
Journal of Heat and Mass Transfer Research 11 (2024), Serial Number 21, 75 – 88 

 

 
Semnan University 

Journal of Heat and Mass Transfer Research 

Journal homepage: https://jhmtr.semnan.ac.ir  

ISSN: 2383-3068  
 

* Corresponding author. 
   E-mail address: tafarroj.mm@lu.ac.ir and wmyan@ntut.edu.tw  

Cite this article as: 
Tafarroj, M.M., Mousavi Ajarostaghi, S.S., Ho, C.J., Yan, W., 2024. Artificial Neural Network Approaches for Predicting the Heat Transfer 
in a Mini-Channel Heatsink with Alumina/Water Nanofluid. Journal of Heat and Mass Transfer Research, 11(1), pp. 75-88. 

https://doi.org/10.22075/JHMTR.2024.32947.1520  

Research Article 

Artificial Neural Network Approaches for Predicting 
the Heat Transfer in a Mini-Channel Heatsink  

with Alumina/Water Nanofluid 
Mohammad Mahdi Tafarroj a * , Seyed Soheil Mousavi Ajarostaghi b , 

 C.J. Ho c , Wei-Mon Yan d,e*  

a Mechanical Engineering Department, Faculty of Engineering, Lorestan University, P.O. Box 68151-44316, Khorramabad, Iran  

b Mechanical Engineering Department, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada  

c Department of Mechanical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan  

d Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan 

e Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei, 
University of Technology, Taipei 10608, Taiwan 

 
A R T I C L E  I N F O  

 
A B S T R A C T  

Ar ticl e  his tory :  

Received:  2024-02-07 

Revised:  2024-03-15 

Accepted:  2024-03-16 

 This work uses artificial neural networks to evaluate heat transfer in a mini-channel heatsink 

using an alumina/water nanofluid. The multi-layer perceptron (MLP) and radial basis 

function (RBF) neural networks are employed for the modeling. To apply the artificial neural 

network analysis, 60 data of experimental works are utilized. The outcomes depicted that the 

simulated annealing (SA) technique significantly increased the performance of the RBF 

network, although the optimal MLP structure was discovered by trial and error. The 

optimized RBF network carried over more data with less than 2% errors as compared to the 

MLP. While the results of the MLP network showed that the average relative error for the test 

data set was 2.0496%, this value was 1.417% for the RBF network. The modeling time is a 

significant determining element when choosing the optimal technique. The RBF network 

optimization took longer than 60 minutes, even though all MLP structures were run 100 times 

in less than 15 minutes. In summary, artificial neural networks are effective instruments for 

simulating these kinds of processes, and their application can save a lot of time-consuming 

experimentation. Additionally, the RBF network outperforms the MLP in terms of precision 

while requiring less processing time. 
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1. Introduction 

Due to the development of microelectronics, 
the cooling of electronic devices has an important 
effect on their performance and life by drastically 
increasing the density of chips and current 
voltage handling capability, which would cause 
high heat accumulation in the electronic devices. 

Minichannel (or microchannel) heat sinks are the 
best tools to improve high heat accumulation 
because of their higher heat transfer 
performance, smaller geometric size and volume 
per heat load, lower coolant requirement, lower 
operational cost, etc. Yet, the thermal efficiency of 
a minichannel heat sink is limited because of the 
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thermal conductivity and specific heat of the 
coolants [1]. 

Hadi et al. [2] examined the effects of 
superhydrophobic coatings on the heat transfer 
and pressure drop in integral mini-channel heat 
sinks using distilled water and TiO2 nanofluids at 
concentrations of 0.01% and 0.02%. Testing at 
power inputs of 40, 55, and 70 watts and varying 
volumetric flow rates, the research finds 
significant improvements in heat transfer and 
notable reductions in pressure drop across 
different mediums. The superior performance of 
the superhydrophobic-coated mini-channel heat 
sinks, validated against theoretical models, 
demonstrates their potential for enhanced 
thermal management in various applications, 
outperforming standard mini-channel heat sinks. 

