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In this work, a mathematical model is adopted to predict the breakthrough curve in a fixed 
bed adsorption process, neglecting radial dispersion effects in the bed, with properties such 
as interstitial velocity and porosity being constant, linear adsorption kinetics and equilibrium 
relationship represented by the Langmuir isotherm. The resulting partial differential 
equation is numerically solved by the Method of Lines (MOL), while the Markov Chain Monte 
Carlo method is employed to estimate the model parameters, using simulated measures and 
a priori Gaussian probability distribution for the parameters, varying the mean and standard 
deviation. A convergence analysis was performed to look for numerical convergence between 
the number of nodes (N) used and the computational cost (CPU time) and it was observed 
that N = 100 obtained the lowest computational cost (less than 0.2 s). The estimated values 
of Peclet's number (Pe) and Langmuir's constant (KL) showed deviations of 7% and 0.01%, 
respectively, compared to their exact value which shows that the estimates were accurate, 
i.e., the parameters are close to the exact value. Also, the estimated values were within the 
credibility interval of 99 % established, which shows precise estimates. The information 
taken from these estimates has become of fundamental importance in predicting the behavior 
of the breakthrough curve at different points in the bed, showing that the MOL in combination 
with the MCMC are efficient tools in the direct and inverse analysis of models of breakthrough 
curves. 
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1. Introduction 

Pollution of water resources by the recalcitrant 

presence of emerging contaminants stimulates 

environmental concern about this topic and makes 

efforts aimed at remedying its negative effects on the 

environment relevant. In this sense, studies to develop 
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effective methodologies for the treatment of these 

contaminants have been carried out around the world 

[1-9]  

Among the already known methods that are 

effective for environmental remediation purposes are 

photocatalysis [10], membrane ultrafiltration 
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[11] ,ozonation [12], photo-Fenton reaction [13] and 

ion exchange [14]. In this scenario, adsorption stands 

out as an attractive alternative for presenting relative 

simplicity of execution, low implementation cost 

compared to other approaches, and considerable level 

of effectiveness [15-17]. 

Adsorption can be performed in batch; however, 

this mode of operation is inappropriate when dealing 

with large-scale wastewater treatment [18-20]. Thus, 

for its industrial application, the use of fixed bed 

columns is suitable since they allow the continuous 

passage of effluents with a high load of pollutants 

through a column filled with adsorbent [18;21-22]. 

Before the elaboration of a project of an industrial 

scale fixed-bed column, a mathematical model capable 

of successfully representing the dynamics of 

experimentally obtained breakthrough curves is 

needed [23-24]. Many analytical models have been 

widely used to describe the breakthrough curves in 

fixed bed column adsorption systems [25-29].  

Despite their importance, these models fail to 

identify mechanisms such as axial dispersion in the bed 

and mass transfer between phases. In addition, they 

need experimental curves for their parameters to be 

estimated, limiting the scope of the analysis to this 

specific curve [30-34]. 

To overcome the limitations of analytical models in 

representing breakthrough curves, several works have 

used more complex approaches in relation to the topic 

of adsorption in a fixed bed, some of which are 

highlighted in Table 1. In order to contribute to 

previous studies a model obtained from a mass balance 

for the fluid phase was used in this work, which is 

based on the conservation of mass in the system, 

kinetics, and conditions adsorption equilibrium[23].  

The parameter estimation was performed from 

Bayesian inference perspective's to cover the effect 

that uncertainties intrinsic to the experimental 

execution would exert on the value found for the 

parameters. Since such effects can cause 

incompatibilities in the modeling by allowing 

physically improbable parameters to be obtained and, 

thus, affecting the design and operation of the 

process[35]. 

