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In this paper, simulation of non-Newtonian fluid flow in a two-dimensional lid-driven cavity 
is investigated. In this simulation Lattice Boltzmann method is used to solve computational 
fluid dynamics equations numerically. The particular approach of this research is to simulate 
non-Newtonian fluid flow by Sisko and Hershel Bulkley extended models for the first time 
beside other non-Newtonian models, by means of Lattice Boltzmann technique. The results 
of different models including x and y-velocity profiles and streamlines are presented. Then 
the simulation results of different non-Newtonian fluid flow by Sisko and Hershel Bulkley 
extended models have been compared with Power Law, Herschel Bulkley and Bingham plastic 
models. Also, the effect of the Reynolds number and Power Law parameter (n) on the velocity 
profiles are studied. Increase of n parameter and Reynolds number leads to moving the centre 
of main vortex toward centre of the cavity. By increasing the parameter n, the maximum value 
of velocity increases and this indicates while n parameter is increased, vortex strength is 
excessed. 
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1. Introduction    

Flow simulation in a two-dimensional cavity is one of 

the most widely used fluid flow problems that are used to 

study different solution methods [1-13]. This geometry 

consists of a two-dimensional square with the upper side 

moving at a certain speed to one side. In addition to 

simplicity of computational space, one of the advantages 

of this problem is that we can easily compare the results 

with the results of other researchers. 

In recent years, Lattice Boltzmann Method as a 

powerful alternative technique for fluid flow simulation 

particularly for complicated flows and complex boundary 

condition is used. compared with traditional CFD 

methods, Lattice Boltzmann Method, using linear 

relations, does the simulation procedure on lower time and 

lower calculation cost [1-12]. Lattice Boltzmann is a 

proper method for non-Newtonian simulation, because in 

this method strain tensor is calculated locally which 

improves solution stability. 

Thohura et al. [14] did a numerical solution of Power 

Law fluid flow in a lid-driven skewed cavity. They used 
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the two-dimensional unsteady Navier-Stokes equations in 

non-dimensional form. Dalal et al. [15] presented a 

numerical study of the flow of shear-thinning viscoelastic 

fluids in rectangular lid-driven cavities for a wide range of 

aspect ratios varying from 1/16 to 4. Mahmood et al. [16] 

investigated flow simulation in a single and double lid 

driven cavity to study the flow of a Bingham viscopelastic 

flow. Finite element method was used to discretize the 

governing equation. Furtado et al. [17] used finite element 

method to simulate fluid flow in the cavity to check the 

role of elasticity for inertialess flows of viscopelastic 

materials within the cavity. Sousa et al. [18] simulated the 

flow of viscoelastic fluids in two-dimensional cavities 

with a wide range of aspect ratios (height/length) 0.125 to 

4. Li et al. [19] used multi-relaxation-time lattice 

Boltzmann method to simulate power law fluid flows in 

two-dimensional square cavity. Effect of the Reynolds 

number and Power Law parameter was investigated on the 

vortex properties and velocity distribution. Wang and Ho 

[20] simulated shear-thinning non-Newtonian blood flows 

with D2Q9 lattice Boltzmann Method using rheology 
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models: Power Law, Carreau-Yasuda and Casson. Buick 

and Boyd [21] investigated the application of Lattice 

Boltzmann method to non-Newtonian fluid simulation in 

the mixing section of a screw extruder. Poursharifi and 

Sadeghy [22] used lattice Boltzmann method to simulate 

the flow of viscopelastic fluids in a closed cavity. They 

have numerically studied the effect of a fluid’s yield stress 

on the single species flow driven by large amplitude 

peristaltic waves propagating with different phase shifts 

along the upper or and/or lower walls of a closed cavity. 

Ashrafizadeh and Bakhshaei [23] used three non-

Newtonian model, K-L, Casson, and Carreau-Yasuda to 

simulate blood flow with Lattice Boltzmann Method. 