In the experimental work of Ho et al. [3], the 
heat dissipation of a parallel mini-channel heat 
sink with a latent heat cooling ceiling was 
evaluated. Utilizing alumina/water nanofluid 
with varied nanoparticle concentrations, the 
study assesses the impact of several parameters, 
including nanoparticle mass fraction, Reynolds 
number, and temperatures of the bottom wall, 
fluid inlet, and cooling plate, on the system's 
efficiency. Results showed that the nanofluid inlet 
temperature marginally affects friction factor at 
specific Reynolds numbers and significantly 
impacts it at others. Ghasemi et al. [4] conducted 
experimental research to assess the effectiveness 
of Al2O3 (alumina) nanoparticles in a circular 
minichannel heat sink for cooling electronic 
components like CPUs. The experiments varied 
the channels' hydraulic diameter and the 
coolant's flow rates. Data analysis proved that 
reducing the channel diameter and increasing the 
flow rate of the Al2O3-water nanofluid 
significantly enhances the cooling performance of 
the heat sinks. To address the complex interplay 
of channel size, nanofluid flow rates, and the 
number of channels on pressure drop and heat 
transfer, an optimization study was carried out 
using Response Surface Methodology (RSM) 
based on Central Composite Design (CCD).  

Khan et al. [5] analyzed the cooling 
performance of straight, wavy, and dual-wavy 
micro-channel heat exchangers using ANSYS 
Fluent. Alumina-based nanofluids with 
concentrations of 1%, 3%, and 6% were used in a 
laminar flow regime. The investigation focused 
on parameters like Nusselt number, pressure 
drop, base temperature, and Thermal 
Performance Factor (TPF) across a Reynolds 
number range of 100–900. Results showed that 
wavy and dual wavy channels enhance 
convective heat transfer more effectively than 
straight channels, attributed to secondary 
vortices formation in curved sections. In the 
other research, Dastafkan et al. [6] explored the 

effects of alumina nanoparticles and channel 
waviness on the heat transfer and pressure drop 
in a minichannel, focusing on comparing straight 
and wavy channels.  

In the work of Topcu et al. [7], a computer 
model of the Zalman ZM-WB3 Gold heat 
exchanger, a liquid-cooled computer processor, 
was validated against existing models and 
experimental data. The research explored 
variations in fin thickness, fin height, and cooling 
fluid types using Ansys Fluent 17.1 for 
Computational Fluid Dynamics analysis. Different 
configurations were tested, including various fin 
dimensions and cooling fluids. The study 
concluded that a CPU's most effective cooling 
performance is achieved using a CuO-H2O 
nanofluid with a 2.25% volume ratio in a heat 
exchanger with 5.5 mm fin height and 2.0 mm fin 
thickness. 

Saghafian et al. [8] numerically investigated 
the hydrodynamic and heat transfer 
characteristics of electroosmotic flow in a 
microfluidic system influenced by lateral electric 
and transverse magnetic fields. Hameed and Saha 
[9] focused on the thermo-hydraulic analysis of 
oil-MWCNT nano-fluid flow in rectangular 
channels with embedded obstacles under 
uniform heat flux, investigated numerically using 
the finite volume approach and Fluent software. 
The research examined how the shape of 
obstacles, nanoparticle volume fraction, and 
Reynolds number affect the flow phenomena. 
Ramesh et al. [10] reviewed the flow of Carreau 
nanofluids in micro-channels within the context 
of microfluidic technology and Micro 
Electromechanical Systems (MEMS), focusing on 
effects like electro-osmosis, Joule heating, 
chemical reactions, and the impact of external 
magnetic fields. Utilizing the regular perturbation 
method and a Cartesian coordinate system, their 
study presented graphical analyses of fluid flow 
characteristics such as velocity, temperature, 
solutal nano-particle concentration, and 
Sherwood and Nusselt numbers under varying 
conditions. 