The Bayesian method of Markov Chain Monte Carlo 

(MCMC) was used in the estimation process. Simulated 

measurements were used to verify the elaborated 

code, and different levels of uncertainty were assigned 

to evaluate the effect produced on the results. The 

prior probability distribution, the one that contains 

previously available information about the analyzed 

system, was evaluated here by changes made to its 

characteristic metrics such as mean and standard 

deviation. The measurements that are usually obtained 

only at the exit of the bed were used to estimate 

information on the adsorptive process at other points 

in the column. 

Table 1. Different approaches applied to the study of adsorption in a fixed bed column. 

Breakthrough curve models 
Equilibrium 
Isotherms 

Kinetic Solution Method Parameter Estimation Reference 

Thomas 

Bohart-Adams 

Yan 

- - 
Nonlinear 
adjustment 

Origin Pro 8 [36] 

Computational fluid dynamics 
(CFD) 

Non-linear Langmuir 
Linear Drive 
Force (LDF) 

COMSOL 
Multiphysics 

Empirical correlations [24] 

Thomas, Yoon-Nelson, Adams-
Bohart and Wolbourska 

- - 
Microsoft Excel's 
Solver Extension 

Linear and Nonlinear 
Regression 

[37]  

Mass balance in fluid phase Langmuir and BET 
Linear Drive 
Force (LDF) 

Runge-Kutta-
Fehlberg Method 

Minimization of an 
objective function using the 
downhill simplex 
optimization method 

[38] 

Logistic Model (Bohart-Adams, 
Yoon-Nelson and Thomas), 
Wolborska, Modified Dose-
response, Clark, Gompertz and 
LogGompertz. 

Mass Transfer Model  

Langmuir 
Linear Drive 
Force (LDF) 

Finite Elements Comsol Multiphysics V5.4. [34]  

Hydrus-1D, 

Thomas, Yoon-Nelson and 
Bohart-Adams 

General sorption 
model that, 
depending on the 
value of the 
parameters, may fall 
into the Langmuir, 
Freundlich or linear 
isotherm 

- Hydrus-1D 
Levenberg-Marquardt and 
operational parameters by 
experiments 

[39]  
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2. Direct Problem – Mass Balance 

The representation of physical model is presented 

in Figure 1 and demonstrates in a simplified way an 

adsorption column with ascending feed of initial 

concentration C0 and output current C.  

The mass balance in a differential element of the bed 

was carried out assuming the following hypotheses: 

negligible radial dispersion, the significant variation 

was considered only in the axial direction, the 

solid/fluid interfaces establish a thermodynamic 

equilibrium state, porosity and interstitial velocity are 

constant [38]. 
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where 0u  is the fluid velocity, axD  is the dispersion 

coefficient, 
L  is the bed void fraction, sk is the kinetic 

constant, maxq  is the maximum capacity of 

adsorption and 
L

k is the Langmuir parameter. 

The dimensionless groups presented in Equation 2 

were adopted; thus, the mass balance model in 

dimensionless form is shown in Equation 4.  
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where qmax, the maximum adsorption capacity in the 

column, is given by Equation (3): 
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where Q is the volumetric flow rate (cm³/min) and W 

is the adsorbent mass (g). 
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3. Metodology 

3.1. Direct Model Solution – Methods Of Line 

The numerical procedure used to solve the non-

linear partial differential equation (PDE) was the 

method of lines. This method is used to solve the mass 
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balance model carried out in an adsorption column, to 

discretize the domain of the dependent variable 

( , )    in space, transforming the obtained PDE into 

a system of time-continuous ordinary differential 

equations (ODEs) ( )i   [40].  

The schematic representation shown in Figure 1 

summarizes the discretization of the dimensionless 

domain in the range of [0,1] = . In the method of 

lines, the domain 0 1    is discretized into   

equal lengths, where 1 1N = −  and N is the 

number of nodes in the spatial domain. Therefore, N 

ODEs are developed by discretizing the governing PDE 

and boundary conditions [40]. 

