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Effects of different volumetric fractions and Reynolds number on forced convection heat 
transfer through water/aluminum oxide nanofluid in a horizontal tube are investigated. The 
flow regime is laminar and the method of simulation is the axisymmetric lattice Boltzmann 
method (ALBM).  The profiles of velocity and temperature were uniform at the input section, 
on the tube walls the uniform heat flux was considered; moreover, hydrodynamic, and 
thermal development conditions at the output section were applied. It was observed that an 
increase in the volumetric concentration of the nanoparticles added to the forced convection 
heat transfer coefficient and Nusselt number of the nanofluid, as compared to the base fluid. 
For a volumetric fraction of 5% and Reynolds number of 100 at the input section of the tube 

(0.1 ≤
X

D
≤ 7) the forced convection heat transfer coefficient increased by 24.165%, while an 

average increase of 21.361% was observed along the entire length of the tube (0 ≤
𝑥

𝐷
≤ 30). 

A comparison between the improvements in heat transfer at the two input temperatures, it 
was found that the forced convection heat transfer coefficient and Nusselt number will 
increase further at the lower input temperature; Moreover, with increasing Reynolds 
number, the percent improvements in forced convention heat transfer coefficient and Nusselt 
number increased. 
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1. Introduction    

This Researchers’ recent efforts toward enhancing heat 

transfer has led to the invention of different methodologies 

for such purpose [1]. The paramount importance of heat 

transfer in various industries has always been a cause for 

improving heat transfer methods and optimizing them for 

industrial contexts. Poor heat transfer properties of typical 

fluids represent the first serious barrier against enhancing 

the efficiency of heat exchangers. The developments in 

nanotechnology during the past two decades and the 

application of nanofluids as a heat transfer agent have 

provided researchers with new approaches [2]. 

Eastman et al. [3] measured the thermal conductivity of 

nanofluids by evaluating aluminum oxide, copper and 

copper oxide nanoparticles in water and oil. In their study, 

they observed a 60% increase in thermal conductivity 
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upon adding the nanoparticles up to 5%. In another work 

[4], they used copper nanoparticles of smaller than 10 nm 

in diameter, ending up with a 40% increase in thermal 

conductivity of ethylene glycol at a nanoparticle 

concentration of 0.3%. They attributed such an increase 

mainly to the large surface-area-to-volume ratio of the 

nanoparticles. Assuming that a nanofluid largely mimics 

the behavior of an equivalent single-phase fluid rather than 

a liquid-solid mixture, Xuan and Roetzel [5] proposed two 

different methods for developing relationships for 

predicting heat transfer through nanofluid. According to 

the assumption made by Xuan and Roetzel, in absence of 

any slipping velocity in between the continuous phase 

(liquid) and discrete phase (the nanoparticles dispersed 

across the liquid) and upon an establishment of 

thermodynamic equilibrium between the nanoparticles 

and the liquid, the resultant nanofluid can be deemed a 
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pure (single-phase) fluid. Following a second approach, 

Xuan and Roetzel focused on the random particle motions 

under the effect of Brownian forces, friction, and gravity 

and proposed a dispersion model for considering the 

impact of thermal dispersion. 

Wen and Ding [6] experimentally investigated forced 

convection heat transfer through the water/Al2O3 

nanofluid in a copper-made tube under laminar flow. 

Results of the experiments performed by these researchers 

showed a superior increase in forced convection heat 

transfer through the nanofluid rather than the base fluid; 

moreover, the increase was even more pronounced in the 

input section of the tube and somewhat decreased as one 

moved along the axis of the tube. Accordingly, it was 

suggested that the thermal entrance length of the nanofluid 

is larger than that of the base fluid, and this length 

increases with increasing nanoparticle concentration. 

Furthermore, observations indicated increased heat 

transfer through the nanofluid with increasing Reynolds 

number and the volumetric fraction of the nanoparticles. 

They further figured out that the then-existing equations 

(Shah’s equation [7]) could not be applied for predicting 

forced convection heat transfer through nanofluids along 

the input section of a tube. They referred to particle 

migration and disorders in the boundary layer (reduced 

thickness of the boundary layer) as the main causes of the 

enhanced heat transfer. Noghrehabadi and Pourrajab [8] 

experimentally investigated the forced convection heat 

transfer coefficient and Nusselt number through water-

Al2O3 nanofluid in a circular tube under fixed-heat transfer 

boundary conditions. For this purpose, they utilized 

aluminum oxide nanoparticles with an average diameter of 

20 nm and calculated the heat transfer coefficient of the 

nanofluid at different Reynolds numbers ranging from 

1057 to 2070 for three volumetric fractions: 0.1%, 0.3%, 

and 0.9%. A review of the results showed that the forced 

convection heat transfer coefficient and Nusselt number of 

the nanofluid were higher than those of the base fluid with 

the highest increase in heat transfer (~16.8%) observed at 

a volumetric fraction of 0.9% and a Reynolds number of 

2070. In addition, it was found that the number of 

increases in forced convection heat transfer coefficient and 

Nusselt number are functions of the volumetric fraction of 

the nanoparticles. Fitting a curve to their experimental 

data, they developed a mathematical model for estimating 

the Nusselt number. The model provided good accuracy 

against the respective experimental data. 

Hassan-Zadeh et al. [9] conducted a three-dimensional 

study on forced convection heat transfer through 

water/Al2O3 nanofluid in a tube with a laminar flow 

regime with the use of the finite-volume method and 

considered a fully developed velocity profile at the input 

section of the tube. Simulations were performed for a wide 

range of volumetric fractions of the nanoparticles for two 

different nanoparticle sizes. The results indicated that the 

incorporation of Al2O3 nanoparticles into the base fluid 

enhanced the rate of growth of the thermal boundary layer  

and that this growth is a function of the volumetric 

concentration and size of the nanoparticles.  

Most of the numerical research on nanofluids, 

including those cited above, have been performed using 

such methods as finite-volume and finite-difference 

methodologies. In recent years, following a statistical 

mechanics-based approach and being derived from the 

kinetic theory of gases [10], the Lattice Boltzmann method 

has gained great deals of attention among researchers. 

Since the present research is grounded in the Lattice 

Boltzmann method, a brief description of the research 

works wherein such a method has been used is presented 

in the following. 