A numerical analysis was done to enhance a 
mini-channel heat sink's heat transfer coefficient 
[11]. A new shape for mini-channels was 
proposed to compare with the rectangular 
channels using pure water and (Fe3O4 and Ag-
water) nanofluids as coolants. The base 
temperature, friction factor, Nusselt Number, and 
thermal resistance have been studied. The 
minichannel heatsink is exposed with a constant 
heat flux (180 kW/m2) at the bottom. The results 
showed that nanofluid and (converge-diverge) 
mini-channel can enhance the heat sink’s 
hydrothermal performance, and (Ag-H2O) 
nanofluid has superior heat transfer performance 
compared to the Fe3O4 nanofluid. Lan et al.  [12] 
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have designed a minichannel heat sink (MCHS) 
with twisted tape inducing swirling flow. The 
cross-section of the minichannel was square, and 
the width, height and length of the minichannel 
were respectively 2 mm, 2 mm and 150 mm. The 
flow boiling heat transfer and instability in MCHS 
were experimentally inspected under two mass 
fluxes, two inlet temperatures, and a range of 
heat flux. Results demonstrated that the swirling 
flow can reduce the rapid growth of bubbles and, 
suppress the coalescence of small bubbles 
effectively, and also cause the bubbles to produce 
helical motion behavior. A new type of air-cooled 
heat sink was designed by Nemati et al. [13]. It 
consists of several layers of minichannels. In the 
design, the hydraulic diameter was smaller than 
in conventional heat sinks, and therefore, the 
achievable heat transfer rates were higher. The 
performance of the designed heat sink was 
compared to a plate-fin heat sink. The 
comparison shows that entropy generation in the 
latter is about 27% higher than in the former. 

Computational Intelligence (CI) methods, 
including Fuzzy Logic (FL), Genetic Algorithm 
(GA), and Artificial Neural Networks (ANNs), 
have been used effectively in many scientific 
research and engineering projects. The ANNs 
have been developing for about three decades 
and are now extensively employed in many 
applications, especially thermal systems. ANNs 
propose a new approach to model nonlinear, 
uncertain complex systems without explicit 
knowledge of input/output relationships. It can 
be used to learn complex nonlinear relationships 
from a set of related input/output vectors. It 
enables dynamic simulation and control of 
unknown or uncertain processes. 

Recently, ANNs have been utilized in various 
thermal systems to investigate heat transfer 
characteristics, performance estimation, and 
dynamic control. Esfe [14] modeled the heat 
transfer process and fluid flow of a water-based 
nanofluid with Ag nanoparticle with volume 
fractions below 1% in a heat exchanger by ANN 
with radial basis transfer function (RBFNN). The 
modeling has been done by postprocessing the 
experimental results. The modeled control 
parameters were relative to the pressure loss and 
the Nusselt number, in which the related data 
regression coefficients were achieved by 99.54 
and 99.76%, respectively. 

Longo et al. [15] presented an ANN model to 
study refrigerant condensation in herringbone-
type Brazed Plate Heat Exchangers. The inputs 
are the geometrical and operational parameters 
as well as refrigerant properties. The results used 
included 1884 data points obtained from 12 plate 
geometries and 16 refrigerants. The presented 
ANN model reported a Mean Absolute Percentage 
Error of 3.6%. In the other work, the ANN model 

has been developed to predict the Cu/CNTs-
water hybrid nanofluids flow and heat transfer in 
a U-shaped heat exchanger by Maddah et al. [16]. 
Various volume concentrations of considered 
hybrid nanofluids and inlet temperatures have 
been analyzed. The ANN model has been used to 
calculate the exergy efficiency in the proposed 
heat exchanger and under-considered 
operational conditions. Accordingly, a three-
layer model with seven neurons in the hidden 
layer with a precision of R2 = 0.9967 has been 
presented, indicating that the presented ANN 
model tracks a normal distribution. Moya-Rico et 
al. [17] used an ANN model to predict the heat 
transfer and pressure loss in a triple pipe heat 
exchanger containing non-corrugated and 
corrugated pipes (nine different types with 
various pitches and depths). The prediction has 
been performed based on the 181 experimental 
results. The considered working fluid is 
commonly used in the food industry. The results 
showed that the ANN model presented a mean 
relative error below 4% compared to the 
experimental results. Shojaeefard et al. [18] 
considered an air-to-refrigerant laminated-type 
evaporator and presented a novel ANN model to 
predict heat transfer and fluid flow parameters. 
The studied evaporator considered and analysed 
both single- and two-phase conditions. The 
results showed that inlet refrigerant pressure 
was the most important factor in calculating the 
evaporator capacity.  