Equations 4.a-c describe the dynamics that occur in 

the bed and correspond to the internal points of mesh 

in the domain interval. Equations 5.a-c show the 

discretized PDE.  
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At 1i =  and 0 =  Equation 4.a takes the form 

described in Equation 5.d: 
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The boundary condition at the bed entrance 

described by Equation 4.f was used to determine 
0

 , 

using the central difference on 1i = , the 

arrangement as shown by Equation 5. 
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To determine i  at PDE in 
i

i N=  (Equation 5.f), 

the backward finite difference was applied to the 

boundary condition of Equation 4.g, which assumed 

the form shown in Equation 5.g. 
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It is important to emphasize that the Method Of 

Lines is a methodology to obtain an approximate 

solution of the PDE given by the Equations (4.a-g). 

Therefore, the limitation of the method tends to be in 

the amount of precision needed to approximate the 

exact solution.  

This accuracy is related to the number of grid points 

and available computing power. In this way, a 

convergence analysis becomes necessary to provide 

the computational power necessary to reach adequate 

precision to approximate the solution. 

 
Figure 1. Model of an adsorption column and schematic representation  

of the domain discretized in the interval [0,1] =  
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In this work, the algorithm used for convergence 

analysis is shown below:  
1. Obtain θ1 solving the direct problem using 

N  nodes 

2. Obtain 2
θ  solving the direct problem using 

N N+   nodes 

3. Calculate the tolerance, 

( )1 2maxtol = −θ θ . If SC
tol tol  stop, 

otherwise do 1 2=θ θ  and return to step 2. 

where is the value of the dependent variable obtained 

for N nodes, θ2 the value of the dependent variable 

obtained for N + ΔN nodes, N is the number of nodes in 

the mesh, tol is the tolerance and tolSC is the initial 

defined tolerance.  

3.2. Inverse Problem – Markov Chain Monte 
Carlo 

In many cases, different prior probability densities 

can be assumed for the parameters and thus, it is 

impossible to obtain an analytical treatment for a 

posterior probability distribution. In this scenario, the 

Markov Chain Monte Carlo method, an iterative 

version of traditional Monte Carlo methods, is used to 

extract samples of all possible parameters so that 

posterior probability inference turns into sample 

inference [41-45]. 

The MCMC combines the properties of Monte Carlo 

and the Markov chain. The first is estimating the 

properties of distribution by examining random 

samples from the distribution. On the other hand, the 

second aims at the idea that a given sequential process 

generates random samples, where each random 

selection is used as a step to develop the next one. A 

particular property is that, although each new choice 

depends on the previous one, new samples do not rely 

on any instance before the last one. 

In the present work, the Metropolis-Hastings 

algorithm is used to estimate the parameters of the 

mathematical model of the breakthrough curve[41;46-

50], which following the following steps: 

1. Initially, set an initial parameter value for the 

first iteration of the chain, P1. Then, draw a 

candidate value P* from an auxiliary 

distribution q (P*│Pi). In the present work, the 

auxiliary distribution adopted is a Gaussian 

distribution in the following form: 

( )* 1 = +i
P P w  (6) 

where   is a random variable N(0,1) and w is 

the search step. 

2. Compute the probability of acceptance 
( )( )i * P P  of the candidate value given by:  
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3. Generate a random number u from a uniform 

distribution U(0,1);  

4. If ( )i *u  P P , accept the new P(i+1) = P* 

value. Otherwise, P(i-1) = P(i-1).  

5. Return to step 1.  

A flowchart of the Metropolis-Hastings algorithm is 

illustrated in Figure 2 below.  

 
Figure 2. Sequential flowchart of the MCMC method using Metroplis-Hastings 
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In this work, simulated measures are used to carry 

out parameter estimates. Such measures are generated 

by adding noise, υ, so the measures by Equation (8): 

( ) ( )1, 1,meas exact = + ν   (8) 

where ( ),exact 1  is the solution of the direct 

problems with knowing reference parameters and 

( ,  )measN=ν 0  . 

