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Population balance models mathematically describe the particle size distribution based on 
modeling physical phenomena that influence the distribution, such as aggregation, growth, 
and breakage. Due to the wide range of mechanisms present, several models are presented in 
the literature since several hypotheses are considered. In the current work, the Approximate 
Bayesian Computational statistical technique was used to select four different models of 
population balance and estimate their parameters. Three strategies were applied to the 
drawing of parameters, evaluating the correlation between the parameters of the models. An 
adaptive tolerance in each population and a stopping criterion, based on Morozov's 
uncertainty principle, were used for the algorithm. The technique obtained reasonable 
estimates for the phenomenological rates of the models. The algorithm correctly selected the 
model used for generating measurements, and the three draw strategies demonstrated good 
applicability. The results obtained showed that the algorithm presented accuracy and 
precision in estimating the parameters and properly selected the models analyzed. 
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1. Introduction 

Particulate processes are present in several areas: 

agriculture [1], chemical engineering [2,3], pharmacy 

[4], and biotechnology [5,6]. A characteristic property 

of these processes is the particle size distribution, 

which is time-dependent about its average size and 

shape [7-9]. The particle size distribution is defined 

according to the mechanisms that govern the dynamics 

of particles in the medium, such as nucleation, growth, 

aggregation, and breakage. 

In general, the mathematical models of this 

phenomenon are represented by partial and nonlinear 

integral-differential equations, called population 

balance equations [10-15]. The modeling of these 

equations is an area of application in expansion, 

especially in crystallization and precipitation [16], 
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polymerization [17], aerosol [18], and applications in 

biological systems [19]. 

Since several mechanisms cause this physical-

chemical phenomenon, different models can be 

proposed according to the adopted hypotheses. The 

difficulty, however, lies in selecting the models that 

best describe the phenomenon to be studied. In 

addition, each model has its respective parameters. 

Therefore, applying statistical techniques capable of 

selecting models and estimating parameters is a 

practical approach in this area [20-24]. 

In this research, the Approximate Bayesian 

Computational (ABC) technique was used to 

simultaneously select models and estimate 

parameters. This selection will be possible to 

determine which physical phenomenon is 
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predominant from the analyzed data. In addition, 

models that describe the dynamics of a chemically 

homogeneous particulate system and its spatial state 

will be evaluated. 

2. Mathematical model 

Several phenomena influence the particle size 

distribution, mainly nucleation, growth, aggregation, 

and breaking [10]. An illustration of this phenomenon 

is shown in Figure. 1. 

Population balance equations are models 

responsible for simulating the dynamics of these 

systems, Figure 1, which can be represented 

mathematically by Eq. (1) [25-28]: 

𝜕𝑛(𝑣, 𝑡)

𝜕𝑡
= −

𝜕[𝐼𝑣(𝑣, 𝑡)𝑛(𝑣, 𝑡)]

𝜕𝑣
 

+
1

2
∫ 𝛽𝑣(𝑣 − 𝑣̅, 𝑣̅, 𝑡)𝑛(𝑣 − 𝑣̅, 𝑡)𝑛(𝑣̅, 𝑡)𝑑𝑣̅

𝑣

2

0

 

− ∫ 𝛽𝑣(𝑣, 𝑣̅, 𝑡)𝑛(𝑣, 𝑡)𝑛(𝑣̅, 𝑡)𝑑𝑣̅
∞

0

+ 𝑆𝑣[𝑛(𝑣, 𝑡), 𝑣, 𝑡] 

(1) 

where 𝐼𝑣(𝑣, 𝑡) is the rate of change in volume v by mass 

transfer between particles and fluid phase; 𝛽𝑣(𝑣, 𝑣̅) is 

the coagulation coefficient of the particle for volumes 𝑣 

and 𝑣̅; and 𝑆𝑣 is the net rate of addition or removal of 

particles in the system. 

In Eq. (1), the term (I) is related to the rate of growth 

of particles by mass transfer to a single particle; the 

parcel (II) represents the generation of particles by the 

collision of particles with different sizes (assuming the 

conservation of volume during coagulation); the 

quantity (III) represents the rate of particle death from 

the collision with other particles; the term (IV) 

represents the rate of addition or removal of particles 

in the system. 

Eq. (1) can be applied in colloidal chemistry, aerosol 

dynamics, crystallization kinetics, and biological 

population dynamics. Gelbard and Seinfeld [27] 

proposed four models, which are particular cases of Eq. 

(1), detailed in the following topics. However, it is 

essential to note that these models do not represent a 

single way of simulating the dynamics of particulate 

processes with others in the literature [29-33]. 

 
Figure 1. Phenomena that govern the distribution of 

particles. Adapted from [61] 

2.1. Pure aggregation model with constant 
aggregation coefficient - Model 1 

Model 1 considers a particulate system in which 

only pure aggregation is the phenomenon of interest 

and constant aggregation coefficient, 𝛽𝑣(𝑣, 𝑣̅, 𝑡) =

𝛽0(𝑡). In this model, the step of random coalescence 

controls the process of enlarging the particles. 

Therefore, it means that the particles' size is not 

considered when forming a stable agglomerate and 

that the coefficient is independent of the size [34]. 

