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 To address radiative heat transfer problems, the determination of view factors is crucial. In 

this study, the focus is placed on the calculation of the view factor using the Monte Carlo 

method, specifically for truncated cone radiators. Although reference books offer theoretical 

relations for computing the view factor, a new approach employing the Monte Carlo method 

is utilized to ensure the accuracy of the general solution. To measure the accuracy, three types 

of cases are considered: positive, negative, and zero-angle truncated cones with a fixed disk 

(ring) at the base of the cone. The results are presented for various ratios between the height 

of the truncated cone and the radii of the ring and base side of the cone. Additionally, the 

impact of different angles of the truncated cone on the view factor is investigated. In the zero-

angle case, five different L/r1 are examined, in the positive angle case, seven different positive 

angles in two different L/r1 are studied, and in the negative angle case, three negative angles 

in three different L/r1 are studied. For positive angles, the maximum difference between the 

results of Monte Carlo method and theoretical method is 42.81% and occurred in L/r1 equal 

to 5 and 40 degrees. While for zero-angle the maximum difference is 30.16% and occurred in 

L/r1 equal to 10. In the negative angle case, the maximum difference is 36.66% and occurred 

in L/r1 equal to 0.2 and -15 degrees. 
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1. Introduction 

Radiation heat transfer is an important 
energy transfer method at high temperatures. 
The relative orientation of surfaces influences 
radiation heat transfer. The view factor is a 
parameter used to represent orientation's effects 
on radiation heat transfer between two surfaces. 
Regardless of surface temperature or geometry, 
this parameter is an independent quantity. When 
complex geometries are involved and surfaces 
and shapes are arranged arbitrarily, the view 
factors for the particular geometry and 
arrangement of surfaces need to be computed 
manually. Appropriate techniques must be used, 
employing numerical algorithms and computers 

[1]. The Monte Carlo method is a commonly used 
numerical solution that is efficient and easy to 
implement. As far back as Howell and Perlmutter, 
Monte Carlo methods have been used to study 
radiation heat transfer [2]. Using Monte Carlo 
methods, one can simulate physical processes 
using analogous models or the statistical 
characteristics of physical processes. By 
performing statistical sampling experiments on a 
computer, it is possible to approximate solutions 
to various mathematical problems. The technique 
has been widely used in different fields, ranging 
from economics to nuclear physics and even the 
arrangement of wind turbines in a wind farm. 
Investigation of past examinations shows that 
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Monte Carlo offers an important technique for 
anticipating the advantages of setup factors as it 
can consolidate all basic impacts in a radiative 
heat transfer simulation without guessing [3]. 

Nonetheless, the Monte Carlo method has 
some disadvantages. One is the requirement for 
computer time; the other is the inherent 
statistical variance of the results. For most 
problems where understanding the radiation 
field is desirable, the method is fairly efficient at 
simulating complex problems. Nevertheless, if 
only radiative intensity within a small area of 
solid angles is required, the method may prove 
ineffective [4]. Maltby and Burns [5] researched 
execution, intermingling, and precision in a 
three-layered Monte Carlo radiative heat transfer 
simulation with a code as well as the abilities to 
blend, grouped spectral material properties, 
diffuse and specular reflection models, 
transmission through surfaces, and simulation of 
beam radiation. Miyahara and Kobayashi have 
additionally developed another mathematical 
strategy for obtaining the view factor for an 
axially symmetrical geometry [6]. Comparing this 
method to the area integration and Monte Carlo 
methods, it was observed that it was 19 times and 
three times faster, respectively. In a study by 
Quaky et al. [7], a two-dimensional Monte Carlo 
model of an industrial furnace's interior was 
applied to a classic radiant energy exchange 
problem. The heat sink was a parallel row of 
infinitely long tubes connected to a source as an 
infinite radiating plane. Two years later, Hong 
and Welty developed this method for radiation 
heat transfer in a three-dimensional enclosure 
containing a horizontal circular cylinder [8]. A 
fast Monte Carlo scheme was introduced in the 
examination by Mazumder and Kresch [9]. The 
essential calculation was the classical ray tracing 
algorithm. Moreover, a modified form of the 
binary spatial partitioning (BSP) algorithm was 
implemented to accelerate ray tracing by at least 
a factor of 3. In a study done by Xia et al. [10], 
discretizing the medium into many sub-layers 
and utilizing a linear refractive index 
approximation for each sub-layer, a curve Monte 
Carlo method was created to tackle the radiative 
heat transfer in an absorbing and scattering 
gradient-index medium. In honeycomb-type 
transparent insulation materials, Schweiger et al. 
[11] applied this method for both conduction and 
radiation heat transfer. Mirhosseini and 
Saboonchi [12] utilized the Monte Carlo strategy 
to decide a plate's view factor, including strip 
elements to a circular cylinder. Additionally, 
Mirhosseini and Saboonchi [13] dedicated two 
parallel circular cylinders as a case in heating and 
cooling processes (e.g., the transfer table in hot 
rolling) for determining the plate's configuration 
factor. Wei and Jiang [14] determined the view 