Rahmati and Ashrafizadeh [24] simulated an 

incompressible fluid flow with a generalized Lattice 

Boltzmann Method. Bingham plastic model was used by 

Tang et al. [25] to simulate incompressible fluid flow by 

Lattice Boltzmann Method. Gokhale et al. [26] used Power 

Law non-Newtonian model to simulate the fluid flow in a 

lid-driven cavity. Perumal [27] computed the multiple 

solution flow properties in a double sided square and 

rectangular cavity. Mendu and Das [28] used the lattice 

Boltzmann method to study the fluid flow behaviour in a 

double-sided mixing cavity. Power Law as a non-

Newtonian model was used in their calculations. Also, 

they studied the fluid flow in a cavity with oscillating lid 

[29]. They presented the velocity profiles for different 

times. Bisht and Patil [30] employed the multi-relaxation-

time Lattice Boltzmann Method to simulate non-

Newtonian fluid flow, modelled by Power Law, in a two-

dimensional enclosure. Hussain and Huq [31] simulated 

the laminar, turbulent and transient flow over a two and 

three-dimensional cavity. They did this research in range 

of 1 to 7500 Reynolds numbers. Subrahmanyam and Dasp 

[32] simulated fluid flow in one-sided and two-sided lid-

driven cavity by Lattice Boltzmann Method. Chai et al. 

[33] investigated differences between non-Newtonian 

models: Power Law, Bingham, Casson for a 2D channel 

and a cavity simulation. Bingham and Casson models were 

used by El-Borhamy [34] to simulate non-Newtonian flow 

in a channel and a cavity by Lattice Boltzmann Method. 

Other geometries also are used for investigation of 

application of Lattice Boltzmann Method in cavity flow 

simulation by Sidiki [35]. Yapici et al. [36] studied fluid 

flow in a two-dimensional lid-driven cavity using finite 

volume. They investigated the differences between 

Newtonian and viscoelastic fluids. Yapici and Uludag [37] 

presented the simulation results for three different shear- 

thinning fluid in a two- dimensional lid-driven cavity. Li 

et al. [38] considered Reynolds number and Power Law 

parameter influence on vortex strength and velocity 

distribution. They simulated fluid flow in a lid driven 

cavity by Multi-Relaxation Time Lattice Boltzmann 

Method. Madlener et al. [39] presented a generalized 

Reynolds number equation for Herschel Bulkley 

Extended, Bingham Plastic, Power Law and Herschel 

Bulkley. They investigated their relation endorsement by 

a result comparison with experimental marks. Santos et. al. 

[40] did a rheology study to examine effect of shear on 

flow curves of colloidal gels prepared with different 

concentration of fumed silica. Herschel Bulkley extended 

model was used to describe shear impact. The results were 

compared by experimental findings. A good agreement 

between the experimental and simulation results was 

occurred finally. Ghasemi et. al. [41] simulated two Phase 

mud flow, carrying cuttings, in a well using Herschel 

Bulkley Extended model. They used Computational Fluid 

Dynamics to consider the flow in rotational space between 

well wall and drill string. The results showed that Herschel 

Bulkley Extended is a proper non-Newtonian model for 

mud flow simulation. 

Differ from the most of previous researches have been 

done before, Newtonian fluid simulation or non-

Newtonian fluid flow modelling using Power Law model, 

in this work, the results of Herschel Bulkley extended and 

Sisko in addition to other non-Newtonian models such as 

Power law, Bingham plastic, Herschel Bulkley, in range of 

100–1000 for Reynolds number are compared using 

Single Relaxation Time in Lattice Boltzmann method, that 

despite the acceptable accuracy it has more simplicity than 

other methods. More importantly, Herschel Bulkley 

Extended and Sisko models are used for the first time in a 

lid driven cavity fluid flow simulation through Lattice 

Boltzmann method.  

 

2. Non-Newtonian Models 

Non- Newtonian fluids refer to the fluids that has no 

single constitutive equation to describe exactly their 

relationship between the shear stress and the shear rate 

overall ranges of shear rates. Three major categories of 

non-Newtonian fluids are basically recognized, namely, 

time-independent, and time-dependent and viscoelastic. 

The time independent category has received a substantial 

degree of attention in comparison with the other two 

categories.  

As an example, in conventional drilling, drilling fluids 

are modeled with classical rheological models like 

Bingham plastic or Power Law model and fluid behavior 

is defined with only two points of the rheological relation. 

These points correspond to higher shear rates. This 

approach can be justified in the case of conventional 

drilling. The knowledge of rheological data and methods 

of predicting pressure losses are the key points to calculate 

proper pump rate and avoid any obstacle in drilling 

operation. 