Thus, the population balance model in Eq. (1) takes the 

following form [26-28, 35]: 

𝜕𝑛(𝑣, 𝑡)

𝜕𝑡
=

𝛽0

2
∫ 𝑛(𝑣 − 𝑣̅, 𝑡)𝑛(𝑣̅, 𝑡)𝑑𝑣̅

𝑣

2

0

 

−𝛽0 ∫ 𝑛(𝑣, 𝑡)𝑛(𝑣̅, 𝑡)𝑑𝑣̅
∞

0

 

(2) 

where 𝛽0(𝑡) is the constant aggregation coefficient, 

Applying the Laplace transform, Eq. (2) is reduced to 

Eq. (3) [35]. 

𝑛(𝑣, 𝑡) =
4 (

𝑁0
𝑣0

⁄ )

(2 + 𝛽0𝑁0𝑡)2 𝑒𝑥𝑝 [−
2

(2 + 𝛽0𝑁0𝑡)

𝑣

𝑣0
] 

 

(3) 

In terms of the particle diameter, Eq. (3) becomes: 

𝑛(𝐷, 𝑡) = 

4 (
𝑁0

𝑣0
⁄ ) (𝐷

𝐷0
⁄ )

2

(2 + 𝛽0𝑁0𝑡)2
𝑒𝑥𝑝 [−

2

(2 + 𝛽0𝑁0𝑡)
(

𝐷

𝐷0
)

3

] 

(4) 

2.2. Pure aggregation model with linear 
aggregation coefficient - Model 2 

Model 2 considers that in the aggregation process, 

the colliding particle size contributes to forming an 

agglomerate, where larger particles have a more 

favorable agglomeration than the smaller ones [36]. 

The agglomeration coefficient takes the form 

𝛽𝑣(𝑣, 𝑣̅, 𝑡) = 𝛽1(𝑣 + 𝑣̅ ), which is related to the 

turbulent diffusion in the medium [37, 38]. Thus, Eq. 

(1) takes the following form [26, 28, 35-37]: 

𝜕𝑛(𝑣, 𝑡)

𝜕𝑡
 

=
𝛽1

2
∫ (𝑣 + 𝑣̅)𝑛(𝑣 − 𝑣̅, 𝑡)𝑛(𝑣̅, 𝑡)𝑑𝑣̅

𝑣

2

0

 

−𝛽1𝑛(𝑣, 𝑡) ∫ (𝑣 + 𝑣̅)𝑛(𝑣̅, 𝑡)𝑑𝑣̅
∞

0

 

(5) 

where 𝛽1 is the linear aggregation coefficient. The 

mathematical model obtained by the partial integral-

differential expression, Eq. (5), admits an analytical 

solution [35, 37]. 

𝑛(𝑣, 𝑡) = 

−
𝑁0(1 − 𝑇)

𝑣√𝑇
𝑒𝑥𝑝 [−

(1 + 𝑇)𝑣

𝑣0
] 𝐼1 [2√𝑇

𝑣

𝑣0
] 

(6) 
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where 𝑇 = 1 − exp (−𝜏), 𝜏 = 𝛽1𝑁𝑜𝑣0𝑡, and 𝐼1 is the 

modified first order Bessel function. In terms of the 

particle diameter, Equation (6) becomes: 

𝑛(𝐷, 𝑡) = 

−
3𝑁0(1 − 𝑇)

𝐷√𝑇
𝑒𝑥𝑝 [−

(1 + 𝑇)𝐷

𝐷0
3 ] 𝐼1 [2√𝑇 (

𝐷

𝐷0
)

3

] 
(7) 

2.3. Pure aggregation model with linear 
aggregation coefficient and particle 
removal rate - Model 3 

Model 3 considers a particulate system submitted to 

pure aggregation, whose linear agglomeration 

coefficient is equal to 𝛽1(𝑣 + 𝑣̅ ) and 𝑅0 is the particle 

removal rate. The loss of particles to the container's 

inner surfaces can also be an important factor in 

changing the forms of particle size distribution. The 

main mechanisms for removing particles due to 

deposition are sedimentation and diffusion [39]. The 

population balance model for this case is presented as 

[27, 28]: 

𝜕𝑛(𝑣, 𝑡)

𝜕𝑡
=

𝛽1

2
∫ (𝑣 + 𝑣̅)𝑛(𝑣 − 𝑣̅, 𝑡)𝑛(𝑣̅, 𝑡)𝑑𝑣̅

𝑣

2

0

 

−𝛽1𝑛(𝑣, 𝑡) ∫ (𝑣 + 𝑣̅)𝑛(𝑣̅, 𝑡)𝑑𝑣̅
∞

0

− 𝑅0𝑛(𝑣, 𝑡) 

(8) 

where 𝛽1 is the linear aggregation coefficient and 𝑅0 is 

the particle removal rate, Eq. (8) admits an analytical 

solution in the form [27,28]: 

𝑛(𝑣, 𝑡) = 

−
𝑇̃𝑁0

𝑣√𝑔̃
𝑒𝑥𝑝 [

𝑇̃ − 1

Θ
] 𝑒𝑥𝑝 [−(1 + 𝑔̃)

𝑣

𝑣0
] 𝐼1 [2√𝑔̃

𝑣

𝑣0
] 

(9) 

where 𝑇̃ = 𝑒𝑥𝑝(−Θτ), τ = 𝛽1𝑁𝑜𝑣0𝑡, 𝑔̃ = 1 − 𝑒𝑥𝑝(𝑇̃ −

1/Θ), Θ = 𝑅0/𝛽1𝑁𝑜𝑣0 and 𝐼1 is the modified first order 

Bessel function. In terms of the particle diameter: 