Considering the external and internal forces affecting 

suspended nanoparticles and the nanoparticle-fluid 

interactions, Xuan and Yao [11] proposed a Lattice 

Boltzmann model for simulating the processes of flow and 

energy transfer through nanofluids. In their study, they 

emphasized the irregular motion of the nanoparticles and 

calculated the distribution of the suspended nanoparticles 

in the nanofluid using a series of forces. Based on their 

findings, the Brownian force was the dominant factor 

affecting the random convection and accumulation of 

nanoparticles. Kefayati et al. [12] utilized the Lattice 

Boltzmann methodology for examining free heat transfer 

through water-silicon dioxide in tall vessels. Their 

experiments targeted different volumetric fractions 

ranging between 0 and 4 for Rayleigh numbers from 103 

to 105. They showed that, at all of the studied Rayleigh 

numbers and for all ratios of the rectangular vessel, the 

presence of nanofluid enhanced the Nusselt number over 

that of the base fluid. Servati et al [13] studied the impact 

of magnetic field on forced convection flow of a nanofluid 

in a channel that is filled with porous media by use of 

LBM. They concluded that by increasing the volume 

fractions of AL2O3, the outlet temperature and velocity at 

the outlet of the channel, and also the Nusslet number 

showed a significant increase. Sidik and Mamat [14] 

reported comprehensive research on recent developments 

and research works on simulating the flow and heat 

transfer of nanofluids by the use of the Lattice Boltzmann 

method. In this comprehensive study, numerous research 

works were reviewed on different geometries, different 

nanoparticles, laminar and turbulent flow regimes, and 

convection heat transfer (free, forced, and mixed) with 

single-phase and two-phase models for nanofluids. Cheng 

et al. [15] utilized the lattice Boltzmann method 

implemented on compute unified device architecture-

enabled graphical processing unit to investigate the 

multiphase fluid pipe flow. The vertical and horizontal 

multiphase pipes flow were simulated and discussed.  

Goodarzi et al. [16] developed a Nanoscale method of 

lattice Boltzmann to predict the fluid flow and heat 

transfer of air through the inclined lid-driven 2-

D cavity while a large heat source is considered inside it. 

Nazari and Kayhani [17] provided a comparative study on 

natural convection in an open-end cavity using LBM. They 

simulated the result by applying two different 

https://www.sciencedirect.com/science/article/pii/S0378437118307362#!
https://www.sciencedirect.com/topics/physics-and-astronomy/nanoscale
https://www.sciencedirect.com/topics/physics-and-astronomy/fluid-flow
https://www.sciencedirect.com/topics/physics-and-astronomy/cavities
https://www.sciencedirect.com/topics/physics-and-astronomy/heat-sources


 R.Bahoosh / JHMTR 8 (2021) 71- 85 73 

 

hydrodynamic and two different thermal boundary 

conditions (with first and second-order accuracy), which 

indicated the same Nusselt number in all boundaries. 

Bahoosh et al. [18] presented a two-dimensional model of 

a polymer fuel cell. They used LBM to simulate the single-

phase fluid flow and mass transfer within the cathode 

microstructure and investigated the effects of the gas 

diffusion layer structure (carbon fibers diameters changes) 

on the reactive gas flow. They showed that the increase in 

the carbon fibers' diameter causes the uniform distribution 

of oxygen throughout the gas diffusion layer. 

Shomali and Rahmati [19] developed a Cascade LBM 

method with a non-constant Bosanquet parameter to 

observe the gas flows in a microchannel. The results of the 

proposed method showed an improvement in comparison 

with the classic methods. 

As is evident from a review of the above-mentioned 

pieces of literature, many numerical and experimental 

works have been done on studying heat transfer through 

nanofluids in various geometries and boundary conditions 

for different types of nanofluid. However, to the best of 

our knowledge, no two-dimensional study has been 

performed on steady laminar forced convection heat 

transfer in a tube with fixed heat flux on the walls using 

the Lattice Boltzmann method. Consequently, in the 

present work, the axisymmetric lattice Boltzmann method 

(ALBM) to both the flow part and energy part under fixed 

heat flux on the walls of the tube are applied; uniform 

velocity and temperature profiles have been assumed at the 

input section of the tube, i.e. the flow and temperature 

develop along the tube. In addition, the effect of input 

temperature on forced convection heat transfer through the 

nanofluid was studied. 

 

2. Problem description Style 

The geometry of the studied problem is demonstrated 

schematically in Figure 1. It is a tube at a length-to-

diameter ratio of 
𝐿

𝐷
 =  30. The no-slip condition was 

applied to the wall of the tube, with a fixed heat flux of 

𝑞″ = 6000 w/m2 applied to it. As an incompressible 

nanofluid, water / Al2O3 nanofluid was sent into the tube 

with laminar flow in steady-state and uniform velocity 

(𝑢 =  𝑈𝑖𝑛) and temperature (𝑇𝑖𝑛 =  288𝐾 or 𝑇𝑖𝑛 =

 293𝐾) at the input section.  At the exit, fully developed 

conditions both hydrodynamically and thermally are 

applied. Reynolds number of the fluid flowing into the 

tube was fixed at 50, 75, and 100. The nanoparticles were 

assumed to be spherical with an average particle diameter 

of 20 nm. Those were supposed to be in thermodynamic 

equilibrium with the base fluid with no-slip concerning its 

molecules. 

 

3. Numerical method description 

The numerical method that is utilized in this research is 

explained as follows. 

 

 

 

 

 

 

 

 

Figure 1. Schematics of the problem in a tube. 

 

3.1. Axisymmetric lattice Boltzmann method 
for hydrodynamic part of the flow 

To simulate axisymmetric flows, Zhou [20] revised the 

so-called general axisymmetric lattice Boltzmann method 

[21] to eliminate the need for calculating the velocity 

gradients. The Zhou has modified the Lattice Boltzmann 

equation with force and source/well terms is as follows: 

𝑓𝛼(�⃗� + 𝑒𝛼𝛥𝑡, 𝑡 + 𝛥𝑡) − 𝑓𝛼(�⃗�, 𝑡)

= −𝜔ℎ[𝑓𝛼(�⃗�, 𝑡)

− 𝑓𝛼
𝑒𝑞
(�⃗�, 𝑡)] 

 + 𝑤𝛼𝜃 𝛥𝑡 +
𝛥𝑡

𝜅𝑐2
𝑒𝛼𝑖𝐹𝑖  

(1) 

Where 𝑓𝛼 and 𝑓𝛼
𝑒𝑞

 are the particle and the local 

equilibrium distribution function respectively. 𝛥𝑡, �⃗�, 𝑤𝛼 

and 𝜃 are the time step, a coordinate vector, a series of 

weighting factors and the source or sink term as per 

respectively. 

𝜃 = −
𝜌𝑢𝑟
𝑟

 (2) 

Moreover, Fi is the force term with its definition 

expressed as follows: 

𝐹𝑖 = −
𝜌𝑢𝑖𝑢𝑟
𝑟

−
2𝜌𝑣𝑢𝑟
𝑟2

𝛿𝑖𝑟 (3) 

and   is expressed as follows: 

𝜅 =
1

𝑐2
∑𝑒𝛼𝑥𝑒𝛼𝑥
𝛼

=
1

𝑐2
∑𝑒𝛼𝑟𝑒𝛼𝑟
𝛼

 (4) 

where 𝑒𝛼𝑖 is the ith element of the velocity vector for a 

particle in 𝛼 direction, 𝜔ℎ is an effective relaxation time 

(hydrodynamic frequency) in relation to the hydrodynamic 

dimensionless single relaxation time, 𝜏ℎ−𝑐𝑦, with the 

following definition: 

𝜔ℎ

=

{
 
 

 
 