4. Results 

The numerical tests carried out concerned the direct 

model's evaluation (presented in section 2) using the 

technique shown in section 3 to solve the inverse 

problem of parameter estimation involved in the 

adsorption phenomenon in a fixed bed column 

The system of ordinary differential equations 

originated from the discretization of the partial 

differential equation and was solved by 

the ode15s function of the Matlab R2021a software. 

The same software programmed code for the 

Metropolis-Hastings algorithm. 

The mesh convergence analysis is performed to 

verify the number of nodes (Ni) sufficient for model 

discretization when applying the method of lines and 

reaching a satisfactory convergence. 

The number of nodes in the discretized domain 

varied, and how this variation influenced the 

computational time was observed. The relevance of 

this analysis for this work aim at the need that the 

MCMC method must solve the direct model several 

times (10.000 states of Markov Chain), therefore 

defining the number of nodes and the desirable 

computational cost to obtain precision in the solution 

becomes desirable. 

Simulated measurements were used to apply the 

estimates of the parameters of the analyzed model. The 

prior probability distribution of the parameters was 

adopted as Gaussian, and its influence and the 

influence of the acquisition frequency of 

measurements are evaluated. The simulations were 

performed using as a reference for the parameters the 

following values: Pe = 10.00, Ks = 1.00, Qmax = 7.00, 

 KL = 1.00 and ε = 0.40. The choice of these parameters 

was to simulate a breakthrough without numerical 

instabilities, since the Peclet number (Pe) can be 

important to characterize the transport of solutes by 

advective or diffusive means, the numerical stability 

depends on the number of Pe. If they reach some 

critical limits the numerical solution begins oscillating 

in space and time. 

The parameters Qmax, Ks can be calculated, and the 

porosity ε can be obtained experimentally. In this 

sense, the parameters estimated here were Pe because 

they included operational and diffusivity information, 

and KL referring to the Langmuir isotherm. 

4.1. Convergence Analysis 

Figure 3 presents the results of the convergence 

analysis performed. It has been found that increasing 

the number of nodes increases the computational cost 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.   Convergence analysis regarding Qmax and ε were kept constant in  7.00  and  0.40,  respectively.  
(a) Pe = 10.00 ; KL = 1.00, (b) Pe = 10.00 ; KL = 3.00, (c) Pe = 2.00 ; KL = 1.00 e (d) Pe = 20.00 ; KL = 1.00. 



 Tavares et al. / JHMTR 9 (2022) 219 - 232 225 

 

4.2. Prior Mean Analysis 

The prior probability distribution of the parameters 

contains the information previously known. In this 

sense, variations in the mean of the prior probability 

distribution of the parameters, shown in Table 1, were 

performed to evaluate whether the estimated values 

would approach the exact value when the mean value 

of this distribution is changed. 

The graph of the prior probability distribution 

function for these case studies is shown in Figure 4. It 

is possible to notice the displacement of the mean of 

the probability density distributions of the parameters 

Pe and KL for each case concerning the value adopted 

as reference (green line). 

Figure 5 shows the estimation result for case studies 

1 and 5(see Table 2). It is observed that the prior 

distribution mean is far from the exact value. After the 

estimation process, the result shown by the posterior 

probability distribution converges to a determined 

region close to the reference, suggesting that despite 

the displacement carried out in the prior mean, 

adequate information regions to select candidate 

parameters could be reached, demonstrating the 

robustness of the MCMC method. 

Table 2 shows the results of the estimates in all 

cases in which the influence of the displacement of the 

mean on the prior probability distribution is evaluated. 

It was possible to observe that there was precision for 

all cases since the estimated parameters are within the 

95% credibility interval and accuracy since the 

estimates are close to the exact value of the 

parameters. It is also found that the deviations from 

the parameters' estimates were low and had a low level 

of uncertainty.  

 

(a) 

 

(b) 

Figure 4. Prior probability distribution function (pdf) evaluating the influence  
of the mean for the parameters: (a) Pe e (b) KL. 

