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 The purpose of this research is to examine the entropy generation analysis of two immiscible 

MHD fluid flows in a vertical wavy channel with travelling thermal waves and porous space 

when subjected to an external magnetic field. Region-I is occupied with a couple-stress liquid, 

while region-II is with viscous liquid. The wall channels are maintained at different 

temperatures and concentrations. The governing flow equations are derived by taking into 

account the presence of both a mean part and a perturbed part in the solution. Long wave 

approximation, which contributes to the wall waviness, is used to derive the solution of the 

perturbed part. The R-K 4th-order method is employed together with the shooting technique 

to solve the resultant system of coupled and non-linear ordinary differential equations. The 

results are presented graphically for the distribution of velocity, heat, and concentration, 

entropy generation, Bejan number, shear stress, Nusselt number, and Sherwood number for 

arising parameters, Hartmann number, Brinkman number, porous parameter, couple-stress 

parameters, waviness parameter, Schmidt number, and Soret number and are discussed. As 

the couple stress fluid parameter, Grashoff number, and heat generation/absorption increase, 

the velocity distribution rises. Temperature drops as the porosity parameter and Hartmann 

number increase. With a rise in the Soret and Schmidt numbers, concentration reduces. 

Entropy generation decreases with the Hartmann number, porous parameter, and chemical 

reaction parameter and increases with the Brinkman number. The numerical solutions 

obtained are compared with previously published work to validate the model, and the results 

exhibit a remarkable agreement. 
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1. Introduction 

Due to its numerous uses in industry and 
engineering, the two-phase liquid flows through 
channels or over-moving surfaces have gained a 
great deal of attention in recent years. Such flows 
are utilized in industrial processes and 
techniques for transporting multiphase liquids 
via conduits and wells. Oil-water mixes flow 
through pipelines and channels, and in mass 
transfer systems, the extraction of liquid-liquid 
solvents are some more applications of two-
phase flow. 

Fluid flow via the channels of wavy walls has 
captured the attention of researchers owing to its 
practical uses in re-entry vehicles and rocket 
booster transpiration cooling, cross-hatching on 
ablative surfaces, and film vaporisation in 
combustion chambers. Wavy-walled surfaces are 
a method for meeting industrial requirements in 
small heat exchangers to increase heat transfer 
rates. In medical treatments, wavy walls are 
widely utilised to increase mass transport (blood 
oxygenator). The combination of two or more 
sinusoidal surfaces creates a complicated wavy 
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surface that may transport heat more quickly 
than a single sinusoidal surface. Shankar and 
Sinha [1] have performed in-depth research on 
the Rayleigh problem for a wavy wall and 
obtained some exciting results. Lessen and 
Gangwani [2] analysed the effects of small 
amplitude wall waviness on the laminar 
boundary layer stability. The MHD flow with 
combined free and forced convection in vertical 
channels with wavy walls along with traveling 
thermal waves was studied by Vajravelu [3]. 
Investigation into the natural convection heat 
transmission in vertical wavy channels was done 
by Vajravelu and Sastri [4]. Muthuraj and Srinivas 
[5] investigated the effects of viscous dissipation 
and space porosity in a wavy channel when fluid 
is subjected to a magnetic field. Umavathi and 
Shekar [6] presented the analytical results for a 
mixed convective flow of two immiscible liquids 
in a vertical channel with wavy walls and 
traveling thermal waves. The investigation 
pertaining to heat and mass transfer 
characteristics of an unsteady flow of two 
immiscible liquids between flat and long wavy 
vertical walls has been reported by Umavathi et 
al. [7]. 

