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1. Introduction    

The hydrodynamic flow of a viscous incompressible 

fluid past an impulsively started infinite horizontal plate 

was studied by Stokes [17], and because of its practical 

importance this problem was extended to bodies of 

different shapes by a number of researchers.  Soundalgekar 

[16] studied the above problem along an infinite vertical 

plate, when it is cooled or heated by the free convection 

currents.  It is also known that flows arising from 

differences in concentration have great significance not 

only for their own interest but also for the applications to 

geophysics, aeronautics and engineering.  In light of the 

above applications, many researchers studied the effects of 

mass transfer on magneto hydrodynamics (MHD) free 

convection flow; some of them are, Raptis and Kafoussias 

[12], Rahman and Sattar [11], Yih [19], Aboeldahab and 

Elbarbary [1], Megahead et al. [9] and Kim [8].  In the 

above stated papers, the diffusion-thermo term and 

thermal-diffusion term were neglected from the energy 

and concentration equations respectively.  But when heat 

and mass transfer occur simultaneously in a moving fluid, 

the relations between the fluxes and the driving potentials 

are of a more intricate nature.  It has been found that an 
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energy flux can be generated not only by temperature 

gradients but by composition gradients as well.  The 

energy flux caused by a composition gradient is called 

Dufour or diffusion-thermo effect.  On the other hand, 

mass fluxes can also be created by temperature gradients 

and this is the Soret or thermal-diffusion effect.  In general, 

the thermal-diffusion and diffusion-thermo effects are of a 

smaller order of magnitude than the effects described by 

Fourier’s or Fick’s law and are often neglected in heat and 

mass transfer processes.  However, exceptions are 

observed therein.  The thermal-diffusion (Soret) effect, for 

instance has been utilized for isotope separation, and in 

mixtures between gases with very light molecular weight 

(H2, He)  and of medium molecular weight (N2, air) the 

diffusion-thermo (Dufour) effect was found to be of a 

considerable magnitude such that it cannot be ignored 

(Eckert and Drake [3]).  In view of the importance of this 

diffusion-thermo effect, Jha and Singh [5] studied the free 

convection and mass transfer flow about an infinite 

vertical flat plate moving impulsively in its own plane, 

taking into account the Soret effects.  Kafoussias [6] 

studied the same problem in the case of MHD flow.  They 

made analytical studies based on the Laplace 

Transformation technique.  Later, Kafoussias and 
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Williams [7] studied thermal-diffusion and diffusion-

thermal effects on mixed free-forced convective and mass 

transfer boundary layer flow with the temperature 

dependent viscosity. Whereas Anghel et al. [2] 

investigated the Dufour and Soret effects on a free 

convection boundary layer over a vertical surface 

embedded in a porous medium.  Recently, Takhar et al. 

[18] studied unsteady free convection flow over an infinite 

porous plate due to the combined effects of thermal and 

mass diffusion, magnetic field and Hall currents.  

Postelnicu [10] studied numerically the influence of a 

magnetic field on heat and mass transfer by natural 

convection from vertical surface in porous media 

considering Soret and Dofour effects. The Diffusion-

thermo and thermal-diffusion effects on free convective 

heat and mass transfer flow in a porous medium with time 

dependent temperature and concentration is studied.  

Therefore the objective of this paper is to study the 

Dufour and Soret effects on unsteady free convection and 

mass transfer flow, past an impulsively started infinite 

vertical porous flat plate, of a viscous incompressible and 

electrically conducting fluid in the presence of a uniform 

transverse magnetic field by considering permeability 

parameter. 

 

2. Mathematical Analysis 

We consider an unsteady two-dimensional flow of an 

incompressible and electrically conducting fluid, along an 

infinite vertical porous flat plate.  The  x-axis is taken 

along the plate in the upward direction and the y-axis is 

taken normal to the plate.  A magnetic field of uniform 

strength is applied transversely to the direction of the flow.  