 

(a) 

 

(b) 

Figure 5. Prior and posterior probability distribution function evaluating the influence 
 of the mean displacement on the parameters' prior: (a) Pe e (b) KL 
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Table 2. Influence of the mean on the prior probability distribution. 

Caso Parameter Exact ( )prior P  ( )posterior P  

1 

Pe 

10.00 N(3, 3) 9.84 (9.39;10.38) 

2 10.00 N(5, 3) 9.79 (9.37;10.18) 

3 10.00 N(15, 3) 10.02 (9.31;10.66) 

4 10.00 N(20, 3) 9.39 (8.96;9.74) 

5 

KL 

1.00 N(0.3, 0.3) 1.00 (0.99;1.01) 

6 1.00 N(0.5, 0.3) 1.00 (0.99;1.02) 

7 1.00 N(1.5, 0.3) 1.00 (0.99;1.02) 

8 1.00 N(2.0, 0.3) 1.01 (0.99;1.02) 

 

4.3. Prior Standard Deviation Analysis 

In addition to analyzing the influence of the mean, 

another critical assessment is to observe the effect that 

the variation in the standard deviation can have on the 

estimates since high standard deviation values can 

lead to uninformative priors. Even though they lead to 

own posteriors, poorly informative priors can generate 

a certain instability when posterior is obtained 

numerically [51]. 

Figure 6 shows the influence of different standard 

deviation values on the prior probability distribution 

function of the parameters. It is possible to observe 

that the search for candidate parameters falls within a 

reduced range of values, whereas for more significant 

deviations, this range is extended. 

Table 3 shows the results (mean and credibility 

interval 99%) obtained for the estimates by varying 

the standard deviation of the prior probability 

distribution of the parameters. It is observed that the 

increase in deviation decreases the accuracy of the 

estimates since the estimated values are far from the 

exact value. 

 
(a) 

 
(b) 

Figure 6. Prior probability distribution function evaluating the influence 
 of standard deviation on the prior for parameters: (a) Pe e (b) KL. 

Table 3. Influence of the standard deviation on the prior probability distribution. 

Parameter Exact ( )prior P  ( )posterior P  

Pe 

10.00 N (10,1 ) 10.05 (9.47; 10.68) 

10.00 N (10,2) 9.34 (8.87; 10.10) 

10.00 N (10,3) 9.37 (8.65; 9.94) 

10.00 N (10,4) 9.33 (8.95; 9.70) 

KL 

1.00 N(1,0.1) 1.00 (0.99; 1.01) 

1.00 N(1,0.2) 1.01 (0.99; 1.02) 

1.00 N(1,0.3) 1.01 (0.99; 1.02) 

1.00 N(1,0.4) 1.01 (1.00; 1.03) 
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4.4. Acquisition Frequency Of Measurements 

Figure 7 seeks to represent the acquisition 

frequency of measurements, dτ, and how uncertainties 

associated, 𝜎meas, influence the data dispersion. As 

shown in Figure 7a-d, it is possible to observe that as 

dτ increases, the number of measurements obtained 

decrease. On the other hand, measurements are placed 

close to the breakthrough curve at low values 

attributed to uncertainty, such as 1%. Higher values of  

𝜎meas were used to represent more realistic scenarios 

and interfered in the increase of dispersion around the 

reference curve, as observed in Figure 7e-g. 

a) 

 

b) 

 

0.1d = ; 0.01meas =  0.5d = ; 0.01meas =  

c) 

 

d) 

 

1.0d = ; 0.01meas =  1.5d = ; 0.01meas =  

e) 

 

f) 

 

1.0d = ; 0.03meas =  1.0d = ; 0.05meas =  

g) 

 

1.0d = ; 0.10meas =  

Figure 7. Acquisition frequency of measurements and influence of the increase in uncertainty. 
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4.5. Breakthorough Curve Estimation 

The parameters estimated from the use of the 

MCMC Bayesian method allowed that measurements 

obtained in the output current could offer the 

possibility of predicting curves that form at different 

points along the column. In this work, the analyzed 

points were close to the inlet θ = 0.25, in the middle  

θ = 0.5 and at the exit of the column θ = 1. The results 

presented in Figure 8 showed the dynamics of the 

advance of the adsorptive phenomenon. 