Modern technology and industry are relying 
increasingly on non-Newtonian fluids, and a 
quantum of research has been done specifically in 
this domain. The study of the couple- stress 
liquid, of the category of non-Newtonian fluid, 
has become increasingly important as it has 
distinctive features like polar effects that possess 
the mechanism that describes the complex 
behaviour of fluids like liquid crystals and human 
blood in lubrication theory. Stokes (1966) 
introduced the couple- stress fluid. This fluid is a 
generalisation of the traditional theory of viscous 
liquids. The consequences of couple-stress flow 
in a squeeze film were examined by Bujurke and 
Jayaraman [8], with particular attention paid to 
synovial joints. According to their findings, the 
squeeze film time of a couple-stress liquid is 
longer than that of a Newtonian liquid of the same 
viscosity. Rudraiah and Chandrashekara [9] 
investigated the impact of couple-stress liquid on 
Rayleigh-Taylor instability control at the 
interface of a dense liquid driven by a lighter 
liquid. The effect of several types of basic 
temperature gradients of couple-stress fluid-
saturated porous media was studied by 
Shivakumara et al. [10]. The double-diffusive free 
convective flow of a couple-stress liquid with the 
influence of Soret and Dufour’s effects was 
reported by Rani and Reddy [11]. Zeeshan, 
Ahmed, et al. [12] explore the flow of non-
Newtonian couple-stress fluid in two dimensions 
across the upper horizontal surface of a 
paraboloid (uhsp), which is shaped like a 
submarine or any other aerodynamic vehicle. 

Umavathi et al.[13] investigated fully developed 
laminar flow between vertical parallel plates in a 
composite porous medium with two immiscible 
viscous and couple-stress liquids. Srinivas and 
Ramana Murthy [14] explored the flow of two 
immiscible, incompressible couple-stress fluids 
between two permeable beds under the influence 
of a constant pressure gradient. The two-phase 
flow of couple-stress and viscous liquids in an 
inclined channel was reported by Abbas et al. 
[15]. Heat and mass transfer effects on the 
oscillatory flow of a couple-stress liquid in a wavy 
channel were analysed by Lawanya et al.[16]. 
Adenasya [17] examined the influence of 
radiative heat transfer on oscillatory MHD non-
Newtonian couple-stress liquid flow through a 
vertical porous channel with non-uniform wall 
temperature resulting from periodic heat input at 
the heated wall. Bashir Sammar and Muhammad 
Sajid [18] explored the flow of two uniformly 
rotating immiscible couple-stress fluid layers. 
The convection process occurs naturally in 
situations where the combined effects of heat and 
concentration buoyancy exist, such as heat 
exchangers, petroleum reservoirs, fire 
engineering, and nuclear energy combustion 
modeling. The combined action of heat and 
chemical diffusion provides the flow through the 
driving forces in various transport process 
applications, including solar energy collectors, 
thermal protection systems, and chemical 
distilleries. Mixed convection flows with heat and 
mass transfer through a magnetic field, and 
chemical reactions are observed in various 
transport processes across numerous scientific 
and engineering disciplines. In the chemical and 
hydrometallurgical industries, the study of heat 
and mass transfer with chemical reactions is of 
greatest significance. Srinivasacharya [19] 
investigated the Soret and Dufour effects on 
natural convection heat and mass transport of a 
couple-stress liquid in a vertical channel with the 
chemical reaction. Srinivas and Muthuraj [20] 
studied hydromagnetic mixed convective heat 
and mass transfer peristaltic flow with a chemical 
reaction in a porous vertical space. Hayat et al. 
[21] investigated the Soret and Dufour effects on 
MHD peristaltic flow of a couple-stress fluid in an 
inclined channel under the influence of Joule 
heating and chemical reaction. Very recently, 
Padma and Srinivas [22] investigated the 
combined effects of Hall current, thermal 
radiation, heat source, and chemical reaction on 
heat and mass characteristics in a vertical porous 
channel filled with a two-layered viscoelastic 
liquid under the influence of a periodic pressure 
gradient. Most recently, the hydromagnetic 
pulsating flow of two immiscible liquid layers 
with joule heating and first-order chemical 
reaction was reported by Goyal and Srinivas [23].  
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Entropy generation is used in nuclear 
reactors, cooler heat engines and pumps, and 
solar energy systems. To prevent the loss of heat 
energy because of the efficiency of the energy 
orientation system and to optimize the process, 
irreversible energy is required in the thermal 
system as much as possible. Several researchers 
have conducted theoretical and experimental 
research on entropy generation and proposed 
that entropy production can be minimised by 
selecting the appropriate fluid flow models. 
Adenasya et al. [24] have studied the second law 
analysis for a reactive couple-stress liquid 
flowing through a porous channel. 

