
1. Introduction 

The flow of natural gas through transmission 

pipelines is transient due to the changes in demand 

conditions during a 24-h cycle, pressure fluctuations 

at the stations, changes in operating conditions, and 

other factors. Natural gas pipelines are often buried 

underground; therefore, their internal flow can be 

supposed to be isothermal. In addition, the flow has 

relatively low speed and therefore the gas has 

enough time to reach a thermal equilibrium with its 

surroundings; this is another reason for assuming 

the problem as an isothermal flow. 

Natural gas transmission lines are often long, and 

the important parameters in their design are 

typically the longitudinal pressure gradient 

(pressure drop) and the flow rate. Because the main 

changes in this kind of flow are longitudinal 

variations, the problem is mostly studied using a 

one-dimensional approach, and changes in radial 

direction are neglected. Therefore, the friction 

effects between the fluid (gas) and pipe walls are 

modelled as an algebraic term and added to the 

right-hand side of the governing equations, making 

them nonhomogeneous.  

Considering the above-mentioned assumptions, the 

governing equations for the transient flow of 

natural gas through pipelines are hyperbolic in 

nature. The exact solutions of these equations are 

very important in the design and control of lines in 

gas transport networks. To achieve more accurate 

results, either a first-order method on a fine grid or 

a scheme with a high order of accuracy on a coarse 

mesh can be used. Some of the research using the 

former approach is discussed below.  

Zhou and Adewumi [1] presented a new Total 

Variation Diminishing (TVD) method for solving 

differential equations of unsteady one-dimensional 
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flow of natural gas through a horizontal pipe 

without neglecting the inertia term of the 

momentum equation. Other researchers have 

neglected the inertia term in the momentum 

equation to simulate the unsteady flow of natural 

gas in pipelines. That neglect changed the 

governing differential equations from nonlinear to 

linear. The earlier numerical methods, the explicit 

and implicit finite difference methods, and the 

method of characteristics lead to results that are far 

from precise because the inertia term in the 

momentum equations is disregarded. 

Osiadacz [2] evaluated different models of 

unsteady flow simulation. He pointed out that the 

numerical simulation of partial differential 

equations, which represents a dynamic model of a 

network, requires a numerical method with high 

accuracy and low computational time to obtain 

trustworthy results. Ibraheem and Adewumi [3] 

proposed a numerical procedure to simulate the 

unsteady two-dimensional flow of gas; they used a 

particular Runge–Kutta method to determine 

accurate flow properties.  

Mohitpour et al. [4] reported the importance of 

studying unsteady flow in designing and optimizing 

gas transmission lines; they showed that the 

simulation of steady flow was suitable when 

changes in demand were stable. In general, the 

simulation of steady flow is accurate enough when 

there are no dramatic changes in the mass flow rate. 

However, the mass flow rate changes over time, 

making the unsteady flow model more appropriate 

in simulating fluid flow.  

Tao and Ti [5] studied unsteady flow through gas 

transmission lines using an analogy between 

electrical circuit parameters and gas networks. 

Based on their study and due to daily consumption 

peaks, it is possible to have a situation in which the 

available equipment is unable to maintain adequate 

system pressure. Therefore, it is necessary to 

decrease the pressure at certain points of the 

network to equalize the pressures at other points.  

Using a transfer function model and MATLAB 

Simulink, Behbahani-Nejad and Bagheri [6] 

examined the transient flow of natural gas through 

pipelines and gas networks. Behbahani-Nejad and 

Shekari [7] carried out a reduced order modelling 

of the transient flow of natural gas through 

pipelines using the flux vector splitting method and 

the eigenvector approach. 

As mentioned, to achieve a precise solution for 

fluid flow simulation problems, either a first-order 

method on a fine grid or a high-order method on a 

coarse grid can be used. Obviously, using a fine 

grid causes a round-off error problem and increased 

computational cost. Therefore, the second 

technique seems to be more appropriate. As a 

consequence, researchers are often looking for 

methods with a high order of accuracy to carry out 

their simulations. Unfortunately, simulations using 

high-order methods have some constraints, such as 

high fluctuations in properties at flow field 

discontinuities. According to the Godunov theorem 

[8], there is no linear method that has an order 

higher than one and that is monotone. In this 

theorem, the point is the linearity of the method. 

Therefore, if a nonlinear method is used, the 

Godunov theorem is not valid and a monotone 

method may be employed.  

Following the Godunov theorem, many nonlinear 

methods have been proposed by other researchers. 