Non-Newtonian fluid models equations can be written 

as below: 

Power Law model: 

𝜏 = 𝐾𝛾̇𝑛 (1) 

Sisko model: 

𝜏 = 𝜂∞𝛾̇ + 𝐾𝛾̇
𝑛 (2) 

Bingham plastic model 
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{
𝛾̇ = 0                            |𝜏| < 𝜏𝑦
|𝜏| = 𝜏𝑦 + 𝜇𝑝|𝛾̇|         |𝜏| > 𝜏𝑦

 (3) 

 

A rheological model that is thought to represent the 

flow behavior of non-Newtonian fluids very well is the 

Herschel Bulkley model or yield power law model. 

Herschel Bulkley model merges the theoretical and 

practical aspects of Bingham and power law models. 

Herschel Bulkley model: 

{
𝛾̇ = 0                             |𝜏| < 𝜏𝑦
|𝜏| = 𝜏𝑦 + 𝐾|𝛾̇|

𝑛        |𝜏| > 𝜏𝑦
 (4) 

Herschel Bulkley Extended model: 

{
𝛾̇ = 0                                         |𝜏| < 𝜏𝑦
|𝜏| = 𝜏𝑦 + 𝐾|𝛾̇|

𝑛 + 𝜂∞|𝛾̇|     |𝜏| > 𝜏𝑦
 (5) 

𝜂∞ as additional term in Sisko and Herschel Bulkley 

Extended model is defined as constant viscosity in very 

high shear rate range [50]. 

Papanastasiou [47] suggested a new form for Bingham, 

Herschel Bulkley and Herschel Bulkley extended models 

in order to solve the Shear stress discontinuity in these 

models [25,48]. So Bingham Plastic model relation (3) 

converts to: 

|𝜏| = 𝜏𝑦(1 − 𝑒
−𝑚𝛾̇) + 𝜇𝑝|𝛾̇| (6) 

And modified Herschel Bulkley relation (4): 

|𝜏| = 𝜏𝑦(1 − 𝑒
−𝑚𝛾̇) + 𝐾|𝛾̇|𝑛 (7) 

and finally Herschel Bulkley relation (5) changes to this 

form: 

|𝜏| = 𝜏𝑦(1 − 𝑒
−𝑚𝛾̇) + 𝐾|𝛾̇|𝑛 + 𝜂∞|𝛾̇|.  (8) 

In above equations, m is the regularization parameter or 

the stress growth exponent, that controls the exponential 

growth of the stress. 

 

3. Lattice Boltzmann Method 

Lattice Boltzmann method as aforementioned, is one of 

CFD methods to simulate fluid flow. This method 

simplifies the governing equations based on distribution 

function and equilibrium distribution function. This 

technique is divided into two steps named collision and 

streaming that are defined as follows: 

Collision 

𝑓𝑖̃(𝒙. 𝑡) = 𝑓𝑖(𝒙. 𝑡) −
1

𝜏
(𝑓𝑖(𝒙. 𝑡) − 𝑓𝑖

𝑒𝑞(𝒙. 𝑡)) (9) 

Streaming 

𝑓𝑖(𝒙 + 𝑐𝑖∆𝑡. 𝑡 + ∆𝑡) = 𝑓𝑖̃(𝒙. 𝑡) (10) 

 

where 𝑓𝑖 and 𝑓𝑖̃ denote pre- and post-collision states of 

distribution function respectively. 𝑓𝑖
𝑒𝑞

 is equilibrium 

distribution function. ci is the velocity particle along ith 

direction and τ is single-relaxation time parameter that is 

related to the kinematic viscosity 𝜈 by 
2𝜏−1

6
. Direction i 

depends on dimensions. Prior mentioned equations can be 

applied for many physically conditions. So, this method 

can simplify any complicated problem such as non-

Newtonian, multiphase flows.  

In two-dimensional flows, two-dimensional nine 

velocity model (D2Q9) with nine discrete velocities ci (i = 

0, 1, 2, ..., 8) is commonly used as below [42-44]: 

𝒄𝑖 =

{
 
 
 
 

 
 
 
 

(00),   𝑖 = 0

(𝑐𝑜𝑠 [(𝑖 − 1)
𝜋

4
] ,

𝑠𝑖𝑛 [(𝑖 − 1)
𝜋

4
])𝑐 ,   𝑖 = 1 − 4

(𝑐𝑜𝑠 [(𝑖 − 1)
𝜋

4
]