 Janardhan Reddy et al. [25] investigated the 
entropy heat production analysis for unsteady 
MHD couple-stress fluid flow over a uniformly 
heated vertical flat plate. 

Srinivas et al. [26] analysed the entropy 
generation of a steady flow of two immiscible 
couple-stress liquids in a horizontal channel with 
two porous beds. 

Thota Siva [27] studied the electroosmotic 
and electromagnetohydrodynamic transport of 
couple-stress liquid in a microchannel in order to 
predict the flow dynamics, thermal transport, and 
entropy generation in a thermo fluidic system 
with slip-dependent zeta potential.  

Though there are a large number of studies on 
two immiscible flows in a vertical channel (tube), 
very few studies on the two immiscible flows in a 
vertical wavy channel have been reported in the 
literature.  

To the authors' knowledge, no research has 
been done on the MHD mixed convective heat and 
mass transfer analysis of two immiscible couple-
stress fluids and viscous fluids in a vertical wavy 
channel with a chemical reaction.  

Therefore, the main goal is to construct a 
mathematical model to understand the effect of 
heat and mass transfer on the MHD of two 
immiscible fluid flows in a vertical wavy porous 
space, with the flow induced by traveling thermal 
waves in the presence of a chemical reaction. 

One region is occupied with couple-stress 
liquid, and another region is filled with viscous 
liquid. Flow properties, as well as heat and mass 
transfer characteristics, are analyzed by plotting 
graphs and discussed in detail by varying 
parameters like Hartmann number, Brinkmann 
number, Grashof number, local Grashof number, 
porous parameter, couple-stress parameter, 
thermal radiation, and heat generation 
(absorption) and Bejan number. 

Also, the Nusselt number, Sherwood number, 
and Shear stress at the walls are presented 
graphically. 

2. Flow Geometry 

 
Fig. 1. Sketch of the model 

3. Mathematical Formulation 

Consider the laminar motion of two layered 
immiscible flow in a vertical wavy porous space 
(Fig. 1).  

Region – I: 1 0h y−   , is  filled with couple-

stress liquid.  

Region – II: 20 y h  is occupied by clear 

viscous liquid. ( )
1 1 cosy h a x = − + +  and 

( )
2 1 cosy h a x = + +  are the left and right wavy 

walls of the channel, where 𝑎1 is the  amplitude of 
the wave and 𝜆 is wave number.  

The liquids in both regions are different with 
different physical properties. Both the channel 
boundaries are held at different temperatures. 
The govering equations are given by [13 & 14]. 
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where the conditions of the temperature and 
concentration on the walls are: [3,5,6] 
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The conditions used at the boundary and 
interface are [6 & 15] 
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Non dimensional quantities and pressure 
gradient are given by 
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The non dimensional equations after 
dropping "asterisks" and for the feasibility and 
simplicity  we consider 𝑥1 = 𝑥, 𝑦1 = 𝑦 and 𝑡1 = 𝑡 
in the region - I and 𝑥2 = 𝑥, 𝑦2 = 𝑦 , 𝑡2 = 𝑡 in the 
region -II. 
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Nondimensional boundary and interface 
conditions of velocity, temperature and 
concentration are 

( )

( )

( )

( )

( )

( )

( )

1 1

2

1

2

1

1

2 2

2

2

1 2 1 2

3 3

1 1 1 1

2 3 3

2 2

0, 1 cos

0, 1 cos ,

0, 1 cos ,

0 , 1 cos ,

0, 1 cos

1 , 1 cos

1 , 1 cos

, , 0,

1

1

  

  

  

  










= = = − + +


= = − + +



= = − + +

= = − + +

= = = +

= = +

= = +

= = =

     
+ − +  

      


=

u v y x

u
y x

y

T y x

C y x

u v y x
h

T y x
h

C y x
h

u u v v y

u v u v

y x a y x

m h n

2 2

1 2

2 3

2

1

2

1 2

1 1 2 2

1 2

1 1 2 2

, 0,

1
, 0

0, 0,

, 0,

, 0

, 0,

, 0

 
+ = 

  