The TVD method and the Monotonic Upwind 

Scheme for Conservation Laws (MUSCL)–

Hancock technique are two of those methods [9]. 

Despite the many advantages of these methods, the 

ultimate accuracy that can be achieved is second-

order accuracy, and achieving a higher accuracy is 

impossible. To overcome this problem, Titarev and 

Toro [10, 11] invented the Arbitrary DERivative 

(ADER) method, which can provide any arbitrary 

order of accuracy. This method is actually an 

extension of the MUSCL–Hancock technique in 

order to achieve a higher order of accuracy for 

numerical solutions.  

The ADER method is well suited to linear systems 

of equations or scalar nonlinear equations, whereas 

systems of nonlinear equations face various 

problems. One such problem is the complexity of 

calculating temporal derivatives based on spatial 

derivatives using the Cauchy–Kovalevsky 

procedure. Moreover, when the source term in 

equations is not well-posed, this method is unable 

to predict the flow field solution. Dumbser et al. 

[12-16] propose the use of the discontinuous 

Galerkin method, a modified version of the ADER 

method. Called the DG-ADER method, it has the 

advantages of the ADER method but none of its 

deficiencies and is applied to problems such as non-

isothermal gas-solid two-phase flow, governing 

equations of isothermal compressible two-fluid 

models, shallow water equations, and Euler 

equations. Two-phase mixture model equations are 

also solved using this method [17]. An outstanding 

feature of this method is that any arbitrary higher-

order accuracy for a solution can be obtained using 

higher-order polynomials. To the best of our 
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knowledge, however, this method has not been 

applied in solving issues relating to the flow of 

isothermal transient natural gas. In this research, the 

DG-ADER method is used to investigate the 

transient one-dimensional flow of isothermal 

natural gas through pipelines. 

2.  Governing equations and constitutive 

relations 

The flow of isothermal natural gas through a 

pipeline can be described using the following set of 

partial differential equations (PDEs) [1]: 
 

𝜕𝐐

𝜕𝑡
+

𝜕𝐄(𝑸)

𝜕𝑥
− 𝐇(𝐐) = 0 (1) 

where  

𝐐 = (
𝜌

𝜌𝑢) , 𝑬 = (
𝜌

𝜌𝑢2 + 𝑝
) , 𝑯 = (

0

−𝜌𝑓𝑔

𝑢|𝑢|

2𝐷

) (2) 

 

in which 𝜌, 𝑢, 𝑓𝑔, 𝑝, and 𝐷 are the density, velocity, 

friction factor, pressure, and diameter of the pipe, 

respectively. The isothermal and isentropic gas 

equation of state is used to relate the density of the 

gas to its pressure, as follows: 
 

𝑝 = 𝜌𝐶2 (3) 

where C is the speed of sound. 

3. Numerical method 

In the present research, the DG-ADER method is 

used for the numerical simulation of the flow field. 

Using this method, any arbitrary order of accuracy 

with controlled spurious oscillations can be 

achieved. This method involves three main steps. In 

the first step, reconstruction is performed using the 

weighted essentially non-oscillatory (WENO) 

scheme. In the second step, the time evolution is 

performed to calculate a high-order space–time 

polynomial. In the third step, the data obtained in 

the second step is used to compute the conservative 

variables of the flow (i.e., 𝐐 in Eq. (1)), using the 

finite volume scheme; the reader is referred to 

references [2-4] for more details. Some general and 

key points of the method are briefly presented 

below. 

The one-step finite volume discretization of Eq. 

(1) over the space–time control volume 

[xj−1/2, xj+1/2] × [tn, tn+1] reads as: 

q̅j
n+1 = q̅j

n −
∆t

∆x
(F

j+
1

2

− F
j−

1

2

) + ∆tSj
n, (4) 

where ∆x = [xj−1/2, xj+1/2] and ∆t = [tn, tn+1]. The 

average value of a finite volume cell, q̅j
n, is defined 

as follows: 

q̅j
n =

1

∆x
∫ q(x, tn)dx

xj+1/2

xj−1/2

 (5) 

and the integrals of numerical flux at the cell 

boundaries and source terms are defined as appear 

in the following equations: 

𝐹
𝑗+

1

2

=

1

∆𝑡
∫ 𝑔 (𝑞ℎ (𝑥

𝑗+
1

2

− , 𝑡) , 𝑞ℎ(𝑥
𝑗−

1

2

+ , 𝑡)) 𝑑𝑡
𝑡𝑛+1

𝑡𝑛  and 
(6) 

Sj =
1

∆t∆x
∫ ∫ S(qh(x, t))dxdt

xj+1/2

xj−1/2

tn+1

tn . (7) 

 

In Eq. (6), g(Q−, Q+) is a classical Riemann 

solver (e.g., Rusanov scheme; see (5) for more 

schemes). Furthermore, qh is a local space–time 

predictor from the space of piecewise space–time 

polynomials of degree N. This function is computed 

using a local weak form of the governing equations 

(1) on an element. More details about the related 

procedure can be found in [3-4-6]. 

