝑑𝑟
|

𝑟=1
 (8b) 

𝛽𝑣 =
2 − 𝐹

𝐹
𝐾𝑛 (8c) 

Solving equation (4) respect to appropriate boundary 

condition (8) leads to: 

𝑢(𝑟) = 2 (1 − 𝑟2 +
1

2
𝛽𝑣)       (9) 

Using Eqs. (1), (9), and (4), the non-dimensional axial 

pressure gradient may be presented as: 

𝜕 𝑝

𝜕 𝑧
= −8    (10) 

 

3.2. Heat transfer solution 
Neglecting the dissipation energy and assuming an 

incompressible fluid flow, the energy equation can be 

represented as:  

𝜌 𝑐𝑝  �̃�. 𝛻�̃� = 𝑘𝛻2�̃� (11) 

Similar to the velocity field, due to symmetry 

situations, derivatives of all of the temperature variable 

with respect to z is eliminated. In the fully developed 

thermal conditions, the energy conservative equation 

expresses as: 

𝜌𝐶𝑝�̃�
𝜕�̃�

𝜕�̃�
=

1

�̃�

𝜕

𝜕�̃�
(𝑘𝑓�̃�

𝜕�̃�

𝜕�̃�
) (12) 

The appropriate constraints are the temperature jump at 

the wall and the symmetry situation at the center of the 

pipe which is presented as: 

 

𝑎𝑡  �̃� = 0 →
𝜕�̃�

𝜕�̃�
= 0  (or T is limited) (13-a) 

𝑎𝑡  �̃� = 𝑟𝑜 → 

�̃�𝑠 − �̃�𝑤 =
𝐹𝑡 − 2

𝐹𝑡

𝐾𝑛

𝑃𝑟

2𝛾

1 + 𝛾
𝑟𝑜

𝑑�̃�

𝑑�̃�
|

�̃�=𝑟𝑜

      (13-b) 

where 𝐹𝑡 is the energy accommodation coefficient, 𝛾is 

the ratio of specific heats (𝑐𝑝/𝑐𝑣), 𝑃𝑟is the Prandtl number. 

Thermal fully developed condition is defined as [19]: 

𝜕𝑇

𝜕𝑥
=

𝜕

𝜕𝑥
(

�̃� − �̃�𝑤

�̃�𝑚 − �̃�𝑤

) = 0 (14) 

Thus, one can easily derive the thermal fully developed 

condition as: 

𝜕�̃�

𝜕�̃�
= (

�̃� − �̃�𝑤

�̃�𝑚 − �̃�𝑤

)
𝑑�̃�𝑚

𝑑�̃�
= �̃�

𝑑�̃�𝑚

𝑑�̃�
     (15) 

By applying the heat balance on a differential control 

volume, the axial mean temperature gradient can be 

obtained: 

ℎ(�̃�𝑤 − �̃�𝑚)𝑝𝑑�̃� = 𝜌𝐴𝑈𝑐𝑝𝑑�̃�𝑚 

⇒
𝑑�̃�𝑚

𝑑�̃�
=

2ℎ(�̃�𝑤 − �̃�𝑚)

𝜌�̃�𝑈𝑐𝑝

 
    (16) 

Using equations (16) and (15) and substituting them in 

equation (12), the dimensionless energy equation in z 

direction is obtained as: 

𝑢𝑇
2ℎ(�̃�𝑤 − �̃�𝑚)

𝑟𝑜𝑈
=

𝑘

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
)     (17) 

After substituting the corresponding dimensionless 

parameters (1) and the velocity solution (9) in Eq. (17) we 

have: 

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
+ 2𝑁𝑢(1 − 𝑟2 +

1

2
𝛽𝑣)𝑇 = 0     (18) 

Governing dimensionless constraints are: 

𝑎𝑡  𝑟 = 0 →
𝜕𝑇

𝜕𝑟
= 0 (19-a) 

𝑎𝑡  𝑟 = 1 → 𝑇𝑤 = −𝛽𝑡

𝜕𝑇

𝜕𝑟
|

𝑟=1
.