1

𝜏ℎ−𝑐𝑦
,                                 𝑟 = 0

1

𝜏ℎ−𝑐𝑦
[1 +

(2𝜏ℎ−𝑐𝑦 − 1)𝑒𝛼 𝑟𝛥𝑡

2𝑟
]  ,   𝑟 ≠ 0

 
(5) 

In Equation (5), the definition of the hydrodynamic 

dimensionless single relaxation time in a cylindrical 

coordinate system is as follows: 
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𝜏ℎ−𝑐𝑦 = (
𝜈𝐿𝐵
𝑐𝑠
2𝛥𝑡

+ 0.5) (6) 

If we use the two-dimensional lattice (𝐷2𝑄9) that 

shown in Figure 2, the value of 𝑤𝛼 will be as follows: 

𝑤𝛼 =

{
 
 

 
 
4

9
               𝛼 =  0

1

9
               𝛼 = 1,3,5,7 

1

36
             𝛼 = 2,4,6,8

 (7) 

While 𝑒𝛼 is defined as follows: 

𝑒𝛼

= {

(0,0),                                                       𝛼 = 0

𝜆𝛼 𝑐 [𝑐𝑜𝑠
(𝛼 − 1)𝜋

4
, 𝑠𝑖𝑛

(𝛼 − 1)𝜋

4
] , 𝛼 ≠ 0

 
(8) 

In the above equation, 𝜆𝛼denotes the following 

expression: 

𝜆𝛼 = {
1     𝛼 = 1,3,5,7

√2   𝛼 = 2,4,6,8
 (9) 

where 𝜅 is a constant which takes a value of 6 for a 

𝐷2𝑄9 lattice. 

Macroscopic variables of the flow, including density 

and axial and radial velocity components of the fluid, are 

defined as follows: 

𝜌 = ∑𝑓𝛼

8

𝛼=0

 (10) 

𝜌 . 𝑢𝑥 = ∑𝑒𝛼 . 𝑓𝛼

8

𝛼=1

 (11) 

𝜌 . 𝑢𝑟 = ∑𝑒𝛼 . 𝑓𝛼

8

𝛼=1

 (12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The two-dimensional 9-velocity lattice (𝐷2𝐷9) [20]. 

 

 

 

Local distribution function, 𝑓𝛼
𝑒𝑞

, is as follows: 

𝑓𝛼
  𝑒𝑞
= 𝑤𝛼 (1 + 3

𝑒𝛼𝑖𝑢𝑖
𝑐2

+
9

2

𝑒𝛼𝑖𝑒𝛼𝑗𝑢𝑖𝑢𝑗

𝑐4

−
3

2

𝑢𝑖𝑢𝑖
𝑐2
) 

(13) 

Equation (1) can be solved at either of two stages: 

collision and streaming. 

The flow field at collision stage: 

𝑓𝛼(�⃗�, 𝑡 + 𝛥𝑡) − 𝑓𝛼(�⃗�, 𝑡)

= −𝜏𝛼[𝑓𝛼(�⃗�, 𝑡)

− 𝑓𝛼
𝑒𝑞(�⃗�, 𝑡)] 

                                        + 𝑤𝛼𝜃 𝛥𝑡 +
𝛥𝑡

𝜅𝑐2
𝑒𝛼𝑖𝐹𝑖 

(14) 

The flow field at the streaming stage: 

Equation (14) expresses the collision stage wherein the 

post-collision functions, 𝑓𝛼(�⃗�, 𝑡 + 𝛥𝑡), are calculated at 

𝑡 + 𝛥𝑡 as functions of the local and equilibrium 

distribution functions at time t. At the streaming 

(propagation) stage, the distribution functions propagate 

across the lattice upon collision. It is worth noting that the 

main features of the modified model include as follows. 

First, the modified version has all features of the original 

Zhou’s model [21], second, the new introduced source and 

force terms include no velocity gradient, making them 

simpler, than the existing designs [22]-[23], and third, it 

can easily recover the Navier-Stocks equation similar to 

the standard lattice Boltzmann method. 

 

3.2. Axisymmetric lattice Boltzmann method 
for the thermal part of the flow 

Equation (16) expresses the lattice Boltzmann equation 

for temperature distribution function using the 𝐷2𝑄9 

lattice arrangement for a general node inside the solution 

domain in a cylindrical coordinate system, as indicated in 

Reference [24]: 

𝑔𝛼(�⃗� + 𝑒𝛼𝛥𝑡, 𝑡 + 𝛥𝑡) − 𝑔𝛼(�⃗�, 𝑡) 

        = −𝜔𝑡[𝑔𝛼(�⃗�, 𝑡) − 𝑔𝛼
𝑒𝑞(�⃗�, 𝑡)]

+ (1 − 0.5 𝜔𝑡) 𝛥𝑡 𝑆𝛼(�⃗�, 𝑡) 
(16) 

In Equation (16), given the choice of 𝐷2𝑄9 lattice to 

represent the lattice Boltzmann, the 𝑔𝛼(�⃗�, 𝑡) denotes the 

temperature distribution functions along discrete velocity 

vector, 𝑒𝛼, at point �⃗�(𝑟, 𝑥) and time t, with 𝛼 = 0,1, . . . ,8. 

Moreover, 𝑔𝛼
𝑒𝑞

 represent the equilibrium distribution 

functions for temperature, 𝑆𝛼(�⃗�, 𝑡) is the source term, and 

𝜔𝑡 is the thermal frequency, as defined in the following: 

𝜔𝑡 =
[1 + (

𝑒𝛼𝑟 𝜏𝑡−𝑐𝑦 𝛥𝑡

𝑟
)]

(𝜏𝑡−𝑐𝑦 + 0.5)
 (17) 

For an axisymmetric lattice Boltzmann model in a 

cylindrical coordinate system, the source term in Equation 

(16) is written as follows: 
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𝑆𝛼 = −
𝑢𝑟
𝑟
𝑔𝛼
𝑒𝑞

 (18) 

Equation (16) can also be solved in two stages: collision 

and flow. 

The temperature field at collision stage: 

�̃�𝛼(�⃗�, 𝑡 + 𝛥𝑡) − 𝑔𝛼(�⃗�, 𝑡) 

            = −𝜔𝑡[𝑔𝛼(�⃗�, 𝑡) − 𝑔𝛼
𝑒𝑞(�⃗�, 𝑡)]

+ (1 − 0.5 𝜔𝑡) 𝛥𝑡 𝑆𝛼(�⃗�, 𝑡) 
(19) 

The temperature field at the flowing stage: 

𝑔𝛼(�⃗� + 𝑒𝛼𝛥𝑡, 𝑡 + 𝛥𝑡) = �̃�𝛼(�⃗�, 𝑡 + 𝛥𝑡) (20) 

The required thermal equilibrium distribution functions 

were taken from Reference [24], as expressed in Equation 

(21): 

𝑔𝛼
𝑒𝑞
= 𝜌 𝑇 𝑤𝛼 {1 +

𝑒𝛼 . �⃗⃗�

𝑐𝑠
2

+
1

2
[
(𝑒𝛼 . �⃗⃗�)

2

𝑐𝑠
4

−
�⃗⃗�. �⃗⃗�

𝑐𝑠
2
]} 

(21) 

In this equation, 𝑤0 =
4

9
, 𝑤1−4 =

1

9
, and 𝑤5−8 =

1

36
 are 

weighting factors in the 𝐷2𝑄9 model and T is the fluid 

temperature in the lattice Boltzmann environment. 