Some important points of the DG-ADER method 

are described briefly, as follows. First, the 

governing system of PDEs (1) is transformed to a 

local space–time reference element, TE = [0; 1] ×

[0; 1] with coordinates ξ and τ, where x = xi−1/2 +

ξΔx and t = tn + τΔt. Second, the obtained system 

of PDEs is multiplied by the space–time test 

function θk(ξ, τ). Third, an integration operator of 

the resultant system of equations over TE is 

performed. Employing integration by parts for the 

time derivative term, one can obtain the following 

relationship: 

[θk, qh]Ti

1 − 〈
∂

∂τ
θk, qh 〉Ti

+

〈θk,
∂

∂ξ
f ∗(qh) 〉Ti

− 〈θk, S∗ (qh)〉Ti
=

[θk, wh
n]Ti

0 , 

(8) 

where 

[a, b]Ti

τ = ∫ a(ξ, τ)b(ξ, τ)dξ
1

0

, 

〈a, b〉Ti
= ∫ ∫ a(ξ, τ)b(ξ, τ)dξdτ

1

0

1

0

 

 

(9) 

and 

f ∗
h(ξ, τ) =

Δt

Δx
F(qh), S∗

h(ξ, τ) = ΔtS(qh). (10) 

 

Furthermore, wh
n is a piecewise polynomial of 

degree N in space and is the initial condition of the 

local Cauchy problem; it can be computed using 

either ENO or WENO reconstruction operators. In 

this paper, the WENO operator is applied to the cell 

averages at time tn to obtain the reconstruction 
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polynomial. A similar notation as that used in [3] is 

employed for the WENO scheme. It is assumed that 

the WENO reconstruction polynomials are given by 

the following series:  

 

𝑤ℎ
𝑛 = 𝑤ℎ(𝑥, 𝑡𝑛) = ∑ 𝜓𝑙

𝑁+1
𝑙=0 (𝑥)�̂�𝑙

𝑛, 

 
(11) 

where N is the polynomial degree of reconstruction 

and ψl represents the reconstruction basis functions. 

Here, the Legendre polynomials are used as the 

space basis functions. In Eq. (11), ŵl
n are expansion 

coefficients.  

For the element local predictor solution qh, the 

cell boundaries fluxes, f ∗
h, and the source term, 

S∗
h, the following relationships are used. In these 

relationships, the Einstein summation rule over two 

repeated indices is used. 

 

qh(ξ, τ) = ∑ θl(ξ, τ)

(N+1)2

l=1

q̂l = θlq̂l, 

f ∗
h(ξ, τ) =

Δt

Δx
F(qh) = ∑ θl(ξ, τ)

(N+1)2

l=1

fl

= θl f̂l, 

S∗
h(ξ, τ) = ΔtS(qh) = ∑ θl(ξ, τ)

(N+1)2

l=1

Ŝl

= θlŜl. 

(12) 

Substituting the above relationships into Eq. (8) 

and performing some mathematical manipulations, 

one can obtain the following equation: 

[θk, θl]Ti

1 q̂l − 〈
∂

∂τ
θk, θl 〉Ti

q̂l +

〈θk,
∂

∂ξ
θl 〉Ti

f̂l − 〈θk, θl 〉Ŝl = [θk, ϕ]Ti

0 ŵl. 
(13) 

In the compact matrix form, Eq. (13) can be 

rewritten as follows: 

K1q̂l
m+1 − MS∗(q̂l

m+1) = f0ŵl − Kξf ∗(q̂l
m), (14) 

 

in which 

𝐾1 = [𝜃𝑘, 𝜃𝑙]𝑇𝑖

1 − 〈
𝜕

𝜕𝜏
𝜃𝑘 , 𝜃𝑙  〉𝑇𝑖

, 

𝐾𝜉 = 〈𝜃𝑘,
𝜕

𝜕𝜉
𝜃𝑙  〉𝑇𝑖

, 

𝑀 = 〈𝜃𝑘, 𝜃𝑙  〉𝑇𝑖
, 𝑓0 =  [𝜃𝑘 , 𝜙]𝑇𝑖

0 . 