𝛽𝑡 =
2 − 𝐹𝑡

𝐹𝑡

𝐾𝑛

𝑃𝑟

2𝛾

1 + 𝛾

 (19-b) 

where 𝛽𝑡 is temperature jump coefficient. It is clear that 

Eq. (18) and the presented boundary conditions (Eq. (19)) 

are homogenous. Thus, Eq. (18) is an eigenvalue 

differential equation where Nu, as the unknown constant, 

is in its closed form of formulation. The amount of Nusselt 

number can be calculated by solving Eq. (18) considering 

the related boundary conditions (19). Since the governing 

equation and the boundary conditions (Eqs. (18) and (19)) 
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are hemogeneous, to calculate the non-zero dimensionless 

temperature distribution, another constraint is needed. One 

can find a physical constraint by performing a surface 

integration of the production of the dimensionless velocity 

profile (𝑢 = �̃�/𝑈) and the temperature distribution (𝑇 =

(�̃� − �̃�𝑤)/(�̃�𝑚 − �̃�𝑤)) on the cross section:  

∫ 𝑤𝑇𝑑𝐴 = 𝜋

𝐴

 (20) 

In order to obtain an exact analytical solution for Eq. 

(18), the following form of the solution for T is considered 

[19]:  

𝑇 =
𝑓(𝜂)

𝑟
 (21) 

Here, 

𝜂 = 𝑎𝑟2 (22) 

Where, 𝑎is an unknown constant. Thus, the following 

relations can be written for temperature derivatives: 

∂T

∂r
=

−1

r2
f + 2a

df

dη
 

(23) 

𝜕2𝑇

𝜕𝑟2
=

2

𝑟3
𝑓 −

2𝑎

𝑟

𝑑𝑓

𝑑𝜂
+ 4𝑎2𝑟

𝑑2𝑓

𝑑𝜂2
 

(24) 

after substituting Eq. (24) and (23) in Eq. (18) we have: 

(
1

4𝜂2
+

𝛼𝑁𝑢

2𝑎𝜂
−

𝑁𝑢

2𝑎2
) 𝑓 = 0 (25) 

where 𝛼 = 1 +
1

2
𝛽𝑣.  

By considering the last unknown term of Eq. (18) to be 

equal to 1/4, the Whittaker differential equation is found. 

In other words, we may consider the unknown constant of 

this equation equal to 𝑎 = √2𝑁𝑢 to obtain the Whittaker 

differential equation from: 

𝑑2𝑓

𝑑𝜂2
+ (−

1

4
+

√2𝑁𝑢

4

𝛼

𝜂
+

1

4𝜂2
) 𝑓 = 0 

(26) 

So the Whittaker differential equation can be written as 

follows [33-34]: 

𝑦′′ + (−
1

4
+

𝜇

𝑧
+

1

4
− 𝜈2

𝑧2
) 𝑦 = 0 (27) 

The solution for the Whittaker differential equation 

(Eq. (23)) is [34-35]: 

𝑦(𝑥) = 𝑐1𝑀𝜇.𝜈(𝑥) + 𝑐2𝑊𝜇.𝜈(𝑥) (28) 

The following solution is valid for Eq. (29): 

𝑓(𝜂) = 𝐶1 𝑀√2𝑁𝑢

4
.0

(𝜂) + 𝐶2 𝑊√2𝑁𝑢

4
.0

(𝜂) (29) 

where 𝜂 = √2𝑁𝑢𝑟2. The temperature distribution is 

obtained by substituting the Eq. (21) into the Eq. (29) as 

follows: 

𝑇 =
𝐶1

𝑟
𝑀𝛼√2𝑁𝑢

4
.0

(√2𝑁𝑢𝑟2)

+
𝐶2

𝑟
𝑊𝛼√2𝑁𝑢

4
.0

(√2𝑁𝑢𝑟2) 

(30) 

It is important to mention that the second term of Eq. 

(30) is singular at r=0. To avoid the singularity situation, 

it is necessary to consider𝐶2 = 0. The first term of Eq. (30) 

is not singular because the value of 𝑀𝑎,0(𝑏𝑟) tends to the 

𝜅𝑟 when r approaches to zero.  