𝑛(𝐷, 𝑡) = −
3𝑇̃𝑁0

𝐷√𝑔̃
𝑒𝑥𝑝 [

𝑇̃ − 1

Θ
] 

𝑒𝑥𝑝 [−(1 + 𝑔̃) (
𝐷

𝐷0
)

3

] 𝐼1 [2√𝑔̃ (
𝐷

𝐷0
)

3

] 

(10) 

2.4. Pure aggregation model with constant 
aggregation coefficient and linear growth 
rate - Model 4 

Model 4 considers a particulate system submitted to 

pure aggregation, whose agglomeration coefficient is 

constant and the particle growth rate by condensation 

is heterogeneous. Thus, the growth term in Eq. (1) 

takes the form 𝐼𝑣(𝑣, 𝑡) = 𝜎𝑣. Therefore, the population 

balance model is represented mathematically as [27, 

28, 38]: 

𝜕𝑛(𝑣, 𝑡)

𝜕𝑡
= 

−𝜎
𝜕[𝑣𝑛(𝑣, 𝑡)]

𝜕𝑣
+

𝛽0

2
∫ 𝑛(𝑣 − 𝑣̅, 𝑡)𝑛(𝑣̅, 𝑡)𝑑𝑣̅

𝑣

2

0

 

−𝛽0 ∫ 𝑛(𝑣, 𝑡)𝑛(𝑣̅, 𝑡)𝑑𝑣̅
∞

0

 

(11) 

where represents the difference in the concentration 

of diffusing species in the environment and on the 

particle surface, considering a growth rate controlled 

by the medium’s chemical reaction. The analytical 

solution for Eq. (11) is given by [27, 28]: 

𝑛(𝑣, 𝑡) = 

4 (
𝑁0

𝑣0
⁄ )

(2 + 𝜏)2 𝑒𝑥𝑝 [−
2𝑣

(2 + 𝜏)𝑣0
𝑒𝑥𝑝[−Λ𝜏] − Λ𝜏] 

(12) 

where Λ = 𝜎/𝛽0𝑁0. In terms of the particle diameter: 

𝑛(𝐷, 𝑡) =
4 (

𝑁0
𝑣0

⁄ ) (𝐷
𝐷0

⁄ )
2

(2 + 𝜏)2
 

𝑒𝑥𝑝 [−
2𝐷³

(2 + 𝜏)𝐷0³
𝑒𝑥𝑝[−Λ𝜏] − Λ𝜏] 

(13) 

3. Inverse problem 

Prediction of measurements requires a 

mathematical model of the system under investigation. 

This prediction of observations, based on the values of 

the parameters that define the model, constitutes a 

straightforward problem. On the other hand, the 

inverse problem consists of using the observations' 

results to infer the values of the parameters and state 

variables that do not have measures for the system 

under investigation [40]. Bayes ' theorem is the 

mechanism that combines the information obtained by 

the experiments with that of the mathematical model. 

Considering a vector of parameters,𝜽𝑇 =

[𝜃1 , 𝜃2, 𝜃3, … , 𝜃𝑝], and a vector of measurements, 𝒀𝑇 =

[𝑌1, 𝑌2, 𝑌3, … , 𝑌𝑚], p and m represent the number of 

parameters and measures, respectively. Thus, Bayes' 

theorem can be defined as [41-46]: 

𝜋(𝜽|𝒀𝑚𝑒𝑎𝑠) ∝ 𝜋𝑝𝑟𝑖𝑜𝑟(𝜽)𝜋(𝒀𝑚𝑒𝑎𝑠|𝜽) (14) 

where 𝜋(𝜽|𝒀𝑚𝑒𝑎𝑠) represents the probability density a 

posteriori; 𝜋𝑝𝑟𝑖𝑜𝑟(𝜽) is the prior probability density of 

the parameters; 𝜋(𝒀𝑚𝑒𝑎𝑠|𝜽) it is the likelihood 

function. It can be observed by Bayes' theorem, 

Equation (14), that the solution of the inverse problem 

within the Bayesian approach seeks to obtain a 

probability distribution for the parameters, not being 

reduced to a set of point values of parameters, as in the 

techniques of traditional inference. In the form of a 

posteriori probability density, this distribution gathers 

prior knowledge about parameters, the mathematical 

model, and experimental data as information [41-46]. 
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3.1. Approximate Bayesian Computation 

In some cases, the likelihood is computationally 

intractable, and thus, it is difficult to estimate the a 

posteriori probability distribution of the parameters. 

Alternatively, one can use the Approximate Bayesian 

Computational technique, which replaces the 

likelihood calculation with statistical metrics related to 

the observed and simulated data [47]. This technique 

can be used simultaneously for model selection and for 

estimating parameters [48-50]. 