Initially the plate and the fluid are at the same temperature 

𝑇∞ > in stationary condition with concentration level 

𝐶∞ > at all points.  For time t>0, the plate starts, moving 

impulsively in its own plane with a velocity 𝑈∞ its 

temperature is raised to 𝑇𝑤 and the concentration level at 

the plate is raised to 𝐶𝑤.  The fluid is assumed to have 

constant properties except for the influence of the density 

variations with temperature and concentration, which are 

considered only in the body force term.  From the work 

done by  and Under the above assumptions, the physical 

variables are functions of y and t only and therefore the 

basic equations, which govern the problem, are: 

∂𝑣

∂𝑦
= 0 (1) 

∂𝑣

∂𝑦
+ 𝑣

∂𝑢
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∂𝑡
+ 𝑣
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∂2𝐶

∂𝑦2
+
𝐷𝑚𝑘𝑇
𝑇𝑚

∂2𝑇

∂𝑦2
 (4) 

where the variables and related section quantities are 

defined in the Nomenclature section.  The initial and 

boundary conditions for the above problem are: 

for 𝑡 ≤ 0: 𝑢 = 𝑣 = 0. 𝑇 = 𝑇∞𝐶 = 𝐶∞ for all 𝑦 

for 𝑡 > 0: 𝑢 = 𝑈0. 𝑣 = 𝑣(𝑡). 
𝑇 = 𝑇𝑤 . 𝐶 = 𝐶𝑤 for all 𝑦 = 0 

(5a) 

𝑢 = 0. 𝑣 = 0. 𝑇 = 𝑇∞. 𝐶 = 𝐶∞ as 𝑦 → ∞ (5b) 

  The last term on the right-hand side of the energy 

equation (3) and concentration equation (4) signify the 

Dufour or diffusion-thermo effect and the Soret or 

thermal-diffusion effect, respectively. 

Now in order to obtain a local similarity solution in the 

time of the problem under consideration, we introduce a 

time dependent length scale δ as: 

𝛿 = 𝛿(𝑡) (6) 

In terms of this length scale, a convenient solution of 

the equation (1) is considered to be in the following form: 

𝑣 = 𝑣(𝑡) = −𝑣0
𝜈

𝛿
 (7) 

{
 
 
 

 
 
 𝜂 =

𝑦

𝛿
                    

𝑢 = 𝑈0𝑓(𝜂)          

𝜃(𝜂) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

  

𝜙(𝜂) =
𝐶 − 𝐶∞
𝑇𝑤 − 𝑇∞ }

 
 
 

 
 
 

 (8) 

Then, introducing the relations equations (6)-(8) into 

the equations (2), (3) and (4), respectively, we then obtain 

the following ordinary differential equations: 

𝑓′′ + 𝜂 (
𝛿

𝑣

𝑑𝛿

𝑑𝑡
) 𝑓′ + 𝑣0𝑓

′ + 𝐺𝑟𝜃 + 𝐺𝑚𝜙 

−𝑀𝑓 − 𝜆𝑓 = 0 
(9) 

−𝜂 (
𝛿

𝑣

𝑑𝛿

𝑑𝑡
) 𝜃′ + 𝑣0𝜃

′ +
1

𝑃𝑟
𝜃′′ + 𝐷𝑟 𝜙′′ 

+𝑠𝜃 = 0 

(10) 

−𝜂 (
𝛿

𝑣

𝑑𝛿

𝑑𝑡
)𝜙′ − 𝑣0𝜙

′ +
1

𝑆𝑐
𝜙′′ + 𝑆𝑟𝜃′′ = 0 (11) 

Where 𝑃𝑟 =
𝑣

𝛼
 is the prandtl number, 𝑆𝑐 =

𝑣

𝐷𝑚
 is the 

Schmidt number, 𝑀 =
𝜎𝐵0

2𝛿2

𝑣𝜌
 is the Magnetic field 

parameter, 𝒔 = (
𝑄

𝑝𝐶𝑝
) is the heat Source/Sink parameter, 

𝑆𝑟 =
𝐷𝑚𝑘𝑇(𝑇𝑤−𝑇∞)

𝑇𝑚𝑣(𝐶𝑤−𝐶∞)
 is the Soret number, 𝐷𝑓 =

𝐷𝑚𝑘𝑇(𝐶𝑤−𝐶∞)

𝑐𝑠𝑐𝑝𝑣(𝑇𝑤−𝑇∞)
 

is the Dufourt number, 𝐺𝑟 =
𝑔𝛽(𝑇𝑤−𝑇∞)𝛿

2

𝑣𝑈0
 is the local 

Grashof number, 𝐺𝑚 =
𝑔𝛽∗(𝐶𝑤−𝐶∞)𝛿

2

𝑣𝑈0
 is the local modified 

Grashof number. 