 
= =

 


= =



= =

      
+ = + =   

      

= =

      
+ = + =   

      

u v
y

y x

p p
y

x nm h x

u
y

y

T T y

T T T Tk
y

y x h y x

C C y

C C C CD
y

y x h y x

 

(22) 

In the static fluid [3,6]: 
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 (23) 

where 𝑝𝑠 is the static pressure, using Eq.(23) 
Eq.(14) and Eq.(18) will become 
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 (25) 

Velocity, heat and mass distributions can be 
obtained by assuming 
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Zeroth and first order equations obtained by 
subsituting the Eq. (26) in the Eq.(14) – Eq.(21) 
are given by 
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The solutions of zeroth order eqautions can be 
obtained by using the following boundary 
conditions. 
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In order to solve first order equations stream 
functions are introduced which is used to reduce 
the dependent variables and also eliminate the 
pressure from the list of the variables. 
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where 
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by substituting Eq.(42) and Eq.(43) in  Eq.(30)-
Eq.(33) and Eq.(37)-Eq.(40), we have 

( )
2 4 2 6

2 21 1 1 1

2 4 2 2 6

11 11

1

t c

i M
y y y a y

T C
Gr Gr

y y

   
 
   

= − + −
   

 
− −

 

 
(44) 

2 2
2 2 3

11 1 1
11 2 2 2 3

2

11
1 11 2

1

Pr

4

3

T Br
i T Br

y y a y

TRd
QT

k y

 


     
= + +   
     


+ +



 
(45) 

2 2

11 11
11 1 112 2r

C T
i ScC Sc Sc K C

y y


 
= + −

 
 (46) 

( )
2 4 2

2 22 2 1
1 12 4 2

21 21
1 1t c

i M
y y y

T C
Gr Gr

y y

  
 
  

= − +
  

 
− −

 

 (47)  

2
2 2

21 2
1 21 1 1 212 2

2

21

2

1

Pr

4

3

T
i T Br QT

y y

TRd

kk y




  
= + + 

  


+



 (48) 

2 2

21 21
21 2 2

2 21

r

C T
i ScC D mn D mn Sc Sc

y y

K C


 

= +
 

−

 (49) 

with the boundary conditions  
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The equations for total velocity, temperature, 
and concentration are the sum of the mean and 
perturbed parts. 
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 (51) 

Both the mean part (zeroth order) Eq.(27)-
Eq.(29) & Eq.(34)-Eq.(36) and the perturbed part 
(first order) Eq.(44)-Eq.(59) with the boundary 
conditions Eq.(50) are solved using NDSolve 
command in Mathematica software. 

Non dimensional form of the shear stress is 
given by [3,5]. 

2

2 xy

h u v

y x
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 (52) 

At the wall 𝑦 = −1 + 𝜀 cos (𝜆𝑥 + 𝜃), shear 
stress is given by  
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 (53) 

and at the wall 𝑦 = 1 + 𝜀 cos (𝜆𝑥) is given by  

( ) ( ) ( ) ( )2 20 20 2' 1 Re '' 1 '' 1
i x ti xu e u e
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+ = + −
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 (54) 

At the walls 𝑦 = −1 + 𝜀cos (𝜆𝑥 + 𝜃) and 
𝑦 = 1 + 𝜀 cos (𝜆𝑥) heat transfer is given by 
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 (56) 

Sherwood Number at the walls is given by 
[3,5] 
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 (58) 

Using the second law of thermodynamics the 
Entropy generation is given by 
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 (60) 

The non dimensional entropy generation is 
given by 
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(61) 
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(62) 

Bejan number Be known as the ratio of 
entropy generation produced by heat and mass 
transfer to total entropy generation, is an 
alternative irreversibility distribution parameter 
and is given by 
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 (63) 