Moreover, �⃗⃗� = (𝑢𝑥 , 𝑢𝑟) denotes the macroscopic velocity 

vector where ux and ur represent the axial and normal 

components of the macroscopic velocity vector in the 

lattice Boltzmann environment. 𝑐𝑠 = √𝑅𝑇 is the sound 

velocity in the lattice Boltzmann, which is equal to 𝑐𝑠 =
1

√3
 in the 𝐷2𝑄9 model, with R being the universal gas 

constant for an ideal gas. 

Discrete velocity vector, 𝑒𝛼, for 𝛼 direction is given as 

Equation (22). 

𝑒𝛼 =

{
 
 

 
 

(0,0) ⋅ 𝑐,   𝛼 = 0
(𝑐𝑜𝑠[(𝛼 − 1)𝜋/2] ,

𝑠𝑖𝑛[(𝛼 − 1)𝜋/2]) ⋅ 𝑐,  𝛼 = 1,2,3,4  
(𝑐𝑜𝑠[(2𝛼 − 9)𝜋/4] ,

𝑠𝑖𝑛[(2𝛼 − 9)𝜋/4])√2 ⋅ 𝑐,  𝛼 = 5,6,7,8

 

 

(22

) 

where 𝑐 = √3𝑅𝑇 =
𝛥𝑥

𝛥𝑡
 is the lattice Boltzmann velocity 

with the time step t  and lattice step x . Finally, the 

macroscopic temperature of the fluid is determined as 

follows: 

𝑇 =
∑ 𝑔𝛼
8
𝛼=0

[1 + 0.5 𝛥𝑡
𝑢𝑟

𝑟
]
 (23) 

The value of 𝜏𝑡−𝑐𝑦 in Equation (17) is a function of 

thermal diffusivity (𝛼𝑡), as follows: 

𝜏𝑡−𝑐𝑦 = (
𝛼𝑡
𝑐𝑠
2𝛥𝑡

+ 0.5) (24) 

 

3.3. Boundary conditions 
The application of boundary conditions in the lattice 

Boltzmann method is a relatively complex matter. This 

complexity stems from the fact that there is still no 

physical understanding of the behavior of distribution 

functions along the boundaries. For a general problem, 

there is nothing but macroscopic parameters of the flow. 

Therefore, it is necessary to translate this macroscopic 

information into the information required for the 

distribution function in the mesoscopic scale. There is no 

single methodology for performing this translation step. 

Inappropriate performance of this stage imposes 

significant impacts on not only the accuracy and validity 

of the subsequent numerical simulations but also stability 

and convergence of the lattice Boltzmann method. 

3.3.1. Boundary conditions 
In this research, the boundary conditions proposed by 

Chang et al. [25] and Ho et al. [26] were utilized to 

determine the unknown density distribution functions 

along the input boundaries, lower and upper walls of the 

tube. This method combines known local values with a 

corrector. 

Figure 3 shows the tube boundaries and directions of 

the density distribution functions along the boundaries. It 

is worth noting that the unknown distribution function is 

marked as red arrows. 

Unknown distribution functions f1, f5, and f8 at the input 

boundary of the tube are as follows: 

𝑓1 = 𝑓3 +
2

3
𝜌 𝑢𝑟 (25) 

𝑓5 = 𝑓7 +
1

6
𝜌 𝑢𝑥 +

1

2
𝜌 𝑢𝑟 −

1

2
(𝑓2 − 𝑓4) (26) 

𝑓8 = 𝑓6 +
1

6
𝜌 𝑢𝑥 −

1

2
𝜌 𝑢𝑟 +

1

2
(𝑓2 − 𝑓4) (27) 

Besides, unknown distribution functions f2, f5, and f6 on 

the lower wall of the tube are as follows: 

𝑓2 = 𝑓4 (28) 

𝑓5 = 𝑓7 −
1

2
(𝑓1 − 𝑓3) (29) 

𝑓6 = 𝑓8 +
1

2
(𝑓1 − 𝑓3) (30) 

The unknown distribution functions f4, f7, and f8 on the 

upper wall of the tube are as follows: 

𝑓4 = 𝑓2 (31) 

𝑓7 = 𝑓5 +
1

2
(𝑓1 − 𝑓3) (32) 

 



76 R.Bahoosh / JHMTR 8 (2021) 71- 85 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Mass density distribution functions at boundary 
points along the tube. 

 

𝑓8 = 𝑓6 −
1

2
(𝑓1 − 𝑓3) (33) 

The vector of velocity at the output section of the tube 

is unknown; however, given the larger length-to-diameter 

ratio of the tube in this study, the velocity profile at the 

output section of the tube is expected to reach the fully 

developed state. If the output boundary of the flow field is 

located at i = N, then the values of the unknown functions 

f3, f6, and f7 along such boundary can be obtained from the 

first-order extrapolation method proposed as follows [27]:  

𝑓3,𝑁 = 𝑓3,𝑁−1 (34) 

𝑓6,𝑁 = 𝑓6,𝑁−1 (35) 

𝑓7,𝑁 = 𝑓7,𝑁−1 (36) 

Moreover, to enhance the solution accuracy, one can 

adopt second-order extrapolation, as follows:  

𝑓3,𝑁 = 2𝑓3,𝑁−1 − 𝑓3,𝑁−2 (37) 

𝑓6,𝑁 = 2𝑓6,𝑁−1 − 𝑓6,𝑁−2 (38) 

𝑓7,𝑁 = 2𝑓7,𝑁−1 − 𝑓7,𝑁−2 (39) 

 

3.3.2. Boundary conditions 
The state of temperature distribution functions along 

the tube boundaries in a 𝐷2𝑄9 lattice Boltzmann model is 

the same as that of density distribution functions. In this 

research, the boundary conditions proposed in Ref. [27] 

were used to determine unknown particle temperature 

distribution functions along the input and output 

boundaries. To formulate unknown particle temperature 

distribution functions along the lower and lower walls of 

the tube, the boundary conditions proposed in Ref. [28] 

were utilized. Figure 4 shows the tube boundaries along 

with the directions of the density distribution functions  

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Temperature distribution functions at points along 
the tube boundary. 

along the boundaries. It is noteworthy that the unknown 

distribution functions are highlighted as red arrows. 

The unknown distribution functions g1, g5, and g8 along 

the tube boundary were defined as follows: 

𝑔1 = 𝑇𝑖𝑛(𝑤1 + 𝑤3) − 𝑔3 (40) 

𝑔5 = 𝑇𝑖𝑛(𝑤5 + 𝑤7) − 𝑔7 (41) 

𝑔8 = 𝑇𝑖𝑛(𝑤8 + 𝑤6) − 𝑔6 (42) 

In the above equations, Tin is the nanofluid temperature 

at the tube boundary, and 𝑤1,3,5,6,7,8 are weighting factors. 