 

(15) 

In the recent relationships, M is the mass matrix, 

K_1, K_ξ represents the temporal and spatial 

stiffness matrices, and f_0 is the flux matrix. By 

solving Eq. (14) and obtaining q ̂_l, the conservative 

variable q_h can be computed using Eq. (12). 

Equation (14) is also solved using an iterative 

procedure. It can be shown that the solution is 

converged after N+1 iterations. 

The main steps in the implementation of the DG-

ADER method are as follows:  

1) Nonlinear (non-oscillatory) reconstruction of 

spatial polynomials from the given cell averages 

at time t^n. 

2) Local solution for the initial value problem (14) 

inside each element, where the initial data is 

given by the spatial reconstruction polynomial at 

time t^n. 

3) Numerical integration of the integrals in 

equations (6) and (7) and updating of the cell 

averages according to Eq. (4). 

 

4. Results 

To evaluate the DG-ADER method in analyzing the 

natural gas transient flow through pipelines, two 

real examplesof available field data are simulated. 

These problems are also investigated in reference 

[19] and analyzed by Zhou and Adewumi [1] and 

Behbahani-Nejad and Shekari [7]. 

Fig. 1: Schematic of the first studied problem 

First point 

 
Fig. 2: The gas flow rate at the pipe inlet as a 

function of time for the first case 
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Test case 1: Injection of natural gas into a 

closed-end pipe 
 

A pipe with a length of 91.44 m and a diameter 

of 0.61 m is plugged at its end and an internal 

pressure of 4.136 MPa is maintained. A a triangular 

pulse is imposed on the inlet to change the inlet 

mass flow rate (Fig. 1). The total simulation time of 

the test is 0.8 s. The pulse is such that the inflow 

rate is linearly increased from zero at the initial time 

to 17 MMSCmD in 0.145 seconds and then 

decreased to zero in 0.145 seconds. The sound 

speed and friction factor are 348.1 m/s and 0.03, 

respectively. 

 

The resulting pressure at the pipe inlet is shown 

in Fig. 3 and is compared with the result of the flux 

vector splitting (FVS) method of Steger and 

Warmming used by Behbahani-Nejad and Shekari 

[7]. The results of both methods are also compared 

with the field data. It is observed that very good 

results are obtained using a fourth-order DG-ADER 

method on a grid of 100 cells. The obtained 

pressure distribution is almost closed to the field 

data and is slightly better compared to using the 

FVS method on the same computational grid. 

 

The pressure changes versus time for the pipe 

endpoint are compared with the results of the FVS 

method [7] and field data in Fig. 4. Good agreement 

between the present results and field data and 

slightly better results compared to the results of the 

FVS method at the endpoint are observed. It is 

shown that the pressure does not change with time 

first; an increase in pressure is observed when the 

wave of the injected gas meets the pipe endpoint, 

and then a pressure drop is obtained after gas wave 

reflection (Fig. 4). 

 

The standard volumetric flow rate changes 

during the time in the middle section of the pipe are 

also measured (Fig. 5). The ability of the DG-

ADER method to predict the volumetric flow rate 

changes can be clearly seen in Fig. 5. An increasing 

trend in the volumetric flow rate is observed as the 

gas wave approaches the middle section. As the 

wave passes from this section, the flow rate 

decreases. The reflected wave causes a negative 

flow rate at this section.  

 

 

Fig. 3: Pressure changes at the pipe inlet 

 

 
Fig. 4: Pressure changes at the pipe endpoint 

 

 
Fig. 5: Changes in the mass flow rate at the middle 

section of the pipeline 
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Fig. 6: The effect of increasing the numerical method 

accuracy on the pressure distribution of the endpoint 

 

 

 
 

Fig. 7: The effect of increasing the numerical method 

accuracy on flow rate changes in the middle point of the 

pipe 

 

 
Fig. 8: Mass flux at the outlet section of the second 

test case 

 
 

Fig. 9: Pressure versus time at the pipe outlet on a 

1000-cell grid using the DG-ADER method with different 

accuracy and the FVS method compared with the field 

data 

 

One of the major challenges of the DG-ADER 

method is numerical fluctuations with limited 

amplitude in the flow field discontinuity locations. 

In the studied problem, inherent fluctuations of the 

DG-ADER method do not appear due to the lack of 

discontinuities in the flow filed.  