factors between internal heat source surfaces 
and their surroundings to better understand 
thermal radiation in rooms. They compared the 
results with numerical results obtained by the 
Monte Carlo method. View factors were 
calculated by Walker et al. [15] for an operational 
fiber drawing furnace using both numerical 
integration and the Monte Carlo method. 
Ravishankar et al. [16] presented algorithms to 
apply the modified differential approximation 
(MDA) to arbitrary geometry, in particular, 
geometry with obstructions and inhomogeneous 
media, to remove the shortcomings of the first-
order spherical harmonics method (or P1 
approximation). The general procedure was 
validated for both two-dimensional (2D) and 
three-dimensional (3D) geometries against 
benchmark Monte Carlo results. A study 
investigated the effects of boundary conditions 
and microstructural parameters by Monte Carlo 
simulation of radiative heat through fibrous 
media [17]. Mazumder and Ravishankar [18] 
used a general formulation accompanying 
numerical procedures to calculate diffuse view 
factors between arbitrary planar polygons. The 
results were compared to exact analytical 
solutions (when available) or Monte Carlo 
results. They argued that the errors in the Monte 
Carlo results increase when the two surfaces are 
far from each other. Matthew et al. [19] improved 
an approach realized using the computer 
program REFORM based on the well-known 
Monte Carlo algorithms. The method allowed 
determining the view factors of radiative heat 
exchange area in large-scale furnaces wherever 
the method of direct numerical integration is 
difficult to use due to their geometries. Wang [20] 
developed a stochastic algorithm to estimate 
view factors between canyon facets in the 
presence of shade trees based on Monte Carlo 
simulation, where an analytical formulation 
cannot be used in complex geometry. Three 
methods have been proposed for calculating the 
view factor of a strip relative to a parallel semi-
cylinder in Hajji et al. [21]. There were significant 
differences between the results obtained by the 
Monte Carlo method and the analytical solution. 
In the study by Liu et al. [22], a model based on 
the Monte Carlo ray-tracing method was built to 
analyze the radiative energy loss in the 
polysilicon CVD reactor. The effects of the rods 
number, thermal shield, and surface emissivity 
on the radiative heat loss of a CVD reactor were 
investigated in detail. Frank et al. [23] modeled 
the heat flows in a switch cabinet by calculating 
the surface-to-surface radiation exchange using a 
Monte Carlo method and a quasi-Monte Carlo 
method. Some other related publications can be 
found in [24, 25]. 
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The view factor calculation in three 
dimensional complex geometries is only 
examined through individual theoretical 
solutions according the cases. In literature, these 
solutions are available for a few problems with 
specific applications, while the well-known 
theoretical methods such as Cross String method 
that can not be used excepting for calculating 
view factors in two dimensional problems. 
Furthermore, the Monte Carlo method has shown 
superior and more accurate results for 
calculating view factors in previous studies in 
different cases due to its statistical basis. In some 
cases, a large difference between the results of 
theoretical solutions and the Monte Carlo method 
has been observed, such as a study which 
Mirhosseini, as the author of the present article, 
has seen previously with his colleagues [21]. 
Importantly, none of previous studies have 
rigorously compared the results of theoretical 
solutions and the Monte Carlo method for a three-
dimensional case, encouraging the authors to 
choose. Therefore, the use of the Monte Carlo 
method is adopted here for calculating view 
factor of truncated cone radiators, due to its 
ability to deal with three-dimensional 
complexities that cannot be considered by the 
available solution method. This allows 
examination of the above-mentioned issue and 
enables direct comparison of the Monte Carlo and 
theoretical methods in a three-dimensional 
context, which is absent in previous researches. 