Given a prior probability distribution, the goal is to 

obtain an a posteriori probability distribution, 

𝜋(𝜽|𝒀𝑚𝑒𝑎𝑠) ∝ 𝜋𝑝𝑟𝑖𝑜𝑟(𝜽)𝜋(𝒀𝑚𝑒𝑎𝑠|𝜽), for the parameter 

vector to be estimated, where 𝜋(𝒀𝑚𝑒𝑎𝑠|𝜽) is the 

likelihood function provided by the observed data 

𝒀𝑚𝑒𝑎𝑠 . However, a data set 𝒀∗ can be simulated from a 

value 𝜽 = 𝜽∗. 𝜽∗ will be considered a posteriori sample 

if the pre-defined distance 𝑑(𝐘𝑚𝑒𝑎𝑠 , 𝐘∗) between the 

simulated and observed data is less than a limit value, 

defined as tolerance 𝜀. For low values of 𝜀, the 

distribution 𝜋(𝜽|𝑑(𝐘𝑚𝑒𝑎𝑠 , 𝐘∗) ≤ 𝜀) will adequately 

describe the a posteriori probability distribution 

𝜋(𝜽|𝒀𝑚𝑒𝑎𝑠) [47-55]. 

The ABC algorithms are based on the following 

algorithm [48-53]: 

1. Sample a vector of parameters 𝜽∗ from the prior 

probability distribution 𝜋(𝜽): 𝜽∗~𝜋(𝜽); 

2. Simulate a model data set 𝐘∗ ≡ 𝑓(𝜽∗),  such that 

f is the straightforward model solution; 

3. Compare the simulated data set 𝐘∗, with 

experimental data, 𝐘𝑚𝑒𝑎𝑠, using a distance 

function, d, and a tolerance 𝜀; accept 𝜽∗ if 

(𝐘𝑚𝑒𝑎𝑠 , 𝐘∗) ≤ 𝜀. Tolerance 𝜀 ≥ 0  is the desired 

level of agreement between 𝐘𝑚𝑒𝑎𝑠and 𝐘∗. 

The term 𝑑(𝐘𝑚𝑒𝑎𝑠 , 𝐘∗) represents the Euclidean 

distance between the simulated and experimental 

data, and   is the tolerance. The ABC algorithm 

generates a sample of parameters from a distribution 

𝜋(𝜽|𝑑(𝐘𝑚𝑒𝑎𝑠 , 𝐘∗) ≤ 𝜀).This distribution will be a good 

approximation for the posterior distribution 

𝜋(𝜽|𝒀𝑚𝑒𝑎𝑠) if 𝜀 is small enough [50]. 

In addition to its importance in estimating 

parameters within a Bayesian approach, the ABC 

algorithm can also select models. The model selection 

problem is addressed within the framework by 

including an additional discrete parameter 𝑚 ∈

{1, … , 𝑀}, where M is the number of models. Model-

specific parameters are represented by the function 

𝜽(𝑚) = {𝜽𝑚
(1)

, … , 𝜽𝑚
(𝑘𝑚)

}, where 𝑘𝑚 indicates the 

number of model parameters m. Each population is 

started by sampling a model indicator m from the 

distribution of the last population, 𝜋𝑝𝑜𝑝−1(𝑚). For the 

model m, new particles are proposed from a variation 

applied to the particles of the previous population 

(specific to m); this step is the same as in the parameter 

estimation algorithm. Particle weights w(m) are also 

calculated in a similarly to the parameter estimation 

algorithm for m. The ABC SMC algorithm for model 

selection proceeds as follows [48, 56, 57]: 

1. Initialize 𝜀1, … , 𝜀𝑁, where 𝑁𝑝𝑜𝑝 is the number of 

populations; 

2. Set the population indicator pop = 1; 

3. Set the particle indicator i=1; 

4. Sample the model 𝑚∗ from 𝜋(𝑚). 

5. If pop = 1, draws 𝜽∗∗ from model 𝒎∗, 𝜽∗∗ ∼

𝜋(𝜽|𝒎∗). If pop > 1, draws 𝜽∗ from the previous 

population {𝜽(𝑚∗)𝑝𝑜𝑝−1} with weights 

𝑤(𝑚∗)𝑝𝑜𝑝−1 and perturbates the particle 𝜽∗ to 

obtain 𝜽∗∗ ∼ 𝐾𝑝𝑜𝑝(𝜽|𝜽∗). If 𝜋(𝜽∗∗) = 0, returns 

to 3; 

6. Simulate a candidate data set 𝒀∗ ∼ 𝜋(𝒀|𝜽∗∗, 𝑚). 

If 𝑑(𝒀𝒎𝒆𝒂𝒔|𝑌∗) ≥ 𝜀𝑝𝑜𝑝, returns to 3; 

7. Set 𝑚𝑝𝑜𝑝
(𝑖)

= 𝑚∗, adds 𝜽∗∗ for the particle 

population {𝜽(𝑚∗)𝑝𝑜𝑝−1} and calculate the 

particle weight 𝜽∗∗, 

𝑤𝑝𝑜𝑝
(𝑖)

= 

{

1                                                         , 𝑖𝑓 𝑝𝑜𝑝 = 1

𝜋(𝜽∗∗)

∑𝐽=1
𝑁 𝑤𝑝𝑜𝑝−1

𝑗
𝐾𝑝𝑜𝑝 (𝜽𝑝𝑜𝑝−1

(𝑖)
, 𝜽𝑡

(𝑖)
)

, 𝑖𝑓 𝑝𝑜𝑝 > 1   

8. If 𝑖 < 𝑁, set 𝑖 = 𝑖 + 1 and returns to 3; 

9. Normalize accepted particle weights; 

10. If 𝑝𝑜𝑝 < 𝑁𝑝𝑜𝑝, set 𝑝𝑜𝑝 = 𝑝𝑜𝑝 + 1 and returns to 

2. 