So the temperature solution reduces to: 

𝑇 =
𝐶1

𝑟
𝑀𝛼√2𝑁𝑢

4
.0

(√2𝑁𝑢𝑟2) (31) 

In the presented form, there are two unknown, 

𝐶1and𝑁𝑢, which should be calculated using the boundary 

conditions. The Nusselt number of flow inside the straight 

pipe is calculated using Eq. (19-b) as:  

𝑀1

4
𝛼√2𝑁𝑢.0

(√2𝑁𝑢) + 

𝛽𝑡(−𝑀1

4
𝛼√2𝑁𝑢.0

(√2𝑁𝑢) 

+2((
1

2
−

1

4
𝛼)𝑀1

4
𝛼√2𝑁𝑢.0

(√2𝑁𝑢) 

+
√2

2

(
1

2
+

1

4
𝛼√2𝑁𝑢)

√𝑁𝑢
𝑀1

4
𝛼√2𝑁𝑢.0

(√2𝑁𝑢) 

 

(√𝑁𝑢) = 0 

(32) 

The amount of first constant of Eq. (30) (𝐶1) is also 

determined by substituting Eqs. (31) into the Eq. (20). 

 

4. Validation results 

Fig. 3 shows the comparison between the closed form 

solution for fully developed temperature distribution due 

to forced convection in a micropipe in slip-flow regime 

and the exact solution presented in this paper. As it can be 

seen, there is a good agreement between current analytical 

solution and Hooman [36] solution. Although the results 

are obtained for the microscale problems, they can be  

 

Figure 2. Velocity distribution in microtube for different 
Knudsen numbers. 
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Figure 3. Comparison between the exact solution presented in 
this paper and the reported results by Hooman [36] for a 

micropipe in slip-flow regime. 

generalized to the macroscale problems by considering 

𝐾𝑛 = 0 

 

5. Results and discussion 

In this section, the accuracy of the presented analytical 

solution is checked and an investigation on the effects of 

the slip flow and the temperature jump on the flow field 

and the heat transfers of gaseous fluids passing through 

micro scale pipes are presented. The flow distribution for 

the different Knudsen number is presented in Fig. 2. Data 

show that an increase in the Knudsen number generally 

leads to increment in both the maximum value of the 

velocity at the center of the pipe and the velocity of the 

fluid in the region near the wall. In following, the Nusselt 

number for different slip conditions are calculated and 

checked with previous studies. For this reason, the left 

hand side of the equation (32) is defined as: 

𝐹(𝑁𝑢) = 𝑀1

4
𝛼√2𝑁𝑢,0

(√2𝑁𝑢) 

+𝛽𝑡(−𝑀1

4
𝛼√2𝑁𝑢,0

(√2𝑁𝑢) 

+2((
1

2
−

1

4
𝛼)𝑀1

4
𝛼√2𝑁𝑢,0

(√2𝑁𝑢) 

+
√2

2

(
1

2
+

1

4
𝛼√2𝑁𝑢)

√𝑁𝑢
𝑀1

4
𝛼√2𝑁𝑢,0

(√2𝑁𝑢) 

)√𝑁𝑢) 

(33) 

 

In accordance with Eq. (33), variation of𝐹(𝑁𝑢) versus 

the Nusselt number (Nusselts numbers are roots of Eq. 

(33)) for different Knudsen numbers and the Prandtl  

numbers are shown in Table 1 and 2. As these tables show, 

there are infinite number of discrete roots which are 

marked as circle symbols in tables. According to the 

scaling law, the Nusselt number of flow in a straight pipe 

is in order one [32-33]. Here, the second root is the only 

root which is in order one (For example Nu= 3.6567856 in 

no-slip condition). Therefore, this root is corresponding to 

the physical solution and the other roots are considered as 

the mathematical solutions with no physical meaning.  

 

Figure 4. Variation of Physical Nusselt number versus 
Knudsen number for different Prandtl number. 

 

Figure 5. Variation of Physical Nusselt number versus Prandtl 
number for different Knudsen numbers. 

This value in no-slip cases is exactly equal to the 

Nusselt number reported in the previous studies [32-33]. 