Also, besides the above literature review, the 
ANN model has been used to predict the efficient 
parameters of heat transfer in the minichannels 
and heat sinks. Uysal and Korkmaz [19] 
presented an ANN model based on the obtained 
numerical results of investigating heat transfer of 
water/Ag-MgO hybrid nanofluid in a rectangular 
minichannel. The Reynolds number and volume 
concentration considered are 200-2000 and 
0.005-0.02, respectively. The ANN method could 
create a model to calculate the entropy 
generation in the proposed thermal system. 
Results depicted that total entropy generation 
augments by raising the proposed nanoparticle 
volume fraction. Tafarroj et al. [20] presented an 
ANN model to calculate the amount of heat 
transfer of water/TiO2 nanofluid flow in a 
microchannel heat sink, which includes 40 
channels with dimensions of 
4cm×500μm×800μm. The datasets have been 
collected with three thermal conductivity, two 
Reynolds numbers, three heating rates, and four 
volume concentrations. The network output was 
the Nusselt number. Results presented that 
average relative errors of heat transfer 
coefficients and Nusselt number were 0.2 and 
0.3%, respectively. By performing experimental 
tests, Motahar and Jahangiri [21] focused on a 
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phase change material (PCM) heat sink. The ANN 
model was used to evaluate the heat transfer 
coefficient. Results showed that usage of PCM 
decreases the transient temperature. Also, the 
presented ANN calculates the transient Nusselt 
number with great precision. Salehfekr Arabani 
et al. [22] introduced an ANN model to predict the 
first-law and second-law efficiencies in an 
innovative helical heat sink. The working fluid 
was water/Ag nanofluid. The numerical 
simulations have been done for various 
geometrical parameters of the proposed heat 
sink, Re numbers, and nanofluid volume 
concentrations. Results indicated that the 
maximum first-law belongs to the case with 
Re=1500 and a concentration of 1%. The ANN 
model was used based on numerical datasets to 
predict entropy generation (thermal and 
frictional types).  

Zheng et al. [23] employed machine learning 
in the heat exchange channels. The performance 
of various ML techniques was compared to 
predict the heat transfer coefficient. In the 
subject of heat transfer, neuron-based methods 
are more suitable. Sensitivity analysis and ML 
together portend a promising future. Genetic 
algorithms were utilized with ML to enhance 
structural optimization. Liu and Liu [24] used the 
ML model to lower the experimental uncertainty 
and analyze better the ammonia engine 
performance. They fitted a spark plug to the 
original compression ignition engine to regulate 
and start the ammonia combustion process. 
According to the results, the random forest 
approach had border underfitting, while the 
gradient-boosting regression trees algorithm had 
overfitting issues. Furthermore, the artificial 
neural network technique outperformed support 
vector regression's ability to identify the 
correlation between engine control factors and 
ammonia engine performance. 

The present study employs ANNs to 
investigate the heat transfer rate in a mini-
channel heat sink. Limited measured results were 
employed to train and test ANN configurations. 
The error back-propagation (EBP) algorithm 
trains and tests the network. Predictions of the 
average Nusselt number were made. Different 
network configurations are also investigated by 
searching for relatively better networks to make 
predictions. 

2. Experimental Study and Data 
Reduction 

Heat exchangers are essential to many sectors 
because they improve energy efficiency, 
streamline operations, and have a more minor 
environmental impact. They lower operating 
costs and energy consumption by enabling the 

recovery and reuse of waste heat and promoting 
heat transfer across fluids without mixing them 
[25]. Heat exchangers also play a critical role in 
preserving the exact temperature conditions 
needed for product quality and yield, helping to 
create safer manufacturing settings by avoiding 
overheating and dangerous situations [26]. 
Because of their efficiency and versatility, they 
are essential to many different industries, 
including chemical processing, power generation, 
oil and gas, pharmaceuticals, food and beverage, 
and power production. This highlights their 
importance in contemporary industrial 
processes [27]. 