In the present problem, constant heat flux was applied 

on the tube walls; therefore, adopting the Fourier’s law at 

r = ± R gives: 

−𝑘𝑛𝑓
𝜕𝑇

𝜕𝑟
= 𝑞″   

 𝑇=𝑔 
→        − 𝑘𝑛𝑓

𝜕𝑔

𝜕𝑟
= 𝑞″ 

(43) 

In Equation (43), knf is the thermal conductivity of the 

nanofluid passing through the conduit, 𝑞′′is the constant 

heat flux applied to the tube wall, and g is the temperature 

distribution function. If the lower wall is located at 𝑗 = 0, 

then the unknown temperature distribution functions on 

the lower wall of the tube can be written as follows: 

𝑔3(𝑖, 0) = 𝑔3(𝑖, 1) +
𝑞″𝛥𝑟

𝑘𝑛𝑓
 

(44) 

𝑔5(𝑖, 0) = 𝑔5(𝑖, 1) +
𝑞″𝛥𝑟

𝑘𝑛𝑓
 

(45) 

𝑔6(𝑖, 0) = 𝑔6(𝑖, 1) +
𝑞″𝛥𝑟

𝑘𝑛𝑓
 

(46) 

If the upper wall is located at j = M, then the unknown 

temperature distribution functions on the upper wall of the 

tube can be written as follows: 

𝑔4(𝑖,𝑀) = 𝑔4(𝑖,𝑀 − 1) +
𝑞″𝛥𝑟

𝑘𝑛𝑓
 (47) 

𝑔7(𝑖,𝑀) = 𝑔7(𝑖,𝑀 − 1) +
𝑞″𝛥𝑟

𝑘𝑛𝑓
 (48) 
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Table 1. Thermophysical properties of different phases of the nanofluid. 

Liquid phase(water)[29] Solid phase [8] Property  
𝑘𝑏𝑓 = −9.2784 × 10

−6 × 𝑇𝑖𝑛
2  

        + 0.0021476 × 𝑇𝑖𝑛 + 0.55855 
46 

𝑊

(m.K)
 

𝑘 

𝜇𝑏𝑓 = 0.1966 × 10
−3 × 𝑇𝑖𝑛

2  

        − 0.028469 × 𝑇𝑖𝑛 + 1.4769 
--- 𝜇 

𝜌𝑏𝑓 = −0.31429 × 10
−2 × 𝑇𝑖𝑛

2  

        − 0.12429 × 𝑇𝑖𝑛 + 1002.2 
3890 

Kg

𝑚3
 

𝜌 

𝑃𝑟𝑏𝑓 =
𝜈𝑏𝑓

𝛼𝑏𝑓
 --- 𝑃𝑟 

(𝑐𝑝)𝑏𝑓 =
𝑘𝑏𝑓𝑃𝑟𝑏𝑓

𝜇𝑏𝑓
 

880 J/Kg.K 𝑐𝑝 

--- 𝜙 = 0.01, 0.03, 0.05 𝜙 

𝑔8(𝑖,𝑀) = 𝑔8(𝑖,𝑀 − 1) +
𝑞″𝛥𝑟

𝑘𝑛𝑓
 (49) 

Given the larger length-to-diameter ratio of the tube in 

this study, the temperature profile at the output section of 

the tube is expected to reach a fully developed state, so that 

temperature variations in flow direction at the output 

boundary would be negligible. If the output boundary of 

the temperature field is located at i = N, then the values of 

the unknown functions along such boundary can be 

obtained from the first-order extrapolation method 

proposed, as follows [27]:  

𝑔3,𝑁 = 𝑔3,𝑁−1 (50) 

𝑔6,𝑁 = 𝑔6,𝑁−1 (51) 

𝑔7,𝑁 = 𝑔7,𝑁−1 (52) 

Moreover, to enhance the solution accuracy, one can 

adopt second-order extrapolation, as follows:  

𝑔3,𝑁 = 2𝑔3,𝑁−1 − 𝑔3,𝑁−2 (53) 

𝑔6,𝑁 = 2𝑔6,𝑁−1 − 𝑔6,𝑁−2 (54) 

𝑔7,𝑁 = 2𝑔7,𝑁−1 − 𝑔7,𝑁−2 (55) 

3.4. Thermophysical properties of the 
nanofluid 

The thermophysical properties of different phases of 

the nanofluid are detailed in Table 1. As can be observed 

in this table, density, viscosity, and thermal conductivity 

of the liquid phase (water) are functions of the input fluid 

temperature. 

Pak and Cho [30] proposed temperature-independent 

constant values for a density of the nanofluids based on a 

volumetric fraction of the nanoparticles, as written in 

Equation (56). 

𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑏𝑓 + 𝜙 𝜌𝑝 (56) 

where ρbf, ρp, and ρnf denote the densities of the base 

fluid, nanoparticles, and the nanofluid, respectively, and 𝜙 

is the volumetric fraction of the nanoparticles. 

Similar to the density, Zhuan and Rutzel [5] proposed 

constant temperature-independent values for the thermal 

conductivity of the nanofluid as a function of the 

volumetric fraction of the nanoparticles, as expressed in 

Equation (57). 

(𝜌𝐶𝑝)𝑛𝑓 = (1 − 𝜙)(𝜌𝐶𝑝)𝑏𝑓

+ 𝜙(𝜌𝐶𝑝)𝑝 
(57) 

Numerous models have been proposed for the viscosity 

of nanofluids, as reviewed by Huminic et al. [31]. In the 

present research, we used the model proposed by Maiga et 

al. [32], as written in Equation (58). 

𝜇𝑛𝑓 = (1 + 7.3 𝜙 + 123 𝜙2)𝜇𝑏𝑓 (58) 

Where 𝜇
𝑏𝑓

 and 𝜇
𝑛𝑓

are viscosities of the base fluid and 

nanofluid, respectively. 
The most significant parameter for representing the 

enhanced thermal potential of nanofluids is their thermal 

conductivity. Consequently, the determination of thermal 

conductivity is of paramount importance in nanofluids. As 

reviewed by Huminic et al. [31], various models have been 

proposed for this purpose. In the present work, we use the 

model proposed by Maxwell [33], as per Equation (59): 

 

𝑘𝑛𝑓 = (
𝑘𝑝 + 2𝑘𝑏𝑓 + 2𝜙(𝑘𝑝 − 𝑘𝑏𝑓)

𝑘𝑝 + 2𝑘𝑏𝑓 − 𝜙(𝑘𝑝 − 𝑘𝑏𝑓)
)

× 𝑘𝑏𝑓 

(59) 

where 𝑘𝑛𝑓is the thermal conductivity of the nanofluid, 

𝑘𝑏𝑓is the thermal conductivity of the base fluid, and kp is 

the thermal conductivity of the nanoparticles. 
Thermal diffusivity and Prandtl number of the 

nanofluid can be calculated from the following 

relationship respectively [31]: 

𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓

 
(60) 

𝑃𝑟𝑛𝑓 =
𝜈𝑛𝑓
(𝛼)𝑛𝑓

 
(61) 

In this problem, the solution method is that the 

nanofluid's thermophysical properties are calculated first. 