Fig. 4 shows the variation of this function in different 

employed 

gaseous fluids and shows that an increment in the Knudsen 

number leads to a decrement in the heat transfer and the 

Nusselt number in isothermal cases. In Fig. 5, the physical 

Nusselt number variation against the Knudsen number in 

the different Prandtl number is plotted. It reveals that by 

increasing the Knudsen number the heat transfer 

coefficient generally decreases. Fig. 5 also shows the 

increment in the Prandtl number has the contrary effect 

and leads into an elevation in the Nusselt number values.  

To achieve the complete form of the temperature 

distribution related to the other slip scenario, we must 

implement another constraint to calculate the 

corresponding possible eigenvalues. Due to the limited 

value of the temperature distribution at the center of pipe 

the C2 constant must be considered as zero. Using 

constraint that is presented in Eq. (20) and substituting the 

achieved Nusselt numbers the C1 obtains. In a non- slip 

scenario, by considering the value of 3.6567856 for the 

Nusselt number, the value of this constant calculates as 

𝐶1 = 1.09615. Some of other values of C1 constant for the  

pre-assumed viscous fluid materials are collected in tables 

1 and 2.  

 



 M. Norouzi / JHMTR 8 (2021) First page- Last page 19 

 

Table 1. The coefficient and the Nusselt number of possible solutions obtained from model analysis of temperature 
distribution for the different Knudsen number. 

Kn=0.1 Kn=0.01 Kn=0.001 Kn=0 (Noslip flow) 

Mode No. 

C Nu C Nu C Nu C Nu 

 

0.94 

 

2.45 

 

1.08 

 

3.47 

 

1.07 

 

3.64 

 

1.09 

 

3.65 

1 

(physical solution) 

-3.11 18.77 -3.18 21.90 -3.19 22.26 -3.19 22.30 2 

5.76 48.63 5.55 56.00 5.54 56.85 5.54 56.96 3 

-8.85 92.69 -8.08 105.90 -8.04 107.45 -8.04 107.62 4 

Table 2. The coefficient and the Nusselt number of possible solutions obtained from modal analysis of temperature distribution for 
different Prandtl number at Kn=0.01 . 

Kn=0.1 Kn=0.01 Kn=0.001 Kn=0 (Noslip flow) 

Mode No. 

C Nu C Nu C Nu C Nu 

 

0.94 

 

2.45 

 

1.08 

 

3.47 

 

1.07 

 

3.64 

 

1.09 

 

3.65 

1 

(physical solution) 

-3.11 18.77 -3.18 21.90 -3.19 22.26 -3.19 22.30 2 

5.76 48.63 5.55 56.00 5.54 56.85 5.54 56.96 3 

-8.85 92.69 -8.08 105.90 -8.04 107.45 -8.04 107.62 4 

 

 

Figure 6. Variation of temperature for different Knudsen 
number at Prandtl =1 for physical Nusselt numbers. 

For example, in No-Slip and Non-Temperature jump 

situation around the wall (Kn=0) the dimensionless 

temperature of flow inside the straight pipe under the 

constant wall temperature is derived as:   

𝑇 =
1.09615

𝑟
𝑀0.6761,0(2.7044𝑟2) 

(34) 

As mentioned previously, the Nusselt number in plain 

pipes is in order 1 which is indicated as mode 1 in this 

investigation.   

After substituting appropriated Nusselt number values 

corresponding to slip scenarios and the calculated C1 

constant (presented in table 1 and 2), into Eq. (31), the 

dimensionless temperature of the flow inside the straight 

 

 

Figure 7. Variation of temperature for different Knudsen 
number at Prandtl =1 for physical Nusselt numbers. 

pipe under the constant wall temperature in micro-

channels for different gaseous fluids will be derived. The 

temperature distributions achieve base in this solution for 

the different Knudsen numbers presented in Figs. 6 and 7.  

 
Conclusion 

An exact analytical solution for the temperature 

distribution and an analytical approach to calculate the 

heat transfer for the gaseous flow in the isothermal pipe is 

presented using the scaling law of the Nusselt number. The 

solution is derived in the form of m kind of Whittaker 

function using a constraint that has presented in previous 
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parts. It is believed that the presented method can be used 

to derive exact analytical solutions of other similar 

scenarios such as the convective heat transfer in isothermal 

conduits with different geometries (such as curved or 

coiled ducts with circular or non-circular shape of cross 

section).  