Truncated cone, characterized by its cone 
shape with a portion cut off at the top, serve 
diverse applications across different engineering 
fields and scientific domains. For example, in 
antenna systems, they contribute to controlling 
wave patterns. Additionally, these shapes find 
use in heat exchangers for optimizing radiative 
heat transfer. Therefore, the various applications 
of truncated cone geometry are driven by its 
ability to influence and enhance specific 
characteristics within a given field. 

In the present study, the configuration factor 
of the truncated cone radiator is calculated using 
the Monte Carlo method and compared to results 
from the theoretical solution available in the 
literature. The evaluation is conducted for three 
cases: positive, negative, and zero angle 
truncated cones with a fixed disk (ring) at the 
base of the cone. The results are analyzed for 
various ratios between the height of the 
truncated cone and the radii of the ring and base 
side of the cone. Additionally, the impact of 
differing truncated cone angles on the view factor 
is investigated. Through this comparative 
analysis and examination of the effects of varying 
cone angles, the aim is to enhance the 
understanding of the view factor calculation for 
truncated cone radiators. The Monte Carlo 

method is implemented because it ensures 
accuracy for the solution, generally. By 
conducting this kind of studies, the reliability of 
various solutions for radiative heat transfer 
problems involving complex geometries in 
practical applications, is determined. 

2. Methods 

Geometric relationships are needed to 
determine how the faces view each other in order 
to calculate radiative heat transfer. This 
mathematical correlation presents a boundary 
identified as the shape factor. Radiant energy 
leaving a surface incident upon a reference 
surface is determined by the view factor. Based 
on the solid angle subtended by one surface, they 
are dependent on problem geometry. 

 
Fig. 1. Geometric parameters between two differential areas 

Fig. 1 shows the view factor between two 
deferential areas, which is calculated by [26]: 
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Also, explicitly, the view factor, F, between a 
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View (configuration, shape, and exchange) 
factors are dependent upon the shape and 
orientation of the surfaces and their distance 
from each other [26]. Implementing relations (1) 
and (2) can be written as: 
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Similarly, the configuration factor of two 
ordinary surfaces is calculated by: 
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Also, the reciprocity relationship for 
configuration factor between these areas is 
obtained as: 

2 2 1 1 1 2A F A F− −=
 (5) 
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According to relation (4), the calculation of 
shape factor between two no infinitesimal areas 
requires the solution of double area integral or 
fourth-order integration. Even for many simple 
geometries, computing such integrals has many 
efforts. So, for determining the view factor, other 
methods must be used. 

Several other methods exist for calculating 
shape factors that are introduced in brief.  Some 
methods that are called “special methods” 
compute view factors indirectly. These methods 
calculate shape factors with geometrical 
restrictions and are just implemented for 
exceptional geometries. “Crossed strings 
method,” “unit sphere method,” and “inside 
sphere method” are some of them. Another 
method with no limitation is the statistical 
method like the “Monte Carlo method.” 

2.1.  Monte Carlo method 

The Monte Carlo method is based on a 
statistical approach to calculating shape factors. 
Probability is the driving force behind this 
method (i.e., chance). As a consequence of the 
Monte Carlo method, all of the energy emitted by 
a given area is replaced with the sum of N rays. 
These rays are equivalent in energy. Radiation 
coming from an element surface can come from a 
variety of sources, for example, randomly [26] or 
all coming from the center of the face of the 
element. Some rays will reach another surface, 
while others will not. The view factor, which links 
finite elements i and j, can be expressed as 
follows: 

i j

m
F

N
− =  (6) 

where N is the total number of rays emitted from 
surface i and m is the number of rays hitting 
surface j. The complementary descriptions exist 
in the reference [3]. 