, 𝑠𝑖𝑛 [(𝑖 − 1)
𝜋

4
])√2𝑐 ,   𝑖 = 5 − 8 

 

 

(11) 

where c =
∆x

∆t
. The equilibrium distribution functions 

𝑓𝑖
𝑒𝑞

is defined as a function of local density 𝜌 and local 

fluid velocity: 

𝑓𝑖
𝑒𝑞
= 𝜔𝑖𝜌[1 +

1

𝑐𝑠
2
𝒄𝒊. 𝒖 +

1

2𝑐𝑠
4
(𝒄𝒊. 𝒖)

2

−
1

2𝑐𝑠
2
𝒖. 𝒖] 

(12) 

where 𝑐𝑠is the lattice speed sound and 𝜔𝑖is weighting 

factors. Assuming 𝑐𝑠 = 𝑐/√3 for D2Q9 lattice lead to 

following weighting factors: 

𝜔𝑖 = {

4/9,                             𝑖 = 0 
1/9,                      𝑖 = 1 − 4
1/36 ,                    𝑖 = 5 − 8.

 (13) 

Density and velocity can be calculated by distribution 

function and equilibrium distribution function: 

𝜌(𝒙, 𝑡) = ∑𝑓𝑖(𝒙, 𝑡)

8

𝑖=1

 (14) 

𝑢(𝒙, 𝑡) =
1

𝜌
∑𝑐𝑖𝑓𝑖

8

𝑖=1

 (15) 

There are some aproach in Lattice Botzmann Method 

to simulate non-Newtonian fluids behaviour. One of the 

most important and applicable methods is peresented as 

below. 

The Sαβ can be taken as: [45-46] 

𝑆𝛼𝛽 = −
3

𝜏
∑𝑓𝑖

𝑛𝑒𝑞
𝒄𝒊𝜶𝒄𝒊𝜷

8

𝑖=1

 (16) 

Where  𝑓𝑖
𝑛𝑒𝑞

= 𝑓𝑖 − 𝑓𝑖
𝑒𝑞

. And 𝐷𝐼𝐼, the second invariant 

of the strain rate tensor is defined as: 

𝐷𝐼𝐼 = ∑ 𝑆𝛼𝛽𝑆𝛼𝛽

𝑙

𝛼,𝛽=1

 (17) 
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Figure 1. Geometry and boundary conditions of lid driven 
cavity. 

The parameter l is related in dimension. For a 2-D 

simulation l is 2. 𝛾̇ is equal to 2√𝐷𝐼𝐼 and can be used in 

relations (1)–(8) in working non-Newtonian model. It 

means that for example for calculating the results of Power 

Law model, after 𝐷𝐼𝐼, 𝛾̇ can be calculated and then the 

using of Equation (1) shear stress is obtained. 

In Lattice Boltzmann Method, Some models are 

suggested by researchers to solve instability problems in 

non-Newtonian models. one of the most important models 

is presented by He and Lou [49]. According to He-Lou 

incompressible Lattice Boltzmann model Peq is given by: 

𝑃𝑖
𝑒𝑞
≡ 𝑐𝑠

2. 𝑓𝑖
𝑒𝑞

 (18) 

So the Collision equation (9) varies to following 

relation: 

𝑃𝑖̃(𝒙, 𝑡) = 𝑃(𝒙, 𝑡) −
1

𝜏
(𝑃𝑖(𝒙, 𝑡) − 𝑃𝑖

𝑒𝑞(𝒙, 𝑡)) (19) 

That velocity and pressure are computed by this 

equation: 

𝑃 = ∑ 𝑃𝑖𝑖      ,      𝑃0𝒖 = ∑ 𝒄𝒊𝑷𝒊𝒊  (20) 

Where P0, constant pressure, is equal 𝒄𝒔
𝟐𝝆𝟎. In this model 

density is replaced by pressure, as an independent variable, 

to solve  instability caused by local density variation that 

is affected by local non-Newtonian viscosity. 

 

4. Lid -Driven Cavity 

A laminar viscous flow in a square cavity which top 

wall moves with uniform velocity is chosen to compare the 

results of different non-Newtonian models. Boundary 

conditions and physical model of this cavity can be seen in 

Figure 1. 