In the algorithm proposed by Toni et al. [50], it is 

necessary to define the total populations and the 

tolerances in each population. Then, for comparison 

between the simulated data and the experimental data, 

the Euclidean distance is used: 

𝑑(Y, Y𝑚𝑒𝑎𝑠) = √∑(Y𝑖 − Y𝑖
𝑚𝑒𝑎𝑠)

2
𝑁𝑡

𝑖=1

 (15) 

where Nt is the number of measurements. 

The algorithm establishes that, while the particles 
are drawn from each population, the tolerances 
decrease monotonically. In the present work, the 
tolerances are sequentially adapted in each population 
using the average distances of the particles accepted in 
the previous population. Considering the samples of 
Euclidean distances obtained in a given last 

population, (𝑑1
𝑝𝑜𝑝−1

,  𝑑2
𝑝𝑜𝑝−1

, … ,  𝑑𝑁𝑝𝑎𝑟𝑡

𝑝𝑜𝑝−1) , tolerance is 

calculated as follows: 

𝜀𝑝𝑜𝑝 = 𝑑̅𝑝𝑜𝑝−1 (16) 

While the algorithm proposed by Toni et al. [50] 

requires the imposition of the number of populations, 

in this work, Morozov's discrepancy principle was used 

as a stopping criterion [58]. We evaluated different 

transition kernels according to the following 

strategies: 

1. Strategy 1: it was considered that the 

parameters of the models are not correlated. 
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Thus, the covariance between them is null. The 

parameters are drawn based on a Gaussian 

distribution, with the mean of the parameter 

value chosen randomly from the previous 

population. 

𝜃∗ = 𝑁(𝜃𝑝𝑜𝑝−1
𝑖,𝑚 ;  𝜎𝑝𝑜𝑝−1) (17) 

2. Strategy 2: it was considered that the 

parameters of the models are correlated. In this 

case, the covariance between them is different 

from zero. The parameters are drawn 

considering a normal multivariate Gaussian 

distribution, with the mean in the value of the 

parameter of the previous model, chosen 

through a resampling process, and standard 

deviation being the covariance matrix of all 

samples from the last population. 

𝜃∗ = 𝑁(𝜃𝑝𝑜𝑝−1
𝑖,𝑚 ;  Σ𝑝𝑜𝑝−1

cov ) (18) 

3. Strategy 3: it was considered that the 

parameters of the models are correlated. Thus, 

the covariance between them was different 

from zero, and the parameters are drawn 

considering a Gaussian distribution, with 

multivariate normal, with the mean being the 

mean of all parameter values from the previous 

population and standard deviation being the 

covariance matrix of all samples from the last 

population. 

𝜃∗ = 𝑁(𝜃̅𝑝𝑜𝑝−1;  Σ𝑝𝑜𝑝−1
cov ) (19) 

4. Results and discussion 

The Approximate Bayesian Computational 

algorithm was used simultaneously to select models 

and estimate parameters using simulated measures. 

Besides, the verification of the algorithm was carried 

out through the four proposed models, using the three 

strategies. 

In all numerical experiments, the measurements 

were obtained from model 4, considering uncertainties 

(𝜎𝑚𝑒𝑎𝑠) equal to 1, 5, 10 and 30% of the maximum 

value of the size distribution density function, 𝑛(𝐷, 𝑡). 

In the first strategy, the parameters of model 4, 𝜃 =

[𝛽0   𝜎], are considered independent and not 

correlated; on the other hand, the second and third 

strategies admit that these parameters are correlated. 

1000 particles were used in all estimates, and 

Morozov's discrepancy principle was adopted as the 

stopping criterion. The prior probability distribution of 

the parameters was adopted as uniform with 

support 𝑈 = [0𝜽𝑚  4.0𝜽𝑚] where m is the index for the 

model generating measure, which is model 4 in the 

present study. The parameters of the models are 

shown in Table 1. 

Table 1. Reference values for the parameters of each model 
and prior probability distribution. 

Parameter Definition Model Value 𝝅𝒑𝒓𝒊𝒐𝒓𝒊(𝛉) 

𝛽0 
Constant 
aggregation 
rate 

1 e 4 1 cm³/s U [0, 4] 

𝛽1 
Linear 
aggregation 
rate 

2 e 3 1 cm³/s U [0, 4] 

𝑅0 Removal rate 3 1 cm³/s U [0, 4] 

𝜎 Growth rate 4 1 cm³/s U [0, 4] 

Figure 2 shows the evaluation of tolerances at 

different levels of experimental uncertainty. The 

purpose of this analysis is to verify whether the 

tolerances were monotonically decreasing. 

 

 

 
Figure 2. Evaluation of tolerance at different levels of 

experimental uncertainty for (a) strategy 1, 
(b) strategy 2 and (c) strategy 3 
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When analyzing Figure 2, it appears that the 
proposal to adjust the tolerances sequentially in each 
population satisfied the condition of being 
monotonically decreasing, as proposed by Tina Toni 
[59]. As there is an increase in the uncertainty of the 
measure, the number of populations needed to reach 
the stop criterion decreases. The results show that the 
stopping criterion was reached in the third population 
considering the experimental uncertainty of 30% of 
the maximum value of the size distribution density 
function,0.30max(𝑛𝑒𝑥𝑎𝑐𝑡) , for the three strategies 
adopted. While for the lowest level of experimental 
uncertainty assessed, 0.01max(𝑛𝑒𝑥𝑎𝑐𝑡), at least 12 
populations were required. 