The corresponding boundary conditions for t>0 are 

obtained as: 
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𝑓 = 1. 𝜃 = 1. 𝜙 = 1. at 𝜂 = 0 (12a) 

𝑓 = 0. 𝜃 = 0. 𝜙 = 0. at 𝜂 = ∞ (12b) 

Now the equations (9)-(11) are locally similar except 

the term (
𝛿

𝑣

𝑑𝛿

𝑑𝑡
), where t appears explicitly.  Thus, the local 

similarity condition requires that the term (
𝛿

𝑣

𝑑𝛿

𝑑𝑡
) in the 

equations (9)-(11) must be a constant quantity. 

Hence, following the works of Hasimoto [4], Sattar and 

Hossain [13], and Sattar et al. [14], one can try a class of 

solutions of the equations (9)-(11) by assuming that: 

(
𝛿

𝑣

𝑑𝛿

𝑑𝑡
) = 𝜆                                  (𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) (13) 

Integrating equation (13) we have: 

𝛿 = √2𝜆𝑣𝑡 (14) 

Where the constant of integration is determined through 

the condition that δ=0 when t = 0.  We have considered the 

problem for small time.  In this case the normal velocity in 

equation (7) will be large, which can be applied to increase 

the lift of airfoils.  From equation (14), choosing λ=2, the 

length scale 𝛿(𝑡) = 2√𝑣𝑡  exactly corresponds to the usual 

scaling factor for various unsteady boundary layer flows 

(Schlichting [15]).  Since δ is a scaling factor as well as a 

similarity parameter, any value of λ in equation (13) would 

not change the name of the solutions, except that the scale 

would be different. 

Now introducing equation (13) (with λ=2 ) in the 

equations (9)-(11) respectively, we obtain the following 

dimensionless ordinary differential equations which are 

locally similar in time but not explicitly time dependent. 

𝑓′′ + (2𝜂 + 𝑣0)𝑓
′ + 𝑣0𝑓

′ + 𝐺𝑟𝜃 + 𝐺𝑚𝜙 

−𝑀𝑓 − 𝜆𝑓 = 0 
(15) 

𝜃′′ + Pr(2𝜂 + 𝑣0) 𝜃
′ + 𝑃𝑟𝐷𝑟𝛷′′ + 𝑃𝑟𝑠𝜃 

= 0 
(16) 

𝜙′′ + 𝑆𝑐(2𝜂 + 𝑣0)𝜙
′ + 𝑆𝑐𝑆𝑟𝜃′′ = 0 (17) 

Where primes denotes differentiation with respect to . 

Skin-friction, rate of heat and mass transfer: 

Now it is important to calculate the physical quantities 

of the primary interest, which are the local wall shear 

stress, local surface heat flux and the local surface mass 

flux respectively from the following definitions: 

𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
)
𝑦=0

 (18) 

𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

 (19) 

𝑀𝑤 = −𝐷 (
𝜕𝐶

𝜕𝑦
)
𝑦=0

 (20) 

Where 𝜇 is the viscosity, K is the thermal conductivity 

and Dm is the mass diffusivity. 

The dimensionless local wall shear stress, local surface 

heat flux and the local surface mass flux for an impulsively 

started plate are respectively obtained by: 

𝜏𝑤𝛿

𝜇𝑈0
= 𝑓′(0) (21) 

𝑞
𝑤
𝛿

𝑘(𝑇𝑤 − 𝑇∞)
= −𝜃′(0) (22) 

𝑀𝑤𝛿

𝐷𝑚(𝐶𝑤 − 𝐶∞)
= −𝜙′(0) (23) 

Hence the dimensionless skin-friction coefficient, 

Nusselt number and Sherwood number for impulsively 

started plate are given by: 

𝐶𝑓 =
2𝜏𝑤

𝜌𝑈0
2
= 2(𝑅𝑒𝛿)

−1 = 𝑓′(0) (24) 

𝑁𝑢 =
𝑞𝑤𝛿

𝑘(𝑇𝑤 − 𝑇∞)
= −𝜃′(0) (25) 

𝑆ℎ =
𝑀𝑤𝛿

𝐷𝑚(𝐶𝑤 − 𝐶∞)
= −𝜙′(0) (26) 

𝑅𝑒𝛿 =
𝑈0𝛿

𝑣
  is the Reynolds number. 