 

5. Validation 

To check validity results, the Power Law non-

Newtonian model, considering n = 1.0, is used. The results 

are compared with Ghia et al. [13]. In Figures 2 and 3, u-

velocity and v-velocity in y and x direction for Reynolds 

number 100 and 400 at the midpoints respectively are 

presented. These calculations have been done for 129 × 

129 grid in the computational domain as the Ghia et al. 

research. The velocity profile for Lattice Boltzmann 

method and Ghia et al. are obviously matched. 

Although convergence criterion is assumed 10-9, in 

order to correct results achievement, maximum number of 

iteration considered 2×106. 

 

6. Lid -Driven Cavity 

As it is shown in Figure 4, the u and v velocity in y and 

x-direction respectively is compared in midpoint for 5 

non-Newtonian models: Power Law, Herschel Bulkley, 

Herschel Bulkley Extended, Sisko and Bingham. The 

Power Law parameter n and Reynolds number are 

considered 1.1 and 500. 

laminar viscous flow in a square cavity which top wall 

moves with uniform velocity is chosen to compare the 

results of different non-Newtonian models. Boundary 

conditions and physical model of this cavity can be seen in 

Figure 1. 

Velocity profiles in different non-Newtonian models 

follow the same pattern. However the maximum and  the 

minimum values in horizontal and vertical velocity for 

different models differs. Also, the above results for 

Reynolds number 1000 and index n = 1.5 is presented in 

Figure 5. 

 

(a) 

 

(b) 

Figure 2. Comparison (a) v-velocity (b) u-velocity variation in 
Power Law model with Ghia et al. at Reynolds number 100. 
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(a) (b) 

Figure 3. Comparison (a) v-velocity (b) u-velocity variation in Power Law model with Ghia et al. at Reynolds number 400. 

  

(a) (b) 

Figure 4. (a) v-velocity (b) u-velocity variation for non-Newtonian models at Reynolds number 500. 

  

 

(a) (b) 

Figure 5. (a) v-velocity (b) u-velocity variation for non-Newtonian models at Reynolds number 1000. 

The variation of the Reynolds number in Power Law model 

is investigated in Figure 6. For this purpose, the results for 

Reynolds numbers 200, 300, 500, 1000 are compared. 

Increasing Reynolds number leads to larger wakes and 

more difference between velocities at two cavity sides and 

then maximum velocity increases. 
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(a) 

 

(b) 

Figure 6. (a) v-velocity (b) u-velocity variation for Reynolds 
number and power Law model. 

 

Table 1.  comparison of Location of main vortex centre for 

Power Law model 

n 

parameter 
location 

Re=100 

Neofytou 

[51] 

This 

research 

n=0.5 
x/H 0.7166 0.7101 

y/H 0.7804 0.7853 

n=1.0 
x/H 0.6123 0.6097 

y/H 0.7359 0.7388 

n=1.5 x/H 0.5647 0.5702 

y/H 0.7240 0.7212 
 

Table 2. Location of main vortex centre for Sisko model  

n parameter 
location Re=100 Re=400 Re=1000 

n=0.5 
x/H 0.6354 0.6112 0.5733 

y/H 0.755 0.7231 0.6622 

n=1.0 
x/H 0.6146 0.5966 0.5538 

y/H 0.738 0.6011 0.565 

n=1.5 x/H 0.5912 0.5795 0.5285 

y/H 0.7148 0.6989 0.5734 

Location of centre of main vortex for different index n, 

in Power Law model is achieved. These results are  

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 7. Streamlines in 2-D Cavity Power Law model (a) n = 
0.5; (b) n = 1.0; (c) n = 1.5 

validated by comparison with Neofytou [51]. Table 1 

shows the matching and that is evident that centre of the 

main vortex moves toward cavity centre whereas n 

parameter is increasing. Streamlines in relation with table 

1 items are presented in figure 7.  

Power Law parameter, n, and Reynolds number impact 

on location of main vortex centre in Sisko model is also 

investigated. Location and streamlines are presented in 

table 2 and figure 8, respectively. As expected, increasing 

n parameter leads to moving centre of main vortex toward 

cavity centre. It should be noted that increasing of 

Reynolds number affects in the same way.  
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(a) 

 

 

(b) 

 

 

(c) 

Figure 8. Streamlines in 2-D Cavity Sisko model (a) n = 0.5; 
(b) n = 1.0; (c) n = 1.5 

Velocity in x and y-direction for non-Newtonian flow 

simulation in Sisko model and Reynolds number 100 and 

n = 0.5, 1.0 and 1.5 are presented in Figure 9. By 

increasing the parameter n, the maximum value of 

velocity increases and this indicates that increasing 

of n, leads to increasing vortex power. 