 
Fig. 2. Flow Chart of R-K Fourth Order method 

4. Results and Discussion 

The governing equations contain both a mean 
and a perturbed term. Using a long-wave 
approximation, the perturbed part is solved. 
Total velocity, temperature, and concentrations 
equal the sum of their mean and perturbed parts 
Eq.(51). The mean and perturbed parts of the 
governing equations are turned into coupled 
non-linear differential equations that are solved 
using the RK technique coupled with the shooting 
method by considering the NDSolve command in 
MATHEMATICA. Moreover, the working scheme 
of R-K fourth order can been seen Fig. 2.   The 
obtained results are depicted graphically from 
Fig (3) to Fig (5) for various parameters. Due to 
the increase in the Hartmann number, we 
observe a decrease in velocity in Fig. 3(a). The 
application of a magnetic field in the direction 
normal to the flow field slows the fluid's motion 
and thus generates the Lortenz force in the 
opposite direction of the fluid flow. As seen in Fig. 
3(b), increasing the porous parameter reduces 
the flow of the fluid; the effect of the porous 
parameter is to reduce the fluid velocity due to 
the Damping effect. Fig. 3(c) depicts the effect of 
Grton fluid velocity; increasing the Grt values 
emphasizes fluid motion due to buoyancy force, 
resulting in a rise in velocity distribution. 
Variation of the velocity distribution is portrayed 
in Fig. 3(d) with  a change in the couple- stress 
parameter. As the couple- stress parameter 
increases, we observe a rise in fluid movement in 
region-I, but no change in region-II.  This is 
because, as as 𝑎 → ∞, 𝜂 → 0, we obtain the case of 
a Newtonian fluid. The existence of heat 
generation produces thermal energy, raising the 
fluid's temperature. The fluid velocity escalates 
which is elucidated in Fig.3(e)  as a result of the 
increasing thermal buoyancy force. From Fig. 
3(f), one can observe that the fluid's velocity 
drops as the waviness (roughness) 𝜆 increases. 

Fig 4(a)-(d) show the variations of the 
temperature distribution due to changes in the 
parameters 𝐵𝑟, 𝐾1, 𝜎, and 𝑀.   
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Fig. 3. Variation of Velocity distribution for 𝑃𝑟 = 0.71, 

𝐵𝑟 = 0.5, 𝑠 = 2, 𝐺𝑟𝑐 = 2, 𝑅𝑑 = 1, 𝜆𝑥 = 𝜋/2 by 
varying: (a) Hartmann number 𝑄 = 1 ;(b) porous 

parameter 𝑛 = 1, 𝐺𝑟𝑡 = 1, 𝑄 = 1; (c) Grasoff number 
𝑛 = 1, 𝑀 = 1, 𝑄 = 1; (d) couple- stress parameter 

𝑛 = 1.5,   𝑀 = 1,   𝑄 = 1; (e) heat generation and 
absorption parameter 𝑛 = 1.5, 𝑀 = 1 ; (f) wavy 

number 𝑛 = 1.5, 𝑀 = 1,   𝑄 = 1. 

Raising the Br values causes the temperature 
to increase because they represent the coefficient 
of Joule and viscous dissipation, which can be 
seen in Fig. 4(a). The distribution of temperature 
has increased as a result of an increase in heat 
generation, as seen in Fig. 4(b).  
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Fig. 4. Variation of Temperature distribution for 𝑃𝑟 = 0.71,
𝐺𝑟𝑐 = 2, 𝑠 = 2, 𝐵𝑟 = 0.5, 𝑛 = 1.4, 𝑘 = 1, 𝑚 = 1.4, 𝜎 = 1,
𝑅𝑑 = 1, 𝜆𝑥 = 𝜋/2 by varying: (a) Brikmann number M = 1,
𝐺𝑟𝑡 = 1; (b) heat generation or absorption M = 1, 𝐺𝑟𝑡 = 1; 

(c) the Porous parameter M = 1, 𝐺𝑟𝑡 = 1; (d) Hartmann 
number 𝐺𝑟𝑡= 2. 

The positive value of Q implies heat 
generation, while the negative sign denotes heat 
absorption. Heat generation physically indicates 
the production of heat,  which raises the 
temperature in the flow field.  We can see from 
Fig. 4(c) that the temperature drops as the 
porosity parameter increases. The primary cause 
of the temperature drop is the loss of specific heat 
and thermal conductivity due to the influence of 
porosity.  As the Hartman number rises, we see 
that the temperature decreases which can be 
seen Fig. 4(d). 