These dimensionless values of the local skin-friction 

coefficient, local Nusselt number and local Sherwood 

number for impulsively started plate are obtained from the 

process of numerical calculations and are sorted in Tables 

1-3. 

 

3. Method of Solution 

The equations (15)-(17) constitute a set of ordinary 

equations, the solutions of which should unfold the 

characteristic of the problem under consideration.  These 

equations under the boundary conditions equation (12) are 

solved numerically by using the Implicit finite difference 

method.  Substituting the finite difference formulae 

𝑓′(ⅈ) =
𝑓(ⅈ + 1) − 𝑓(ⅈ − 1)

2ℎ
  

𝑓′′(ⅈ) =
𝑓(ⅈ + 1) − 2𝑓(ⅈ) + 𝑓(ⅈ − 1)

ℎ2
  

in equations (15)-(17) we get, 

𝐴1[ⅈ]𝑓[ⅈ + 1] − 𝐴2𝑓[ⅈ] + 𝐴3[ⅈ]𝑓[ⅈ − 1] 
+𝐴4[ⅈ] + 𝐴5[ⅈ] = 0 

(27) 

𝐵1 ∗ 𝜃[ⅈ + 1] − 𝐵2 ∗ 𝜃[ⅈ] + 𝐵3 ∗ 𝜃[ⅈ − 1] 
+𝐵4[ⅈ] ∗ 𝐷1[ⅈ] = 0 

(28) 
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𝐶1𝜙[ⅈ + 1] − 4 ∗ 𝜙[ⅈ] + 𝐶2𝜙[ⅈ − 1] 
+𝐶3[ⅈ] ∗ 𝐷2[ⅈ] = 0 

(29) 

Where 

𝐴1[ⅈ] = 2 + ℎ ∗ 𝐴[ⅈ]  

𝐴2[ⅈ] = 4 + 2 ∗ ℎ
2 ∗ (𝑀 + 𝜆) 

 

𝐴3[ⅈ] = 2 − ℎ ∗ 𝐴[ⅈ]  

𝐴4[ⅈ] = 2 ∗ ℎ
2 ∗ 𝐺𝑟 ∗ 𝜃[ⅈ]  

𝐴5[ⅈ] = 2 ∗ ℎ
2 ∗ 𝐺𝑚 ∗ 𝜙[ⅈ]  

𝐵1 = 2 + ℎ ∗ 𝑃𝑟 
 

𝐵2 = 4 − 2 ∗ ℎ ∗ ℎ ∗ 𝑃𝑟 ∗ 𝑠 
 

𝐵3 = 2 − ℎ ∗ 𝑃𝑟 
 

𝐵4[ⅈ] = 2 ∗ ℎ2 ∗ 𝑃𝑟 ∗ 𝐷𝑓 
 

𝐶1 = 2 + ℎ ∗ 𝑆𝑐 
 

𝐶2 = 2 − ℎ ∗ 𝑆𝑐 
 

𝐶3[ⅈ] = 2 ∗ ℎ
2 ∗ 𝑆𝑐 ∗ 𝑆𝑟 

 

𝐷1[ⅈ] =
𝜙[ⅈ + 1] − 2 ∗ 𝜙[ⅈ] + 𝜙[ⅈ − 1]

ℎ2
  

𝐷2[ⅈ] =
𝜃[ⅈ + 1] − 2 ∗ 𝜃[ⅈ] + 𝜃[ⅈ − 1]

ℎ2
  

To obtain the numerical solutions the equations (27) - 

(29) with boundary conditions (12a) & (12b) are solved by 

using the Gauss-Siedel iterative method.  Here h represents 

the mesh size in  direction.  For convergence of a solution 

of a solution, after each cycle of iteration, the tolerance is 

set at 10-6 is satisfied at all points. 