This research investigates the view factor in a 
truncated cone radiator by theoretical and Monte 
Carlo methods. Monte Carlo algorithm is 
implemented for three cases; positive, negative, 
and zero angle truncated cone with a fixed disk 
(ring) at the base of the cone. For this purpose, a 
program was written in MATLAB software. 
Results are presented for different ratios 
between the height of the truncated cone and the 
radii of the ring and base side of the cone. The 
effect of different angles of the truncated cone is 
also investigated on the view factor. This method 
aimed to calculate the view factor by using the 
geometric parameters of the truncated cone 
radiator shown in Figure 2. 

 
Fig. 2. Schematic view of the truncated cone and disk 

 with geometric parameters 

There is no specific rule to estimate the 
number of rays needed to solve a Monte Carlo 
problem. In the present study, for each case, the 
ray number is taken to 1010 to reach a stabilized 
result. Naraghi and Chung have offered the 
analytical solution in [27], as seen in the relation 
(7). A recent reference has represented the 
relation for calculating the view factor of an 
annular disk (ring) to the truncated cone. But in 
this research, the focus is on estimating the view 
factor of the truncated cone to the ring. 
Therefore, the reciprocity relation has been used 
to present the theoretical view factors. 
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(7) 

In order to better understand the physics 
involved, a truncated cone with a disk attached to 
the downward side of the cone is shown in Fig. 3.  

 
Fig. 3. Situation of tangent oblique line on truncated cone, 

variation range of θ angle and 'x' 
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The result is that any oblique line tangent to 
the cone can only see a portion of its front area in 
the case of an oblique line tangent to the cone; 
therefore, the calculations do not have to cover 
the entire lateral extent of the cone. In the figure, 
the imaginary point (1) is on an oblique line 
tangential to the cone, and each end can only see 
the front part of the ring area on a diagonal line. 
The points (2) and (3) are on the ring plane 
horizontally. The angle of θ can vary between 0 
and 180 degrees. Also, the length of 'x' changes 
based on θ. 

 
Fig. 4. Required parameters definition for 

Monte Carlo method calculation 

In Fig. 4, the oblique line in the vertical plane, 
the angle of θ, and the length of "x" in the 
horizontal plane can demonstrate the simple 
geometric parameters of the problem. In the 
following, the angle of the cone is shown by β. 

Equations about the limitation of striking the 
disk can be derived by dividing the height of the 
truncated cone by some point elements. It helps 
simplify writing mathematically relationships by 
choosing different angles and locations on the 
oblique tangent line on the truncated cone and by 
choosing different positions on the disc's surface 
and the portion of the disk where energy can 
strike. When θ=0, the angle between the oblique 
tangent line on the truncated cone and the ’x’ 
length equals 90◦ . By increasing the angle of θ 
leading to 180◦ , the mentioned angle changes 
permanently. Thus, these changes can be related 
mathematically. Using these relations, the angle 
between the oblique line and the line that creates 
the arch of θ can be calculated. By imagining 'OA' 
on the joint line between two perpendicular 
planes, x' will be obtained. A perpendicular line is 
drawn from the point obtained by imaging to cut 
the extension of 'OB' in a point. Then a triangle is 
created on the horizontal plane. Also, the amount 
of "k" can be calculated in two ways. It can be 
estimated between the side 'OA' and the side ‘OB’ 
portion. The angle of ψ is between 'OA' and 'OB.’ 
According to the below relations, ψ can be 
calculated from the cosine law. By having the 

angle of ψ and also writing the sine law in the 
triangle 'OAB,’ the final relations can be obtained: 
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Thus, the angle of 𝜑 (angle between 'OA' and 
'AB') will be calculated. Every one of the rays 
emitted randomly can satisfy the above 
condition. One unit is added to a counter in the 
original program code. Indeed, the counter is 
used directly for calculating the view factor. One 
application of this geometrical configuration can 
be for very hot truncated cone tubes, while the 
hot fluid flows internally. Whereas the tube’s 
temperature is very high, the application of rings 
is important. It should be noted that for θ=0◦  and 
θ=180◦ , the amount of 'x' can be calculated from

2 2

2 1r r− . Also, for θ=90◦ , 'x' is equal to (r2-r1). 