Some experimental works [28–33] were 
presented to study the impact of utilizing water-
based nanofluids, including Al2O3 particles. The 
experimental setup is schematically depicted in 
Fig. 1. The working fluid entered the system from 
a tank through a filter by a centrifugal pump. Two 
constant temperature bathes were employed to 
set the inlet and outlet fluid temperatures at 
specific values. Eight rectangular mini-channel 
heatsinks of copper with dimensions 1×1.5×50 
mm are considered. Two temperature sensors 
were used, including resistance temperature 
detectors (RTDs) and T-type thermocouples with 
two and seven numbers, respectively. These T-
type thermocouples spaced equidistantly at a 
thickness of 3 mm beneath the minichannel base 
surface across the heat sink base centerline were 
used to determine the local wall temperatures. 
The volumetric flow rate was adjusted using a 
flow meter. The constructed test module 
comprised a minichannel heat sink, two plate 
heaters, a cover plate, and housing. The inlet and 
outflow pendulums were made to ensure 
homogenous flow distribution. With a fin width 
of 1 mm, ten parallel, rectangular minichannels 
were machined at equal intervals. The 
minichannel has a 50 mm length, 1 mm width, 
and 1.5 mm height in its cross-section. The range 
of the considered Reynolds number is Re = 100-
1500. A heater powered by a DC power supply 
provides the constant heat flux for the test 
section. Experimental tests for specific conditions 
usually got a steady state for about 1 hour. The 
data acquisition system records all measurement 
data. The related works entirely explained the 
provision of water-based nanofluids of Al2O3 
particles [28–33]. 

During the experimental tests, the corrected 
electric power, qo,corr, in the proposed heat sink 
was calculated by comparing the electric input 
power, qo, in the steady-state heat transfer rate 
removed by the heat absorbed by the pure water 
flowing into the heatsink as: 

( ) − −
,o corr 0 p out in

q q Qc T T  (1) 
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Fig. 1. Diagram of experimental facility [28–33] 

The Tw, as centerline wall temperature, is 
calculated using the measured wall 
temperatures, Ttc, at different positions of the 
mini-channels. Assuming 1D thermal conduction 
among the planes of the thermocouple and mini-
channel, the wall temperature is estimated as 
follows: 

bases

ceffo

tcw
Ak

tq
TT

,
−=

 
(2) 

where qo,eff  indicates the effective heat input 
absorbed by the working fluid.  

The total base area of the heat sink is 
calculated as follows: 

chribchbase LWWNA )( +=  (3) 

where N indicates the number of channels. 
The heat transfer coefficient and average 

Nusselt number are calculated as follows: 
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f
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q
h

−
=  (4) 

k
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3. Modeling Approaches 

3.1. The Artificial Neural Networks 

Various neural network structures are 
extensively introduced in the literature [34]. The 
feedforward neural networks are those allowing 
signal flows only in one direction. In addition, 
most of the feedforward neural networks are 
planned in some layers [35]. Bellow, two well-
known feedforward types of these networks, the 
multilayer perceptron (MLP) and the radial basis 
function (RBF) neural networks [36], are 
introduced, and then, using these networks, the 
process is modeled [37]. Finally, the ability of the 
networks to model the process is compared. 

3.1.1. The Concept of MLP Networks 

In MLP networks, a layered architecture of 
neurons is designed. The information is passed 
through the layers, and the network will learn to 
fit its outputs to its target values. A simple 
representation of a network with three layers 
(two hidden layers and one output layer) has 
been demonstrated in Fig.  2. These types of 
neural networks are the most popular ones. 
Therefore, the MLP's procedure can be found in 
Ref. [38]. 

 
Fig. 2. A typical MLP neural network with three layers 

3.1.2. Radial Basis Function Networks 
Architecture 

The central concept of the RBF neural 
network is based on approximating an unknown 
function using linear combinations of non-linear 
functions named basis functions. The basis 
functions are radially symmetric about a center. 
An RBF neural network comprises three layers: 
an input layer, a single layer of non-linear 
processing neurons, and an output layer. The 
construction of a usual network for the output 
prediction is shown in Fig. 3.  