 

4. Results and Discussion 

In order to get a clear insight of the physical problem, 

numerical results are displayed with the help of graphical 

illustrations.  The velocity profiles, temperature profiles 

and concentration profiles of the fluid are shown 

graphically for different flow parameters: suction 

parameter 𝜈0, magnetic field parameter M  and for the 

fixed values of Prandtl number Pr, Schmidt number Sc, 

Grashof number Gr and modified Grashof  number Gm are 

represented.  The values of Gr and Gm are taken to be both 

positive and negative, since these values represents 

respectively, cooling and heating of the plate.  Finally the 

values of Soret number Sr, Dufour number Df  are chosen 

in such a way that their product is constant. The value of 

the Prandtl number Pr is taken equal to 0.71 which 

corresponds physically to air.  The value of the Schmidt 

number Sc=0.22 has been chosen to represent the 

hydrogen at approx Tm = 25oC and 1 atm. 

The velocity profiles for different values of suction 

parameter  𝜈0 and magnetic field parameter M are shown 

in fig 1., for both cooling (Gr,Gm>0) and heating 

(Gr,Gm<0) of the plate.  This figure shows that for cooling 

of the plate the velocity profiles decreases monotonically 

with the increase of suction parameter, where as the 

velocity profiles increases with the increase of  𝜈0 for 

heating of the plate.  For cooling of the plate and for fixed 

suction parameter, the velocity profile found to increase 

and reaches a maximum value in a region close to the 

surface of the plate, then gradually decreases to zero.  It is 

also observed that as the magnetic field parameter 

increases the velocity decreases for the cooling of the 

plate, where as increases for heating of the plate.   

The effects of Soret number Sr and Dufour number Df 

on the velocity field for cooling and heating of the plate 

are shown in fig 2. It is noticed that for cooling of the plate, 

quantitatively when =0.5 and as Sr decreases from 2 to 

0.1 (or Dufour number Df increases from 0.03 to 0.60) 

there is decrease in the velocity profiles.  The permeability 

parameter λ effects on the velocity profiles are shown in 

fig 3 for both cooling and heating of the plate. It is 

observed that with the increase in λ, the velocity profiles 

decreases for cooling, while it is increases for heating of 

the plate. In this figure, when compared to the case of the 

cooling of the plate, opposite effects are observed in the 

case of heating the plate.  Fig 4 is drawn for the effect of 

the heat source/ sink parameter ‘s’ on the velocity profiles 

f(λ).  The velocity profiles increases for cooling as well as 

for heating of the plate with the increase of heat source 

parameter.  

The energy and concentration equations are 

independent of all parameters except the suction 

parameter, Dufour and Soret numbers. The dimensionless 

temperature profiles are drawn for cooling of the plate.  

From fig 5 it is noticed that the temperature profiles 

decreases with the increase in suction parameter.  The 

temperature distribution of the fluid increases with   

increase in Dufour number from 0.03 to 0.60 (or decrease 

in Soret number from 2.0 to 0.1) is shown in fig 6 when 

suction parameter 𝜈0=0.5. The effects of magnetic field 

parameter M on temperature profiles leads to increase in 

temperature distribution is shown in fig 7.The temperature 

profiles for different values of heat source/sink parameter 

‘s’ is drawn in fig 8. From this figure it is observed that the 
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temperature profiles decreases with the increase of heat 

source parameter.  

In figures 9, 10 & 11, the concentration profiles are 

drawn for cooling of the plate.  It is observed from fig 9, 

that the concentration of the fluid increases close to the 

wall as the value of suction parameter increases. The 

dimensionless concentration profiles for different values 

of Soret and Dufour numbers are depicted in fig 10.  It is 

noticed from this figure that the concentration profiles 

decreases with the increase in Dufour number or decrease 

in Soret number. From fig 11 the concentration 

distribution increases with the increase in magnetic field 

parameter M is noticed. Fig 12 represents the 

concentration profiles for different values of heat source/ 

sink parameter ‘s’. The concentration profiles increases as 

heat source parameter increases.         

   The effects of various parameters on Skin-friction 

coefficient 𝐶𝑓, Nusselt number Nu and Sherwood number 

Sh are shown in Tables 1, 2, &3.  From table 1 it can be 

seen that the effect of the magnetic field parameter 𝑀 on 

the Skin-friction 𝐶𝑓 is increases for heating of the plate, 

while it reduces for the cooling of the plate. The Skin 

friction coefficient 𝐶𝑓 decreases with the increase of 

suction parameter 𝜈0, for the both heating and cooling of 

the plate. 