Relation between θ and 'x' can easily be obtained. 

3. Results and discussion 

To assess the capability of these methods, 
three kinds of cases are considered; positive, 
negative, and truncated cone with a fixed disk 
(ring) at the base of the cone. For comparison, the 
figures show the theoretical and Monte Carlo 
method results. Generally, the configuration 
factor decreases by increasing the cone length 
ratio to the inner radius of the disk (radius of the 
base side of the cone). In all cases, the shape 
factor increases as the outer radius is increased 
relative to the inner radius of the disk. The results 
can show which method is more reasonable and 
accurate rather than the other one. In the 
following sub-sections, these three cases are 
presented. 

3.1. Configuration factor for zero angle 

The configuration factor of the zero-angle 
truncated cone to disk will be considered in this 
part. As shown in Fig. 5, a truncated cone is 
converted into a circular cylinder. Thus, the 
determination of the view factor of a cylinder to a 
coaxial disk will be discussed. 
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In Fig. 6, in each constant value 1/L r , by 

increasing the ratio of the outer radius to the 
inner radius of the disk, the shape factor 
increases. Also, with increasing the ratio 1/L r  at 

the constant ratio 2 1/r r , the configuration factor 

decreases. This behavior has physical 
justification; when the length of the cylinder 
increases, the cylinder can see a more extensive 
area, and, in this manner, a fraction of incident 
rays to total emitted rays will reduce. The results 
exhibit that the view factors obtained by the 
Monte Carlo method are higher than the 
theoretical solution since the cone angle is zero. 

3.2. Configuration factor for the positive angle 

In this part of the present work, the shape 
factor of the positive angle truncated cone 
radiator is discussed. As shown in Fig. 7, when the 
angle is positive, without changing the other 
geometric parameters, the lateral area of the cone 
is increased. Evaluations by considering two 
ratios 1/L r  were performed in Fig. 8 and 9. With 

increasing the value 2 1/r r  corresponding to all 

angles, the shape factors are increased, although 
the convexity and concavity of the curves change. 
In each figure, by increasing the angle at a 
constant ratio of 2 1/r r  and 1/L r , the shape 

factors increase to a maximum value in an 
individual angle and then decrease. It can be 
termed an optimized cone angle which depends 
on the geometric parameters. This fact occurs 
because larger than a particular positive angle, 
the number of incident rays (to the disk) divided 
into total emitted rays (from the cylinder) 
decreases. Also, it can be said that by comparing 
these figures at the same angle and the same ratio

2 1/r r , with increasing the ratio 1/L r , the 

configuration factors decreased. In Fig. 8 for 

2 1/r r =4.5, the view factor calculated by the 

theoretical method at 80ᵒ is higher than the value 
at 0ᵒ cone angle. In contrast, in the Monte Carlo 
solution, this comparison is vice versa. In the 
theoretical solution, the view factor 
corresponding to 60ᵒ overtakes from 40ᵒ at 
r2/r1=3.5, while it takes place in r2/r1>4 for the 
Monte Carlo solution. In Fig. 9, similar behavior 
can be observed for different angles and ratios. 
Therefore, the best angle to get the highest view 
factor is a function of 1/L r , 2 1/r r  and calculating 

method. 