Fig. (5) shows how the concentration 
distribution varies when the parameters 𝐾1, 𝑆𝑐, 
and 𝑆𝑟 vary. Concentration reduces with first-
order chemical reaction 𝐾1, as shown in Fig. 5(a). 
Because higher 𝐾1,values reduce chemical 
molecule diffusivity and reduce species 
concentration. As shown in Fig. 5(b) and 5(c), 
mass diffusion drops with the increase in the 
Schmidt and Soret number, resulting in a 
reduction of concentration. 

 

 

 
Fig. 5. Variation Concentration distribution for 𝑃𝑟 = 0.71,

𝑀 = 1, 𝐺𝑟𝑡 = 2, 𝐺𝑟𝑐 = 2, 𝑅𝑑 = 1, 𝑛 = 1.5, 𝐷 = 0.5, 𝜆𝑥 =
𝜋/4 by varying: (a) chemical reaction; (b) the Schmidt 

number  𝑆𝑟 = 0.5; (c) Soret number 𝑆𝑐 = 0.5. 

The variation of Entropy generation with 
parameters 𝐵𝑟, 𝑀, 𝜎  𝑎𝑛𝑑  𝐾1 is shown in Fig 6. 
𝐵𝑟 and thermal conductivity have an inverse 
relationship. Fig. 6(a) illustrates that as 𝐵𝑟 
increases, the thermal conductivity decreases 
and the rate of entropy generated rises. Due to 
Lorentz force, the increase in the Hartmann 
number disrupts the fluid flow, resulting in a 
decrease in temperature. As shown in Fig. 6(b), 
entropy decreases as a direct result of 
temperature. The rate of entropy generation falls 
as the porosity parameter rises in Fig. 6(c), 
because fluid velocity reduces the random 
motion of the fluid particles.  
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Fig. 6. Variation of Entropy generation for 𝑛 = 1.5, 𝑚 = 1.4,
𝑅𝑑 = 1, 𝐺𝑟𝑡 = 5, 𝐺𝑟𝑐 = 2, 𝑄 = 1, 𝑠 = 2, 𝑃𝑟 = 0.71 by 

varying: (a) Brikaman number; (b) couple-stress number; 
(c) Hartmann number; (d) Porous Parameter 

Figure 6(d) illustrates the impact of the 
chemical reaction parameter on the entropy 
generation. Enhancing the chemical reaction 
parameter results in a reduction of entropy 
production in the flow. Less entropy is produced 
when the fluid moves through the channel 
because the chemical bond-breaking process 
uses more kinetic energy. 

The variation of the Bejan number by varying 
the Hartmann number, couple- stress fluid 
parameter, and porous parameter is presented in 
Figure 7. As shown in Fig. 7(a), when 𝐵𝑟 
increases, the Bejan number exhibits inverse 
behaviour to that of entropy generation. Figure 
7(b) demonstrates that when the Hartmann 
number rises, so does the Bejan number. The 
variations of the Bejan number illustrate the 
contribution of friction irreversibility to entropy 
generation thereby increasing as 𝑀 is increased. 
As can be observed in Fig. 7(c), the Bejan number 
rises as the porosity parameter escalates. In Fig. 
7(d), we can see that the Bejan number rises as 
the chemical reaction progresses. 
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Fig. 7. Variation of Bejan number for 𝑛 = 1, 𝑚 = 1, 𝑅𝑑 = 1,

𝐺𝑟𝑡 = 2, 𝐺𝑟𝑐 = 2, 𝑄 = 1, 𝑠 = 2, 𝑃𝑟 = 0.71, 𝐵𝑟 = 0.5 by 
varying: (a) Brikaman number; (b) couple-stress 

 number M = 1, σ = 1; (c) Hartmann number; 
 (d) porous Parameter M = 1. 