To evaluate the effect of increasing numerical 

accuracy on the results, pressure changes at the pipe 

endpoint and flow rate changes in the middle point 

of the pipe are investigated using a 100-cell grid 

and are shown in Fig.s 6 and 7, respectively. It is 

observed that the higher the numerical accuracy, the 

greater the accuracy of the results and the better the 

agreement between the numerical results and the 

field data.  

 

Test case 2: The gas pipeline with known 

outlet mass flow rate 

A pipe system of 72259.5 m in length and 0.207 

m in diameter with natural gas flow with 0.675 

specific gravity and 10 ºC in temperature is 

simulated as the second case [20]. The gas viscosity 

and pipe roughness height are 11.84×10-6 kg.m-1s-

1 and 0.617 mm, respectively. Because there are no 

initial conditions, the steady state conditions are 

considered as the initial conditions for the problem. 

The friction factor is supposed to be constant for the 

duration and equal to the corresponding steady state 

value. Relating to the boundary conditions, the inlet 

pressure is set to be constant, whereas at the pipe 

outlet a change of flow rate (Fig. 8) is imposed due 

to the demand changes during a day. This problem 

is also studied by Zhou and Adewumi [21] using a 

TVD method, by Tentis et al. [22] using the method 
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of lines and an adaptive mesh, and by Behbahani-

Nejad and Shekari [7] using the FVS method. 

 

Pressure changes versus time at the end section 

of the pipe are shown in Fig. 9 and compared with 

the field data and the results of the FVS method on 

a 1000-cell grid. It is observed that the results of the 

third and fourth order of the DG-ADER method are 

in good agreement with field data. An increase and 

a drop in pressure at the outlet are observed due to 

the demand flow rate increase and decrease, 

respectively. It is also shown that the third and 

fourth order of the DG-ADER method can predict 

the maximum outlet pressure very well. 

 

Pressure distribution at different sections of the 

pipe is shown in Fig. 10. It is observed that the 

pressure at different sections changes by the same 

trend; however, the effect of change in the mass 

flow rate at the outlet section is sensed at any point 

at a time proportional to the distance from the 

outlet. 

The outstanding point in these two cases is that 

there are no low-amplitude fluctuations in the 

obtained results. One feature of the DG-ADER 

method is limiting (but not completely eliminating) 

the amplitude of the fluctuations. However, there is 

no fluctuation in these two cases because the 

physics are such that no discontinuity happens in 

their flows. Therefore, there is no place for 

oscillations to appear in the flow fields. Therefore, 

the DG-ADER method seems to be a very good 

method for analyzing real transient problems. 

 
Fig. 10: Pressure versus time in different sections of 

the pipe using a third-order DG-ADER method on a 100- 

cell computational grid 

 

 
Fig. 11: Pressure distribution along the pipe at 

different times 

 

Pressure distribution along the pipe at different 

times is shown in Fig. 11. Comparing the results 

with those of Zhou and Adewumi [22], the ability of 

the DG-ADER method in this research to simulate 

transient flow problems of natural gas through 

pipelines is observed. 

5. Conclusion 

The DG-ADER method is a novel method to 

reach any arbitrary order of accuracy in space and 

time. In the present research, this scheme was used 

for the numerical simulation of transient natural gas 

flow through pipelines. After describing the 

governing equations and required constitutive 

relationships, the DG-ADER method was described 

briefly. Two real problems were simulated using the 

DG-ADER scheme up to a fourth order of accuracy. 

The results showed that the DG-ADER method can 

be used to simulate transient natural gas flows with 

good accuracy, even on coarse meshes.  

One of the main shortcomings of the DG-ADER 

method is the appearance of very small amplitude 

oscillations near the flow discontinuities. The 

results showed that there were no spurious 

oscillations in the transient natural gas flow in pipes 

because the physics are such that no discontinuity 

happens in this type of flow. Therefore, there is no 

place for oscillations to appear in flow fields. 

Consequently, this method is recommended for use 

in the numerical simulation of natural gas flow in 

pipelines. 
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Nomenclature 

C  speed of sound 

D diameter of the pipe 

F0  flux matrix 

fg  friction factor  

𝑓∗
ℎ
 cell boundary fluxes  

K1 temporal stiffness matrix 

Kξ spatial stiffness matrix 

M  mass matrix 

p  pressure 

𝑆∗
ℎ source term 

t  time  

u  velocity 

�̂�𝑙
𝑛 expansion coefficients 

ρ density 

ψl reconstruction basis functions 
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