In the next step, to solve the hydrodynamic part of the 

flow, Equations 14 and 15 are solved by using the  
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Figure 5. Axial dimensionless component of the velocity 
profile at the hydrodynamic ally developed section of the tube 

under different grid arrangements with respective analytic 
solutions. 

 

Figure 6. Variations of the axial dimensionless component of 
the velocity along the tube axis for different grid 

arrangements. 

Table 2. Investigation of grid independence and validation. 

(
𝑥

𝐷
)ℎ 

𝑢𝑥,𝑚𝑎𝑥
𝑈𝑖𝑛

  
Mesh 

Relative 

error% 
Present 

work 
Relative 

error% 
Present 

work 

10 4.5 3.5756 1.9285 41×2101 

8.58 4.571 1.2749 1.9745 71×2101 

7.28 4.636 0.6144 1.9877 101×3001 

1 5.04 0.5548 1.9889 131×3901 

boundary conditions in Equations 25 to 39. After 

validating the solution, equations 19 and 20 are solved to 

obtain the thermal part of the flow by using the boundary 

conditions in Equations 40 to 55. 

 

 

4. Grid independence and validation 

In this problem, the lattice Boltzmann model with 

identical spatial steps along x and r directions was utilized. 

In order to ensure grid independence of the lattice, the 

problem was solved using four different lattices at 

Reynolds number of 100 for base fluid (water) and the 

following results are presented and compared. 

Axial dimensionless component of the velocity profile 

at the hydrodynamically developed section of the tube 

under four different grid arrangements with respective 

analytic solutions are illustrated in Figure 5. According to 

Figure 5, the finer size, the closer would get the velocity 

profile to a perfect hyperbola (i.e. analytic solution). 

Figure 6 depicts the variations of the axial 

dimensionless component of the velocity along the tube 

axis for different grid arrangements. On this figure, it is 

evident that the finer the grids, the more accurate would be 

the obtained location of hydrodynamic development of the 

flow based on the analytic solution (Table 2). 

Table 2 presents an interpretation of the results 

demonstrated in Figures 5 and 6 for investigating the grid 

independence and validation of the present methodology. 

A comparison between the maximum axial 

dimensionless velocity (
𝑢𝑥,𝑚𝑎𝑥

𝑈𝑖𝑛
) obtained from this method 

to that calculated per 𝑢𝑥,𝑚𝑎𝑥 [𝑈𝑖𝑛  (1 − (
𝑟

𝑅
)
2
)]⁄  (adapted 

from Ref. [34]) for different grid arrangements show that 

the difference between the results of a 101 × 3001 lattice 

and a 131 × 3901 lattice is less than 0.06%, with a percent 

error of only 0.61% concerning the analytic solution. 

Moreover, comparing the hydrodynamic entrance length 

(𝑥 𝐷⁄ )ℎ obtained from this method to that from (𝑥 𝐷⁄ )ℎ ≈

0.05𝑅𝑒  (adapted from Ref. [35]) for different grid 

arrangements showed that the difference between the 

results of a 101 × 3001 lattice and a 131 × 3901 lattice is 

less than 4.02%, with a percent error of 7.28% regarding 

the analytic solution ((𝑥 𝐷⁄ )ℎ = 5). This was while the 

coarser grids required merely one seventh of the 

processing time taken for the finer grids. Therefore, the 

101 × 3001 lattices were chosen for solving the problem. 

To ensure the validity of the results in the thermal part 

of the flow, variations of the Nusselt number of the base 

fluid (water) with Prandtl number of 5 were calculated on 

the tube walls. Moreover, the obtained Nusselt number 

was compared to that calculated by Hornbeck [36] and the 

percent error values are reported in Table 3. As one may 

observe in Figure 7, the Nusselt number was plotted in the 

range of 0.001  ≤   𝑥∗  ≤   0.02, and the curve of Nusselt 

number obtained using the present methodology reveals 

that the present method provides a good agreement with 

the Hornbeck’s [36] curve of Nusselt numbers. 

Furthermore, Table 3 indicates that the percent relative 

error of the present research compared to Ref. [33] is 

something between 4 and 18.1%, with an average percent 

relative error of 9.21%. 
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Figure 7. A comparison of variations of Nusselt number for 
the base fluid between the present solution method and Ref. 

[33]. 

Table 3. A comparison between the Nusselt number in the 

present research and that in Ref. [33] at different values of𝑥
∗
. 

Relative 

error % 
Hornbeck 

[33] 
Present 

work  𝒙∗ =
𝒙

𝑫 𝑹𝒆 𝑷𝒓
 

18.1 14.4 17.01 0.001 

13.1 12.2 13.80 0.0015 

11.5 10.9 12.15 0.002 

8.6 9.4 10.20 0.003 

7.1 8.5 9.10 0.004 

6.3 7.9 8.39 0.005 

6.2 7.4 7.86 0.006 

6.1 6.7 7.12 0.008 

6.7 6.2 6.62 0.01 

4.47 5.6 5.85 0.015 

4.1 5.2 5.41 0.02 

 

5. Results 

The results are plotted in the form of diagrams of forced 

convection heat transfer coefficient and Nusselt number 

versus the ratio of the axial distance from the start of the 

tube to the tube height,
𝑥

𝐷
. Figures 8 – 12 show the results 

of the present numerical method for the water – aluminum 

oxide nanofluid at input temperature of 20℃ and either of 

four volumetric concentrations: 0% (water as base fluid), 

1%, 3%, and 5%. 

5.1. Effect of volumetric ratio of nanoparticles 
on forced convection heat transfer 

Figures 8 and 9 present the variations of forced 

convection heat transfer coefficient and Nusselt number  

 

Figure 8. Variations of forced convection heat transfer on the 
lower wall of the tube at different volumetric fractions for  

Reynolds number of 50 and Tin = 293K. 

for the water-aluminum oxide nanofluid at four volumetric 

concentrations, namely 0% (water as base fluid), 1%, 3%, 

and 5%, at Reynolds number of 50 and input temperature 

of 20℃. As can be observed in Figure 8, as one moves 

along the length of the tube, increasingly lower values of 

heat transfer coefficient were observed. Indeed, given the 

constant nature of the heat flux applied to the entire length 

of the tube, the tube wall temperature increases, thereby 

increasing the temperature difference between the fluid 

and the wall and hence reducing the heat transfer 

coefficient have occurred. In other words, the heat transfer 

is mainly performed at the input section of the tube, and as 

one moves along the tube toward the thermally developed 

part of the flow, the increased temperature difference 

between the fluid and the tube wall lowers the heat transfer 

coefficient. consequently, when designing cooling 

systems, the designer must keep in mind that the heat 

exchange shall occur in the thermally developed flow 

zone. In Figure 8, it is observed that the forced convection 

heat transfer coefficient increases with the nanoparticle 

concentration increasing. The average increase in forced 

convection heat transfer coefficient along the tube length 

(0 ≤
𝑥

𝐷
≤ 30) was found to be 3.22%, 10.52%, and 

18.86% at a volumetric concentration of 1%, 3%, and 5%, 

respectively. The introduction of nanoparticles to the base 

fluid enhances the thermal conductivity of the nanofluid 

over the base fluid, and this contributes to increased forced 

convection heat transfer coefficient through the nanofluid, 

as compared to the base fluid. 