Fig. 8 illustrates the variations of the Nusselt 
number at the walls caused with the influence of 
the parameters 𝑄,  𝑀, and 𝜎. Fig. 8(a) and 8(b) 
show that the Nusselt number grows at the left 
wall and drops at the right wall, respectively, as 
the heat generation and absorption increase. A 
negative Nusselt number indicates that heat is 
transmitted to the wall from the fluid. The figure 
shows that fluctuations in the local Nusselt 
number follow a wavy pattern. Physically, it is 
due to the modification of thermal boundary 
layer thickness caused by the wavy wall. Heat 
transfer reduces as the internal heat generation 
parameter increases. 

When 𝑄 <  0, the heat transfer rate is high as 
the fluid in the cavity absorbs heat and 
immediately transfers it to the fluid from the 
wall, creating a positive gradient of heat transfer. 
On the other hand, when  𝑄 >  0, heat is 
generated in the fluid. absorbs less heat, and 
excess produced heat is transported to the wall 
from the fluid, resulting in a negative gradient of 
local heat transfer. Fig. 8(c) and Fig. 8(d) shows 
that when the Hartmann number grows, the 
Nusselt number drops at the left wall and rises at 
the right wall.  

When the porosity parameter is raised, the 
Nusselt number drops at the left channel 
boundary and escalates at the right channel 
boundary, as shown in Figs. 8(e) and 8(f). This is 
due to the variation in temperature gradient at 
both the walls of the channel. 

 

 

 

 

 

 
Fig. 8. Variation of Nusselt Number for Grt = 2, s = 2, σ = 1, 

Grc = 2, Pr = 0.71, Br = 0.5, n = 1.5, by varying: (a) heat 
generation and absorption at left wall; (b) heat generation 

and absorption at right wall M = 1; (c) Hartmann number at 
left wall; (d) Hartmann number at right wall Q = 1; (e) Porous 
parameter at left wall; (f) The porous parameter at right wall. 
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Fig. 9 exemplifies how the Sherwood number 
varies when the parameters 𝐾1 , 𝑆𝑐, and 𝑆𝑟 varied. 
Fig. 9(a) and 9(b) demonstrate this. that when the 
chemical reaction increases, the Sherwood 
number reduces on the left wall and rises on the 
right wall of the channel. Fig. 9(c) and 9(d) 
demonstrate that when the Sc increases, the 
Sherwood number decreases in the middle of the 
wave on the left wall and enhances at the right 
wall. When Sr increases, the Sherwood number 
rises at both the walls of the channel, as shown in 
Fig. 9(e) and (f). 

 

 

 

 

 

 
Fig. 9. Variation of Sherwood Number for n=1.4, M=1, Grt= 2, 

Grc = 2, Q = 1, s = 2, σ = 1, Pr = 0.71, Br = 0.5 by varying: 
(a) Chemical reaction at left wall; (b) Chemical reaction 

 at right wall; (c) the Schmidt number at left wall;  
(d) The Schmidt number at right wall; (e) Soret number 

 at left wall; (f) The Soret number at right wall. 

Fig. 10 depicts the variance of shear stress on 
the channel walls. Fig. 10(a) reveals that when 
Grt increases, shear stress drops at the left wall 
and grows at the right wall. According to Fig. 
10(b), when the Hartmann number 𝑀 increases, 
the shear stress escalates at the left wall and falls 
at the right wall.  
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Fig. 10. Variation of Shear stress by varying: (a) Grashoff 

number; (b) Hartmann number n = 1.5, Grt = 2, Q = 1, 
 s = 3, Pr = 0.71, Br = 0.5; (c) porous parameter 

When the porous parameter is increased, 
shear stress rises at the left wall and drops at the 
right wall, as shown in Fig. 10(c).  

Fig. 11 is a comparison of the present 
investigation with that of the previous work of 
Umavathi and Shekar [6] by substituting 𝑀 = 0,
𝐵𝑟 = 0, 𝜎 = 0, 𝑄 = 0, 𝑅𝑑 = 0, 𝑆𝑐 = 0, 𝑆𝑟 = 0,  
and 𝐾1 = 0.  Furthermore, numerical values for 
the temperature distribution have been 
tabulated in Table 1. The obtained results have 
been compared with the analytical solution of  
Ref. [6], and an excellent agreement has been 
observed.  