After evaluating the proposed tolerance and 
stopping criteria, the estimates of parameters and state 
variables will be presented, considering the measures 
generated from model 4. Initially, it is analyzed 
whether the algorithm selected model 4 since this 
model originated the simulated measurements. Figure 
3 shows the evolution of the model selection 
probabilities with the advance of the populations for 
the three transition kernel strategies analyzed. 

 

 

 
Figure 3. Probability of selecting the model in each 

population for (a) strategy 1, (b) strategy 2 
and (c) strategy 3 

Figure 3 shows that the algorithm correctly selected 

model 4 as the most suitable to represent the simulated 

measures. This selection is expected since model 4 

generates the simulated measures. When evaluating 

the number of populations needed, it is observed that 

eight populations of the ABC algorithm were necessary 

to reach the stopping criterion.  As seen in Figure 3, in 

the first population, all models are equiprobable. That 

is, they are equally likely to be selected. In population 

3, models 2 and 3 have zero probability, so they are 

discarded from the selection algorithm. Only models 1 

and 4 remain non-zero probability and stay in the 

competition to be selected. In population 3, model 1 

has more considerable evidence than model 4, but 

from the fourth population, model 4 is selected. This 

behavior happens because the most significant 

evidence of model 1 concerning model 4 is related to 

Euclidean distances, 𝑑(𝐘, 𝐘𝑚𝑒𝑎𝑠) of each model 

accepted in the previous population. Information on 

Euclidean distances is presented in Table 2 - 4. 

Table 2. Mean and standard deviation of Euclidean distances 
accepted for each model and in each population 

 for strategy 1 

Pop. Tol. Model 1 Model 2 Model 3 Model 4 

1 3.49 
2.55 ± 
0.56 

3.44 ± 
0.42 

4.62 ± 
0.61 

3.40 ± 
1.17 

2 2.59 
2.39 ± 
0.37 

 3.08 ± 
0.20 

3.21 ± 
0.17 

2.36 ± 
0.79 

3 2.02 
2.21 ± 
0.16 

-- -- 
1.66 ± 
0.59 

4 1.36 -- -- -- 
1.36 ± 
0.44 

5 0.93 -- -- -- 
0.93 ± 
0.27 

6 0.66 -- -- -- 
0.66 ± 
0.19 

7 0.51 -- -- -- 
0.51 ± 
0.09 

8 0.42 -- -- -- 
0.42 ± 
0.05 

Table 3. Mean and standard deviation of Euclidean distances 
accepted for each model and in each population 

for strategy 2 

Pop. Tol. Model 1 Model 2 Model 3 Model 4 

1 3.49 
2.57 ± 
0.61 

3.44 ± 
0.44 

4.61 ± 
0.63 

3.45 ± 
1.23 

2 2.66 
2.40 ± 
0.37 

3.08 ± 
0.22 

3.22 ± 
0.20 

2.53 ± 
0.74 

3 2.14 
2.24 ± 
0.19 

-- -- 
1.79 ± 
0.63 

4 1.83 
2.07 ± 
0.03 

-- -- 
1.44 ± 
0.46 

5 1.18 -- -- -- 
1.18 ± 
0.41 

6 0.81 -- -- -- 
0.81 ± 
0.24 

7 0.58 -- -- -- 
0.58 ± 
0.14 

8 0.44 -- -- -- 
0.44 ± 
0.08 

9 0.37 -- -- -- 
0.37 ± 
0.04 
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Table 4. Mean and standard deviation of Euclidean distances 
accepted for each model and in each population 

for strategy 3 

Pop. Tol. Model 1 Model 2 Model 3 Model 4 

1 3.48 
2.56 ± 
0.62 

3.39 ± 
0.45 

4.65 ± 
0.62 

3.21 ± 
1.27 

2 2.61 
2.30 ± 
0.34 

3.07 ± 
0.21 

3.24 ± 
0.15 

2.50 ± 
0.73 

3 2.07 
2.16 ± 
0.15 

-- -- 
1.87 ± 
0.54 

4 1.74 
2.03 ± 
0.02 

-- -- 
1.47 ± 
0.44 

5 1.23 -- -- -- 
1.23 ± 
0.35 

6 0.91 -- -- -- 
0.91 ± 
0.23 

7 0.68 -- -- -- 
0.68 ± 
0.16 

8 0.54 -- -- -- 
0.54 ± 
0.09 

9 0.45 -- -- -- 
0.45 ± 
0.06 

Tables 2-4 show the mean values of the Euclidean 

distances of the particles of each model in each 

population and their respective standard deviations. 

The tolerances, Tol, in each population are also shown. 

By analyzing the Tables, it's seen that for the three 

strategies used, the mean of Euclidean distances for 

model 1 is more significant than model 4 in population 

3. In the same way, it's observed that these mean 

values are greater than tolerance. However, the 

standard deviations for model 1 are smaller than those 

for model 4. Thus, it is concluded that, although it 

presents greater evidence in the third population and, 

therefore, greater mean distances, few particles in 

model 1 are being accepted in that population. Thus, 

model 4, which is generating the measure, is selected 

starting from the fourth population. 

After selecting the model, the correlation analysis 

was performed for the three transition kernel 

strategies evaluated. Correlation analysis is a tool to 

assess the possible two-way linear association 

between the aggregation coefficient, β0, and the growth 

rate, σ. Thus, this statistical evaluation also allows us to 

physically analyze how these parameters are 

associated. This analysis is contained in Figure 4. 