Figure 9 depicts that the Nusselt number increases with 

nanoparticle concentration. Accordingly, the average 

increase in Nusselt number along the tube length (0 ≤
𝑥

𝐷
≤

30) was found to be 0.30%, 1.47%, and 3.22% at a 

volumetric concentration of 1%, 3%, and 5%, respectively. 

Please note that the difference between the increases in 

forced convection heat transfer coefficient and Nusselt 

number stems from the fact that thermal conductivity 

appears in the denomination of the Nusselt number. 

Therefore, since an increase in the nanoparticle 

concentration translates into enhanced thermal 

conductivity, then the increase in the Nusselt number upon  
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Figure 9. Variations of Nusselt number on the lower wall of 
the tube at different volumetric fractions at Reynolds number 

of 50 and 𝑇𝑖𝑛 =  293 𝐾. 

 

Figure 10. Changes in the wall temperature and bulk 
temperature at different volumetric fractions for  Reynolds 

number of 50 and 𝑇𝑖𝑛 =  293 𝐾. 

enhancing the nanoparticle concentration is somewhat 

lower than the respective increase in forced convection 

heat transfer coefficient. Figure 9 further shows the 

changes in the Nusselt number on the lower wall of the 

tube at different volumetric fractions of the nanoparticles, 

as compared to the analytic solution, in the fully developed 

section of the flow. On this basis, the value of Nusselt 

number as per the present numerical solution for pure 

water in the fully developed section was found to be 4.61, 

and the fact that Ref. [31] reports a Nusselt number of 4.36 

for the fully developed section of the tube, the percent 

error is 5.68%. Moreover, the thermal development length 

((
𝑥

𝐷
)
𝑡
) obtained from the present numerical solution for 

pure water was found to be 11.32, and since the thermal 

development length obtained per 
(
𝑥

𝐷
)
𝑡

(
𝑥

𝐷
)
ℎ

= 𝑃𝑟 [31] for pure 

water is 11.56, the respective percent error is 2.09%. 

To better understand the reason behind higher forced 

convection heat transfer coefficient and hence Nusselt 

number with increasing the volumetric concentration of 

nanoparticles in the base fluid, curves of changes in wall 

temperature and bulk temperature of the nanofluid along 

the tube length at four volumetric fractions (0% (base 

fluid, water), 1%, 3%, and 5%) are presented in Figure 10.  

 

Figure 11. Changes in the forced convection heat transfer 
coefficient on the lower wall of the tube at different Reynolds 

numbers at a volumetric fraction of 5% and Tin = 293 K. 

 

Figure 12. Changes in the Nusselt number on the lower wall 
of the tube at different Reynolds numbers at a volumetric 

fraction of 5% and Tin = 293 K. 

This figure indicates that the decrease in the tube wall 

temperature and balk temperature of the nanofluid, 

increases along the tube length, as compared to the base 

fluid. 

5.2. Effect of Reynolds number on forced 
convection heat transfer 
Figures 11 and 12 illustrate the variations of forced 

convection heat transfer coefficient and Nusselt number 

for the water-aluminum oxide nanofluid at a volumetric 

concentration of 5%, input temperature of 20℃, and three 

different Reynolds numbers, namely 50, 75, and 100. 

Figure 11 shows that an increase in Reynolds number adds 

to the forced convection heat transfer coefficient. 

Accordingly, the average increase in forced convection 

heat transfer coefficient along the tube length (0 ≤
𝑥

𝐷
≤

30) was found to be 18.86%, 20.32%, and 21.36% at 

Reynolds numbers of 50, 75, and 100, respectively.  

Figure 12 indicates that an increase in Reynolds number 

increases the Nusselt number. Accordingly, the average 

increase in Nusselt number along the tube length (0 ≤
𝑥

𝐷
≤

30) at a volumetric concentration of 5% was found to be 

3.22%, 4.48%, and 5.38% at Reynolds numbers of 50, 75, 

and 100, respectively. As can be observed in the figures, 
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the forced convection heat transfer coefficient and Nusselt 

number increased with increasing Reynolds number. 

5.3. Effect of input temperature on forced 
convection heat transfer 

In this research, the forced convection heat transfer 

coefficient and Nusselt number of the studied nanofluid 

were calculated at two different input temperatures to 

evaluate the capability of the nanofluid for relative 

enhancement of forced convection heat transfer coefficient 

and Nusselt number at different temperatures. To analyze 

the impact of volumetric concentration of the 

nanoparticles on forced convection heat transfer 

coefficient and Nusselt number, Tables 4 and 5 represent 

the percent changes in forced convection heat transfer and 

Nusselt number of the nanofluid, respectively, as 

compared to the base fluid for different volumetric 

fractions of the nanofluid in several axial distances. The 

figure indicates that, at any axial distance and for a given 

volumetric fraction of the nanoparticles, forced convection 

heat transfer and Nusselt number increase with decreasing 

the input temperature. 

Moreover, in order to analyze the impact of Reynolds 

number on the forced convection heat transfer coefficient 

and Nusselt number, Tables 6 and 7 represent the percent  

changes in forced convection heat transfer and Nusselt 

temperature increases the forced convection heat transfer 

number of the nanofluid, respectively, as compared to the 

base fluid at the same Reynolds number for several axial 

distances. The results indicate that a decrease in input 

coefficient and Nusselt number, as compared to the base 

fluid, at any axial distance for a given Reynolds number. 

To investigate the effect of input temperature on the 

relative increase in forced convection heat transfer 

coefficient and Nusselt number, average percent increases 

in forced convection heat transfer coefficient and Nusselt 

number for a volumetric fraction of 5% and the entire 

length of the tube (0 ≤
𝑥

𝐷
≤ 30) is presented in Table 8. 

Corresponding results to the starting segment of the tube 

(0.1 ≤
𝑥

𝐷
≤ 7 ) are tabulated in Table 9. The presented 

results imply that the water-aluminum oxide nanofluid 

with a concentration of 5% at an input temperature of 15℃ 

(288K) exhibits higher heat transfer and Nusselt number 

than those of the same nanofluid at an input temperature 

of 20℃ (293K). Moreover, the results revealed that such  

Table 4. Percent changes in forced convection heat transfer coefficient at different volumetric fractions and Reynolds number of 50 
for different axial distances and two input temperatures. 