 
Fig. 11. Comparative study for velocity distribution  

of the present paper with Ref [6]. 

Table 1. Temperature distribution 

y Present work Ref [6] Error 

-1 −0.312547 −0.312549 −2 ×  10−6 

-0.5 0.174304 0.174311 7 × 10−6 

0 0.661156 0.661132 −2.4 ×  10−5 

0.5 1.148008 1.148009 1 ×  10−6 

1 1.634860 1.634830 −3 ×  10−5 

5. Conclusions 

This study deals with the entropy generation 
of two immiscible liquid flows in a vertical wavy 
porous space along with traveling thermal waves. 
couple- stress fluid and viscous liquid are 

occupied in Regions I and II, respectively. The 
results for several parameters, such as 
Brinkmann number, heat generation or 
absorption, Hartmann number, porosity 
parameter, Grashof number, local mass Grashof 
number, first-order chemical reaction parameter, 
Schmidt number, Soret number, and Bejan 
number are presented graphically and discussed. 
The following are the important findings: 

1. The velocity distribution reduces as the wall 
waviness, porous parameter, and Hartmann 
number increase. 

2. By raising the Grashof number, couple- stress 
fluid parameter, and heat 
generation(absorption) parameter, the 
fluid's velocity is enhanced. 

3. The temperature distribution escalates as 
the Brinkman number and heat generation 
(absorption) parameter rises. Further, it falls 
by enhancing porous parameter and 
Hartmann number. 

4. There is a reduction in the concentration 
distribution with an increase in the Schmidt 
number, chemical reaction parameter, and 
Soret number. 

5. Entropy generated rises as the Brinkman 
number increase and it reduces as the 
Hartmann number, porosity parameter, and 
chemical reaction are increased. 

6. Bejan number escalates with the rise of 
Hartmann number, porosity parameter, and 
chemical reaction and falls with the rise of 
Brinkman number. 

7. Shear stress rises with the increase of 𝐺𝑟𝑡  
number whereas decreases with the 
Hartmann number and porous parameter at 
the right wall of the channel. 

8. The increase in heat generation (absorption) 
results in an increase in the Nusselt number 
and In contrast, increasing the porosity 
parameter and Hartmann number causes a 
drop in the Nusselt number at the left wall of 
the channel. 

9. Sherwood number at the right wall rises with 
the first order chemical reaction, Schmidt 
number, and Soret number. 

10. The findings of the current study have been 
compared with that of Umavathi and Shekar 
[6] and an excellent agreement was found 
between the outcomes. 

Nomenclature 

1p   Pressure of region- I ( )1N m−  

2p   Pressure of region -II ( )1N m−  

1a

h
 =  Amplitude 
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1   Density of region –I ( )3/kg m  

2   Density of region –II ( )3/kg m  

1t
   Thermal expansion of region –I ( )1K −  

2t
  Thermal expansion of region –II ( )1K −  

1c
  Coefficient of expansion of concentration of 

region –I 

2c  Coefficient of expansion of concentration of 
region –II 

1   Viscosity of region –I  ( )1 1. .kg m s− −  

2   Viscosity of region –I ( )1 1. .kg m s− −  

1k   Thermal conductivity of region –I ( )/W m K  

2k   Thermal conductivity of region –II ( )/W m K  

n   Ratio of density 

m   Ratio of viscosity 

k   Ratio of electrical conductivity 

s   Ratio of thermal expansion 

h   Ratio of height 

D   Ratio of diffusivity 

t   Ratio of thermal expansion 

c  Ratio of expansion of concentration 

t
Gr   Grashof number 

c
Gr   Local Grashof number 

M   Hartmann number 

   Porous parameter 

B r   Brinkman number 

a   Couple stress fluid parameter 

Pr   Prandtl number 

Sc   Schmidt number 

Sr   Soret number 

1
K   Chemical reaction 

Rd   Thermal Radiation 

0


=

RD C
L

C

 
Diffusion parameter 

R  Gas constant 

D  Diffusion constant 

0

,
T

T



=

 
Temperature difference 

0




=
C

C

 
Concentration difference 
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