 

 

 
Figure 4. Correlation between the parameters of model 4 

with advancing populations considering: (a) strategy 1, 
(b) strategy 2 and (c) strategy 3 

In Figure 4, the red dot indicates the reference value 

of the parameters, while the black dots are samples of 

the posterior probability distribution in each 

population. In the first population, the points are 

dispersed because the parameters are initially 

considered uncorrelated and independent. That is, 

there is no linear relationship between them. As 

populations evolve, samples converge to values around 

the reference, indicating that uncertainties decrease 

and estimates show precision and accuracy. As 

populations advance, the correlation between 

parameters becomes more evident, as does the linear 

relationship between them. In the last population, the 

correlation has a negative slope. Evaluating this last 

population makes it possible to infer that the 

parameters are inversely related. As the value of one 

parameter increases the value of the other tends to 

decrease. 

The correlation analysis between the parameters 

can help provide the physical behavior between the 

two evaluated parameters. The inverse relationship 

between them is expected since aggregation is a slower 

process and, consequently, usually occurs after the 

formation of molecules. In this way, the growth process 

is fast enough to form molecules of non-uniform size. 

With the inverse relationship between them, it is 

possible to infer that in physical-chemical processes in 

which agglomeration is the predominant phenomenon, 
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the growth rate will not influence the population 

density of particles of crystals, aerosols or polymers. 

Likewise, agglomeration may not affect dynamics 

when the growth rate is predominant. 

It is important to emphasize that, although model 4 

was selected in the 4th population, as shown in Figure 

3 and Tables 2-4, the algorithm satisfied the stopping 

criterion only in the 8th population. This is because in 

the fourth population the estimates have not yet met 

the Morozov criterion, requiring more populations. 

Tables 5 - 7 show the parameter estimates for the 

three transition kernel strategies evaluated for each 

model, considering only the last population. It appears 

that the estimated parameters of models 1, 2, and 3 

showed values that were far from the exact value. 

However, both the parameters of models 2 and 3 have 

the exact and estimated values within the 99% 

credibility range. For the parameter  

𝛽0 from model 1, the estimated value showed a margin 

of 164% concerning strategy 1, 145% for strategy 2, 

and 143% for strategy 3. On the other hand, model 2 

parameter, 𝛽1, have a deviation of 84% from the 

estimated regarding the exact value for strategy 1, 79% 

for strategy 2, and 90% for strategy 3. In addition, 𝛽1 

and 𝑅0, model 3 parameters, presented deviation of 

13% and 38 % of exact values for strategy 1, 30% and 

53% for strategy 2 and 54% and 57% for strategy 3, 

respectively. 

As for the parameters of model 4, Tables 5-7 show 

that the estimates reached were precise (the 

parameters are within the 99% credibility range) and 

accurate (the parameters are close to the exact value). 

Estimated values of 𝛽0 and 𝜎 showed deviations of 

0.05% and 0.07%, respectively, for strategy 1, 2% and 

1% for strategy 2, and 9% and 3% for strategy 3. Thus, 

the low values of deviation from the exact corroborate 

the accuracy of the estimates for the 3 strategies. 

The estimation of the parameters of the population 

balance model is essential since, being a small-scale 

phenomenon, it is not possible to take direct 

measurements of the parameters. Furthermore, to 

define some parameters, such as the agglomeration 

coefficient, it is necessary to perform specific 

experiments. In addition to being expensive, these 

experiments have a high level of uncertainty. 

Table 5. Estimation of parameters for strategy 1. 

𝜽 Exact Model 1 Model 2 Model 3 Model 4 

𝛽0 1 cm³/s 
2.64  
(1.42; 
4.06) 

- - 
1.005 
(0.74; 
1.26) 

𝛽1 1 cm³/s - 
1.84 
(0.79; 
2.74) 

1.13 
(0.03; 
2.42) 

- 

𝑅0 1 cm³/s - - 
0.62 
(0.0003; 
1.29) 

- 

𝜎 1 cm³/s - - - 
1.007 
(0.84;1.19) 

 

Table 6. Estimation of parameters for strategy 2. 

𝜽 Exact Model 1 Model 2 Model 3 Model 4 

𝛽0 1 cm³/s 
2.45 
(1.90; 
2.98) 

- - 
0.98 
(0.77; 
1.21) 

𝛽1 1 cm³/s - 
1.79 
(0.76; 
2.74) 

1.30 
(0; 3.08) 

- 

𝑅0 1 cm³/s - - 
0.47 
 (0; 1.31) 

- 

𝜎 1 cm³/s - - - 
1.01 
(0.85; 
1.16) 

Table 7. Estimation of parameters for strategy 3. 

𝜽 Exact Model 1 Model 2 Model 3 Model 4 

𝛽0 1 cm³/s 
2.43 
(2.03; 
2.81) 

- - 
1.09 
(0.80; 
1.31) 

𝛽1 1 cm³/s - 
1.90 
(0.78; 
2.70) 

1.54 
(0; 2.82) 

- 

𝑅0 1 cm³/s - - 
0.43 
(0; 1.13) 

- 

𝜎 1 cm³/s - - - 
1.03 
(0.83; 
1.21) 

Figure 5 shows the size distribution density 

function for model 4 in each population for the three 

transition kernel strategies evaluated in terms of the 

measures and estimated values. The results presented 

correspond to the measurement in all particle 

diameters considering a time of 2 seconds. As 

expected, model 4 has a better agreement between the 

simulated and estimated measures since it generates 

the measures. It is also noted that, at the beginning of 

the process, the size density function increases due to 

the appearance of small molecules, but with the 

collision phenomena and consequent growth, the size 

density function decreases a lot. This phenomenon is 

explained by the fact that smaller molecules collide to 

form larger bodies, and thus the body in question 

grows, thus reducing the initial density. 