The Skin-friction coefficient 𝐶𝑓 decreases with the 

decrease of Soret number Sr (or with the increase of the 

Dufour number 𝐷𝑓) for cooling of the plate, where as 

reverse effect have seen in heating of the plate in Table 2.  

For the cooling of the plate the 𝐶𝑓 decreases as the 

permeability parameter increases, while opposite effect is 

observed for heating of the plate in the Table 3. 

The Nusselt number Nu value increases with the effect 

of suction parameter 𝜈0, while it decreases with the effect 

of magnetic field parameter M is shown in Table 1.  With 

the decrease of Sr (or increase of 𝐷𝑓) the value of Nu 

decreases, which is depicted in Table 2.  It can be seen 

from Table 3, that no change in Nu and Sh for the different 

values of permeability parameter λ. 

The Sherwood number Sh is decreases as the suction 

parameter 𝜈0 increases and magnetic field parameter M 

increases is shown in Table 1. Whereas Sh increases while 

decreasing Sr  (or increasing 𝐷𝑓) can be observed in Table 

2.

Table 1. Numerical values of Skin-friction coefficient, Nusselt number and Sherwood number for Pr=0.71, Sr=2.0, Df=0.03, Sc=0.22. 

Gr Gm
 M 𝝂𝟎 Cf

 
Nu Sh 

-2 -10 0.2 0.5 -10.224621 1.730404 -0.081845 

-2 -10 0.2 1.0 -10.881990 2.936380 -0.45.520 

-2 -10 0.2 1.5 -11.511583 4.471137 -1.043057 

-2 -10 1.0 1.5 -10.865924 4.365475 -1.043397 

-2 -10 3.0 1.5 -9.541916 4.164802 -1.043644 

2 10 0.2 0.5 7.206197 1.730404 -0.081845 

2 10 0.2 1.0 6.953430 2.936380 -0.450520 

2 10 0.2 1.5 6.613309 4.471137 -1.043057 

2 10 1.0 1.5 5.488610 4.365475 -1.043397 

2 10 3.0 1.5 3.422229 4.164802 -1.043644 

Table 2. Numerical values of Skin-friction coefficient, Nusselt number and Sherwood number for Pr=0.71, 𝑣0=0.5, M=0.2, Sc=0.22.  

Gr Gm
 Sr Df Cf

 
Nu Sh 

2 10 2.0 0.03 7.745465 1.9855619 0.087549 

2 10 0.4 0.15 5.621989 1.549031 0.492942 

2 10 0.4 0.60 5.816160 1.373755 0.573434 

-2 -10 2.0 0.03 -10.716802 1.9855619 0.087549 

-2 -10 0.4 0.15 -8.397187 1.549031 0.492942 

-2 -10 1.0 0.60 -8.050458 1.373755 0.573434 

Table 3. Numerical values of Skin-friction coefficient, Nusselt number and Sherwood number for Pr=0.71, Sc=0.22, Sr=2.0, Df=0.03 
𝑣0=0.5, M=0.2 

Gr Gm
 

λ Cf
 

Nu Sh 

2 10 0.1 7.586002 1.730404 -1.178072 

2 10 0.5 6.803537 1.730404 -1.178072 

2 10 0.9 6.129960 1.730404 -1.178072 

-2 -10 0.1 -11.831.683 1.730404 -1.178072 

-2 -10 0.5 -10.914897 1.730404 -1.178072 

-2 -10 0.9 -10.145585 1.730404 -1.178072 
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Fig. 1. Velocity profiles for different values of 𝑣0and M. 

 

Fig. 2. Velocity profiles for different values of Sr and Df. 

 

Fig. 3. Velocity profiles for different values of λ. 
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Fig. 4. Velocity profiles for different values of s. 

 

Fig. 5. Temperature profiles for different values of υ0 

 

Fig. 6. Temperature profiles for different values of Sr 
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Fig. 7. Temperature profiles for different values of M. 

 

Fig. 8. Temperature profiles for positive and negative values of s. 

 

Fig. 9. Concentration profiles for different values of υ0 
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Fig. 10. Concentration profiles for different values of Sr and Df. 

 

Fig. 11. Concentration profiles for different values of M. 

 

Fig. 12. Concentration profiles for positive and negative values of s. 
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