 

 

𝒙/𝑫 

 

𝝓 = 𝟏% 𝝓 = 𝟑% 𝝓 = 𝟓% 

h h h 

𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 

0.11 3.85 3.94 13.52 13.63 25.09 25.45 

1 3.76 3.85 13.12 13.43 24.44 24.75 

3.52 3.64 3.73 12.62 12.71 23.39 23.66 

7.06 3.47 3.48 11.74 11.84 21.52 21.80 

11.30 3.24 3.28 10.71 10.79 19.39 19.58 

 
Table 5. Percent changes in Nusselt number at different volumetric fractions and Reynolds number of 50 for different axial distances 

and two input temperatures. 

 
𝒙

𝑫
 

𝝓 = 𝟏% 𝝓 = 𝟑% 𝝓 = 𝟓% 

Nu Nu Nu 

𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 

0.11 0.91 0.10 4.22 4.32 8.62 8.9 

1 0.82 0.91 3.86 4.14 3.40 8.32 

3.52 0.70 0.79 3.40 3.48 7.15 7.38 

7.06 0.54 0.55 2.59 2.68 5.52 5.76 

11.30 0.32 0.36 1.65 1.72 3.68 3.83 

 



82 R.Bahoosh / JHMTR 8 (2021) 71- 85 

Table 6. Percent changes in forced convection heat transfer coefficient at different Reynolds numbers at a fixed volumetric fraction 
of 5, as compared to the base fluid, for different axial distances and two input temperatures. 

 

𝒙/𝑫 

𝑹𝒆 = 𝟓𝟎 𝑹𝒆 = 𝟕𝟓 𝑹𝒆 = 𝟏𝟎𝟎 

h h h 

𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 

0.11 25.09 25.45 25.25 25.65 25.34 25.71 

1 24.44 24.75 24.60 25.94 24.69 25.01 

3.52 23.39 23.66 23.78 24.09 24.14 24.32 

7.06 21.52 21.80 22.88 23.11 23.46 23.78 

11.30 19.39 19.58 21.31 21.54 22.40 22.61 

 
Table 7. Percent changes in Nusselt number at different Reynolds numbers at a fixed volumetric fraction of 5, as compared to the 

base fluid, for different axial distances and two input temperatures. 

 

𝐱/𝐃 
𝐑𝐞 = 𝟓𝟎 𝐑𝐞 = 𝟕𝟓 𝐑𝐞 = 𝟏𝟎𝟎 

Nu Nu Nu 

𝐓𝐢𝐧 = 𝟐𝟗𝟑 𝐊 𝐓𝐢𝐧 = 𝟐𝟖𝟖 𝐊 𝐓𝐢𝐧 = 𝟐𝟗𝟑 𝐊 𝐓𝐢𝐧 = 𝟐𝟗𝟑 𝐊 𝐓𝐢𝐧 = 𝟐𝟖𝟖 𝐊 𝐓𝐢𝐧 = 𝟐𝟗𝟑 𝐊 

0.11 8.62 8.93 8.76 9.10 8.84 9.16 

1 8.06 8.32 8.21 8.48 8.28 8.54 

3.52 7.15 7.38 8.49 7.74 7.80 7.94 

7.06 5.52 5.7593 6.71 6.90 7.21 7.47 

11.30 3.68 3.83 5.34 5.53 6.30 6.46 

 

Table 8. A comparison between the average percent increase in forced convection heat transfer coefficient and Nusselt number at 

two different Reynolds number when 0 ≤
𝑥

𝐷
≤ 30 for a volumetric fraction of 5% at two different temperatures. 

 

𝑹𝒆 

�̅� 𝑵𝒖̅̅ ̅̅  

𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 

50 18.86 19.13 3.22 3.35 

75 20.32 20.64 4.48 4.66 

100 21.36 21.72 5.39 5.60 

 

Table 9. A comparison between the average percent increase in forced convection heat transfer coefficient and Nusselt number at 

two different Reynolds number when 0.1 ≤
𝑥

𝐷
≤ 7 for a volumetric fraction of 5% at two different temperatures. 

 

𝑹𝒆 

�̅� 𝑵𝒖̅̅ ̅̅  

𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 𝑻𝒊𝒏 = 𝟐𝟗𝟑 𝑲 𝑻𝒊𝒏 = 𝟐𝟖𝟖 𝑲 

50 23.33 25.01 7.09 7.75 

75 23.90 25.63 7.59 8.29 

100 24.16 25.91 8.82 8.54 
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an increase is even more pronounced along the starting 

segment of the tube. 

The larger increase in heat transfer for the nanofluid at 

lower input temperature can be linked to the higher 

viscosity gradient at lower temperatures. This may lead to 

increased viscosity gradient inside the tube, thereby 

contributing to the nanoparticle migration and Brownian 

motions and hence heat transfer. Therefore, when 

designing cooling systems with low-temperature thermal 

fields, the use of water-aluminum oxide nanofluid rather 

than pure water can further add to heat transfer. 

 

Conclusion 

In this research, to investigate the flow and forced 

convection heat transfer through homogeneous 

water/Al2O3 nanofluid inside a horizontal tube, the 

axisymmetric lattice Boltzmann method was used. The 

heat transfer was performed along with a steady-state flow 

under a laminar flow regime. Uniform velocity and 

temperature were assumed at the input section, constant 

heat flux was considered on the walls of the conduit, and 

the fully developed condition for the velocity and 

temperature was assumed at the output section of the tube. 

The effects of the volumetric concentration of the 

nanoparticles and input temperature to the tube on thermal 

parameters of the flow were investigated at different 

Reynolds numbers. According to the obtained results, the 

following conclusions were drawn: 

 

 The results indicated that the utilized axisymmetric 

lattice Boltzmann method is capable of simulating the 

flow and heat transfer with good accuracy. 

 The amounts of increase in forced convection heat 

transfer coefficient and Nusselt number of the 

nanofluid were functions of the volumetric 

concentration of the nanoparticles; so that with 

increasing the volumetric concentration of the 

nanoparticles, the amounts of forced convection heat 

transfer coefficient and Nusselt number of the 

nanofluid over those of the base fluid increased. 

       With increasing Reynolds number, forced convection 

heat transfer coefficient and Nusselt number increase 

over the base fluid and nanofluid. 

 With decreasing the input temperature, forced 

convection heat transfer coefficient and Nusselt 

number increase over the base fluid and nanofluid for 

any axial distance and a given Reynolds number; 

Moreover, with decreasing the input temperature, 

forced convection heat transfer coefficient and 

Nusselt number increase over the base fluid and 

nanofluid for any axial distance and a volumetric 

fraction of the nanoparticles. 

 Average increases in the values of the heat transfer 

coefficient and Nusselt number of the water-

aluminum oxide nanofluid were larger at lower input 

temperatures; Moreover, this increase was even more 

pronounced in the starting segment of the tube. 

 The average increase in forced convection heat 

transfer coefficient of the nanofluid at input 

temperature of 15℃ was 7.24% larger than that at the 

input temperature of 20℃. 

 At lower input temperature to the tube, percent 

increases in forced convection heat transfer 

coefficient and Nusselt number increase with 

Reynolds number. 
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