Also, in Figures 10–12, there are streamlines in the 

cavity for Power Law, Herschel Bulkley and Bingham 

Plastic models. In these figures effect of Reynolds number 

increasing is obvious. The Reynolds numbers increasing 

leads to larger wakes in corners. Three type of vortex 

shedding are observed in the flow diagrams of Figure 10–

12. The main vortex and the biggest vortex shedding are  

 

(a) 

 

(b) 

Figure 9. (a) v-velocity (b) u-velocity for various n in Sisko 
method. 

 
 
 
 
 
 
 
 

 

(a) (b) 

 
 
 
 
 
 
 
 

 

(c) (d) 

Figure 10. Streamlines in 2-D Cavity Power law model (a) Re 
= 200; (b) Re = 300; (c) Re = 500; (d) Re = 1000. 
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(a) (b) 

 
 
 
 
 
 
 
 

 

(c) (d) 
Figure 11. Streamlines in 2-D Cavity Bingham Plastic. (a) 

Re=200, (b) Re = 300, (c) Re = 500, (d) Re = 1000. 

 
 
 
 
 
 
 
 

 

(a) (b) 

 
 
 
 
 
 
 
 

 

(c) (d) 
Figure 12. streamlines in 2-D cavity Herschel Bulkley model. 

(a) Re = 200, (b) Re = 300, (c) Re = 500, (d) Re = 1000. 

visible in the centre of the cavity. And the others lead to 
the bottom of the cavity, on the sides of that. Of course, 

the other vortex will be created in much higher Reynolds 

numbers, on the left corner of the moving plane. 
 

Conclusion 
This study investigates Sisko and Herschel Bulkley 

Extended non-Newtonian models that are used for fluid 

behaviour simulation in addition to Power Law, Herschel 

Bulkley and Bingham Plastic models, using Lattice 

Boltzmann method. Accordingly, simulation results are 

compared to each other. The results, containing x-velocity, 

y-velocity profiles and streamlines are presented for 

different Reynolds numbers and different Power Law 

parameter. Afterwards change effect of Reynolds number 

and parameter n is investigated. One of the most important 

effects of increasing the Reynolds number can be 

demonstrated in streamlines. In this way, increase of 

Reynolds number leads to emerge new vortexes in the 

cavity corners. The simulation results illustrate that when 

the Reynolds number keeps increasing, the vortexes 

strengthen. Following a similar trend, enhancing the value 

of the n parameter leads to the maximum value of velocity 

growth and correspondingly the vortex power rises. In the 

case of fixed Reynolds number, increasing Power Law 

parameter causes to main vortex moves to centre of the 

cavity. Likewise, for a constant n, while the Reynolds 

number grows, it influences the location of main vortex 

centre and relocates its movements in the vicinity of the 

cavity centre. Finally, based on calculations and 

simulations it can be declared that in spite of the simplicity 

of Lattice Boltzmann method to simulate complicated 

fluid flow, the result of this techniques in comparison to 

other classical techniques depict that this method is 

immensely accurate and practical. 

 

Nomenclature 

 𝐶𝑖       Lattice speed (m/s) 

𝑐𝑠                  Lattice speed sound (m/s) 

D    second invariant of the strain rate tensor 

 𝑓𝑖                 distribution function 

 𝑓𝑖̃         Density distribution function 

𝑓𝑖
𝑒𝑞

     Equilibrium density distribution function 

 k   flow consistency index (W/m.k) 

m    Papanastasiou parameter 

n        Power Law index (dimensionless) 

P        Pressure 

Sα´β        Strain rate tensor (s-1) 

t      time (s) 

u       x-direction Velocity component (m/s) 

 v         y-direction Velocity component (m/s) 

U        inflow average velocity (m/s) 

Re       Reynolds number (dimensionless) 

X Cartesian coordinate (m) 

Y    Cartesian coordinate (m) 

𝛾̇     Shear Strain rate  (1/s) 

𝜂∞     Herschel Bulkley Extended parameter 

𝜇0       viscosity (Kg/m.s) 

𝜌     Density(kg/m3) 

𝜏       Shear stress 

𝜏𝑦       Yield stress 

𝜔𝑖        Weighting factor 
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