Figure 8a), c) and e) show the comparison between 

the exact solution of the model (black line) and the one 

obtained from the prior probability distribution of the 

parameters (solid blue line).  

Figure 8b), d) and f) show the results for the exact 

solution of the model (black line) and the one obtained 

from the a posteriori probability distribution of the 

estimates made with the MCMC method (solid blue 

line). You can see that the exact and estimated curves 

overlap and remain within a 95% confidence interval 

(dashed blue line). It is evident that an excellent 

agreement was achieved between the estimated and 

exact measurements. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8. Estimation of the breakthrough curve at different points in the fixed bed column. a) ( )1.00,  from ( )prior P , 

b) ( )1.00,  from ( )posterior P , c) ( )0.50,  from ( )prior P , d) ( )0.50,   from ( )posterior P , 

e) ( )0.25,   from ( )prior P   f) ( )0.25,   from ( )posterior P  



 Tavares et al. / JHMTR 9 (2022) 219 - 232 229 

 

Conclusion 

The parameters estimation of the mathematical 

model of the adsorption of a chemical species in a fixed 

bed column was performed using the Markov Chain 

Monte Carlo method. In addition, simulated 

measurements generated from Gaussian noises were 

used to verify the developed algorithm.  

The obtained model is solved by the Method of 

Lines, and a mesh convergence study was carried out 

to determine a sufficient value of discretization. A high 

tolerance value demands many discretization, which is 

not desirable since this increases the computational 

cost and causes numerical and approximation errors to 

occur. However, in the present work, the increase in 

computational cost was not significant.  

The estimate analysis explored two scenarios: the 

influence of the mean and standard deviation on the 

prior probability distribution of the Peclet number, Pe, 

and the Langmuir isotherm constant, KL. In these 

scenarios, we observed that even changing the prior 

distribution of the parameters, the posterior 

distribution samples converge to values close to exact. 

Thus, the estimated results were satisfactory, and 

there was both precision and accuracy in the 

inferences.  

From the Bayesian inference, it was possible to use 

the information at a certain point in the column and 

thus obtain estimates with considerable precision in 

other places of interest where measurements were not 

available. The simulated scenario also allowed the 

observation of the influence of experimental 

uncertainties in obtaining measurements, showing 

that they tend to present greater dispersion the greater 

the uncertainties associated with their acquisition. 

Thus, from the results presented, it is shown that the 

application of the Bayesian technique of MCMC is 

robust and presents itself as an excellent tool to 

understand the dynamics of the fixed bed adsorption 

process and other mass transfer processes. 

Nomenclature 

C Adsorbate concentration at bed outlet, (mg.L-1) 

q Adsorbate concentration at solid phase, (mg.g-1) 

0u  Interstitial velocity, (cm.min-1) 

axD  Axial dispersion coefficient, (cm2.min-1) 

Lk  Langmuir constant, (L.mg-1) 

maxq  Maximum adsorption capacity, (mg.g-1) 

sk  Global mass transfer coefficient, (min-1) 

*q  
Equilibrium concentration in the solid phase, 
(mg.g-1) 

L  Porosity 

t Time, (min) 

L  Bed density, (g.L-1) 

  
Dimensionless concentration of adsorbate at 
bed outlet 

Q  Dimensionless concentration of adsorbate in the 
solid phase 

Pe  Peclet number 

LK  Dimensionless Langmuir Constant 

maxQ  Dimensionless maximum adsorption capacity 

sK  Dimensionless global mass transfer coefficient 

  Dimensionless length 

*Q  
Dimensionless equilibrium concentration in the 
solid phase 

  Dimensionless time 
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