3.3. Configuration factor for negative angle 

As shown in Fig. 10, when the angle is 
negative, the cone's lateral area is decreased 
without changing the other geometric 
parameters. Before discussing the results of this 
section, it is necessary to say that one restriction 
must be considered for selecting negative angles. 
The chosen angle should not be smaller than -

1

1tan ( / )r L− , because at the mentioned angle, the 

truncated cone is changed to a cone, and at a 
smaller angle, two crossed cones will be 
generated. Figures 11 to 13 illustrate that by 
increasing the ratio of 2 1/r r  for all negative 

angles, the configuration factors are improved. 
Also, when the absolute value of the negative  

 
Fig. 5. Schematic view of zero angle truncated cone 

 
Fig. 6. a) Theoretical and b) Monte Carlo solution for zero angle 
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Fig. 7. Schematic view of positive angle truncated cone 

 

Fig. 8. a) Theoretical and b) Monte Carlo solution for positive angle ( 1/ 3L r = ) 

 

Fig. 9. a) Theoretical and b) Monte Carlo solution for positive angle ( 1/ 5L r = ) 

 
Fig. 10. Schematic view of negative angle truncated cone 
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Fig. 11. a) Theoretical and b) Monte Carlo solution for negative angle (

1/ 0.2L r = ) 

 

Fig. 12. a) Theoretical and b) Monte Carlo solution for negative angle ( 1/ 3L r = ) 

 

Fig. 13. a) Theoretical and b) Monte Carlo solution for negative angle ( 1/ 5L r = ) 

angle is increased at the constant ratio 2 1/r r , 

the shape factors will reasonably decrease by 
using the Monte Carlo method. In contrast, they 
will surprisingly increase by using the theoretical 
solution. The theoretical relation cannot calculate 
the view factors for the negative cone angle with 
a rule of thumb. In fact, at more negative angles, 
the angle between the truncated cone and disk is 

more obtuse. Thus, the number of incident rays 
(to the disk) divided into the total beams (from 
the cone) decreases. Also, by comparing these 
figures at the same angle and the same ratio 2 1/r r

, the higher proportion of 1/L r  the configuration 

factor becomes lower. Also, the Monte Carlo 
results are less sensitive to the cone angle in a 
higher ratio. 
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4. Conclusions 

The present study utilized the Monte Carlo 
method, in addition to the theoretical solution, 
for calculating the view factor in the practical 
case of truncated cone radiators. The analysis 
was conducted for three configurations: positive, 
negative, and zero-angle truncated cones with a 
fixed disk (ring) at the base of the cone. The 
results were examined for various ratios between 
the height of the truncated cone and the radii of 
the ring and base of the cone. Additionally, the 
impact of different angles of the truncated cone 
on the view factor is investigated. In the zero-
angle case, five different L/r1 are examined, in the 
positive angle case, seven different positive 
angles in two different L/r1 are studied, and in the 
negative angle case, three negative angles in 
three different L/r1 are studied.  The findings 
show that for positive angles, the maximum 
difference between the presented results of 
Monte Carlo method and theoretical method is 
42.81% that occurred in L/r1 equal to 5 and the 
cone angle of 40 degrees, whereas for zero-angle, 
the maximum difference is 30.16% and occurred 
in L/r1 equal to 10. In the negative angle case, the 
maximum difference is 36.66% that occurred in 
L/r1 equal to 0.2 and the cone angle of -15 
degrees. Such a large difference between the 
results of theoretical solution and Monte Carlo 
method has been observed in other cases 
previously. However, the results showed that the 
overall trends match between the two methods. 
This was seen in Figures 6, 8, 9, 11, 12, and 13. 
The aligned trends mean both methods provide 
basically the same understanding of what is being 
calculated. The main reason of lower accuracy of 
the theoretical solution is that it relies on 
simplifying assumptions that break down at 
complex geometries. Specifically, the theoretical 
method utilizes approximations to model the 
radiative heat transfer that become less accurate 
as the cone angle decreases. This includes 
assumptions about the uniformity of radiative 
intensity over the cone surface and modeling the 
cone as a differential surface element. At very 
small cone angles, these approximations lead to 
larger errors. In contrast, the Monte Carlo 
method directly simulates the probabilistic 
behavior of individual rays without any 
simplifications. This allows the Monte Carlo to 
better deal with the sharp edges and nearly flat 
surfaces of cone angles. 
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