 



 C. H. R. Moura/ JHMTR 9 (2022) 53- 64 61 

 

 

 

Figure 5. Estimates of the size distribution density 
function over time of 2 s for model 4 in terms of  
(a) strategy 1, (b) strategy 2 and (c) strategy 3 

Figure 6 presents the correlation coefficient 

analysis for the three transition kernel strategies 

applied in the present work. Measurement uncertainty 

of 5% of the maximum value of the size distribution 

density function was considered. The evaluation of the 

correlation coefficients allows the analysis of the linear 

dependency relationship between the parameters of 

model 4. 

For the measurement deviation analyzed for the 

three strategies, it is observed that in the first 

population, the correlation coefficient is equal to zero, 

indicating no correlation between the model 

parameters. As populations progress, the correlation 

coefficient decreases as the uncertainties in the 

estimates decrease, and the linear relationship 

between the parameters becomes more evident. 

Finally, the correlation coefficient stabilizes at negative 

values for all strategies, indicating a negative 

relationship between the two parameters. In other 

words, they are related in opposite directions - for a 

positive increase in, there is a decrease in and vice 

versa. As stated before, this analysis allows us to assess 

how much the predominance of a physical 

phenomenon influences the occurrence of another. 

For the 5% measurement deviation, comparing the 

results in Table 8 and Figure 11, the correlation 

coefficient for strategy 1 stabilizes around -0.65, 

showing a moderate correlation between the 

parameters [60]. For strategy 2, stabilization occurs at 

-0.7, while for strategy 3, it occurs at -0.85, indicating 

that for both, there is a strong negative correlation 

between the parameters [60]. 

Figure 7 presents how many times the 

straightforward model is solved in each population for 

the three strategies. The number of model solutions in 

each population is a critical analysis to assess the 

computational efficiency of the algorithm and the 

strategy implemented. Strategy 3 has the lowest 

computational cost among those analyzed, as it was the 

one that needed to solve the straightforward model 

less often. 

 

Figure 6. Correlation coefficients for the three strategies 
with an uncertainty of 5% in the measure 

 

Figure 7. Straightfoward model solutions using the three 
strategies implemented 
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Conclusion 

In this work, the Approximate Bayesian 

Computation technique was applied to select models 

and estimate parameters simultaneously. In all cases 

studied, we observed that the proposed stopping 

criterion based on Morozov's discrepancy principle 

was adequate in determining tolerances in each 

population, as it met the criterion of monotonic 

reduction of tolerances with advancing populations. 

Three different transition kernel strategies showed 

precise and accurate parameter estimates, 

demonstrating the good applicability of the technique 

and the importance of evaluating the influence of the 

correlation between the parameters in the transition 

kernel of the algorithm. Furthermore, the transition 

kernel of strategy 3 was the one that solved fewer 

times the direct model, being, therefore, the strategy 

that presents greater computational efficiency. 

Thus, the Approximate Bayesian Computation 

technique proved to simultaneously select the models 

and estimate the parameters of the population balance 

equations studied in this work. The estimates of β0 and 

σ have great physical significance as they represent 

physical mechanisms that govern population dynamics 

and are of fundamental importance in understanding 

the particle size distribution for any physical 

phenomenon that involves it. Besides, the algorithm 

can be a skillful method of application in a scenario in 

which different candidate models, which represent 

other hypotheses about population dynamics, are 

available, estimating the parameters of each model and 

selecting the one that best fits the experimental data 

available. 

Nomenclature 

D Particle diameter [μm] 

D0 Initial particle diameter [μm] 

Iv(v,t) 
Rate of change of volume by mass 
transfer between particles and fluid 
phase [cm3.s-1] 

Kt Pertubation kernel 

meas Measures 

n(v,t) 
Size distribution density function  
[μm-3.cm-3] 

n(D,t) 
Size distribution density function as a 
function of diameter [μm-1.cm-1] 

N0 
Total number of particles at time zero 
[cm-3] 

pop Population 

R0 Removal Rate [cm³.s-1] 

Sv 
Net rate of addition or removal of 
particles in the system [cm³.s-1] 

𝑣  Particle volume [cm³] 

𝑤  Importance weights 

Y Measurements Vector 

Greek Letters 

β0 
Constant aggregation coefficient 
[cm³.s-1] 

β1 Linear aggregation coefficient [cm³.s-1] 

ε Tolerance 

L 
Relationship between particle growth 
rate and aggregation rate 

m Mean 

q Parameter Vector 

Q 
Relationship between particle removal 
rate and aggregation rate 

( )meas θ Y  Posterior probability distribution  

( )priori θ  Prior probability distribution  

( )meas Y θ  Likelihood function 

r Correlation coefficient 

s Growth rate [cm³.s-1] 

smeas Measurements deviation 

sp Standard deviation 

t Dimensionless time 
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