According to the presented analytical solution the 

principal conclusions of current studies are: 

 It shows that employment of gaseous flow with the 

lower Knudsen numbers leads to higher heat transfers. 

Among the different properties of material and micro-

channel situations, maximum heat transfer is related to 

the case that the Knudsen number is equal to zero (No-

slip flow) for which the Nusselt number achieves its 

maximum value (3.6567856). 

 The Prandtl number exhibits the contrary effect on the 

variation of the Nusselt number and increments in this 

value can elevate the value of Nusslet number up to its 

maximum value around 3.6567856.  

 

Nomenclature 

 radial direction [m] 

 radius of cross section [m] 

�̃� axial direction [m] 

G Pressure gradient in main direction 

[Pa/m] 
h Convection coefficient [ ] 

k coefficient of conductivity [ ] 

Nu  Nusselt number  

( ) 

𝜆 molecular mean free path 

𝐾𝑛 Knudsen number  

(Kn = λ/ro) 

𝐹𝑡 the energy accommodation coefficient 

𝛾 the ratio of specific heats 

 (cp/cv) 

𝛽𝑡 dimensionless temperature jump 

coefficient (βt = 2γKn(Ft − 2)/(1 +

γ)PrFt) 

 pressure [Pa] 

 temperature [K] 

 axial velocity component [m/s] 

U bulk velocity [m/s] 
 Viscosity [Pa s] 

 Density[ ] 

 Stress [Pa] 

𝐹 the tangential momentum 

accommodation coefficient 

𝛽𝑣 dimensionless 

 

Appendix 
 Whittaker function 

A linear homogeneous ordinary differential equation of 

the second order:  

w" + (−
1

4
+

μ

x
+

(1/4) − υ2

x2
)w = 0 (A1) 

where the variables𝑥, 𝑤 and the parameters 𝜐. 𝜇may 

take arbitrary complex values. Equation (A1) represents 

the reduced form of a degenerate hypergeometric 

equation. For 𝜐 = 0the Whittaker equation is equivalent to 

the Bessel equation. 
The function 𝑤𝜇,𝜐(𝑥)satisfies the equation  

𝑤𝜇.𝜐(𝑥) =
𝛤(−2𝜐)

1

2
− 𝜇 − 𝜐

𝑀𝜇.𝜐(𝑥)

+
𝛤(2𝜐)

1

2
− 𝜇 + 𝜐

𝑀𝜇.−𝜐(𝑥) 

(A2) 

The pairs of functions𝑀𝜇.𝜐(𝑥). 𝑀𝜇.−𝜐(𝑥). and 

𝑊𝜇.𝜐(𝑥). 𝑊𝜇.−𝜐(𝑥) are linearly independent solutions of 

the equation (A1). The point 𝑥 = 0is a branching point 

for𝑀𝜇.𝜐(𝑥), and  𝑥 = ∞ is an essential singularity.  

Relation with other functions:  

with the degenerate hypergeometric function: 

𝑀𝜇,𝜐(𝑥) = 𝑥𝜐+
1

2𝑒
−𝑥

2 𝛷(𝜐 − 𝜇 +
1

2
; 2𝜐 + 1; 𝑥) (A3) 

with the modified Bessel functions and the Macdonald 

function:  

𝑀0.𝜐(𝑥) = 22𝜐𝛤(𝜐 + 1)√𝑧𝐼𝜐(
𝑥

2
) (A4) 

𝑊0.𝜐(𝑥) = √
𝑥

𝜋
𝐾𝜐(

𝑥

2
) (A5) 

with the probability integral:  

𝑊
−

1

4
.−

1

4

(𝑥) = 2𝑧
1

4𝑒
𝑥

2𝐸𝑟𝑓𝑐(√𝑥) (A6) 

with the Laguerre polynomials:  

𝑊
𝑛+𝜐+

1

2
.𝜐

(𝑥) = 𝑛! (−1)𝑛𝑧𝜐+
1

2𝑒
−𝑥

2 𝐿𝑛
2𝜐(𝑥) (A7) 
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