 
Fig. 3. The schematic representation of an RBF network 

The network predicts the average Nusselt 
number (𝑁𝑢̅̅ ̅̅ ) as the output for a given set of 
inputs including solid volume fraction of 
nanoparticles (), heat flux, and Reynolds 
number (Re) of inlet fluid flow. The output of the 
RBF neural network is calculated via Eq. (6).  

𝑦 = ∑ 𝑤𝑘𝜑𝑘(‖𝒙 − 𝒄𝒌‖2

𝑛

𝑘=1

) (6) 
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in Eq. (6), x is the input vector, 𝜑𝑘  is the 
processing function for the node number k of the 
hidden layer, ‖. ‖2 is the Euclidean norm, 𝑤𝑘  is the 
weight corresponding to the kth node of the 
hidden layer, n is the number of neurons in the 
hidden layer, and finally, ck is the center of the 
basis function associated with the kth node in the 
input space. In each neuron, the Euclidean 
distance between the input and the 
corresponding center of the neuron is evaluated. 
Then, the output of the neuron is computed via a 
nonlinear function. At last, all neurons' outputs 
are weighted and summed, and network output is 
determined. In this work, the Gaussian transfer 
function has been selected as the radial basis 
function represented via Eq. (7). 

𝜑(𝑥) = 𝑒
−𝑥2

𝜎2  (7) 

in Eq. (7), the parameter 𝜎 is called the spread, 
and it controls the generality of the network 
performance. As seen in Eq. (6), two classes of 
parameters should be adjusted using the RBF 
networks: the weights, wk and the centers, ck. 

In this work, the new RBF in MATLAB 
software has been used for modeling. 
Constructing a powerful RBF model using the 
MATLAB toolbox must accurately tune two main 
network parameters. These parameters are the 
spread (σ) and the maximum number of neurons. 
So, a proper optimization algorithm can be 
helpful to find the best combination of these 
parameters. The simulated annealing algorithm 
(SA) is introduced in the next section.  

3.2. Simulated Annealing Algorithm 

Simulated annealing (SA) is one of the most 
potent yet easy-to-implement optimization 
algorithms. This algorithm was proposed by 
Kirkpatrick et al. [39]. Here, the pseudocode of 
the SA algorithm for minimizing an objective 
function f(x) can be expressed as [35]: 

• Select an initial for the input variable x0 
randomly. 

• Select a new point x in the neighborhood of 
the x0 

• Let ∆𝑓 = 𝑓(𝑥) − 𝑓(𝑥0) and 𝑝 =
−∆𝑓

𝑇
  

• If ∆𝑓 < 0, set 𝑥0 = 𝑥 and go to 5; otherwise, 
generate a random value 𝜌 ∈ (0.1); if 𝜌 < 𝑝, 
set 𝑥0 = 𝑥 and go to 5, else go to 2. 

• Reduce T by a linear or logarithmic formula 
(for example, 𝑇 = 𝑛𝑇 where 0 < n < 1) 

• If the stopping criterion is unmet, go to 2 as 
the next iteration; otherwise, go to 7. 

• Stop and report the optimal solution. 
• As stated previously, this algorithm has been 

employed in the next section to set up the 
best possible RBF network.  

4. Results and Discussion  

This section discusses the results predicted by 
the introduced approaches (the MLP and the RBF 
networks). In the first subsection, the 
performance of the MLP network in predicting 
the problem outputs will be examined. Then, in 
the next part, the capability of the RBF network 
to model the problem will be evaluated. Finally, 
the results of the two networks will be compared, 
and a more proper network will be introduced. 

The data used in the modeling process are 
shown in Table 1. As can be seen, the problem has 
three inputs and one output. To fairly judge the 
results of the two networks, the number of data 
used in training and testing procedures is equal 
in modelling with both models. 

Before beginning analyses, it is helpful to 
check whether there is any outlier in the data set. 
If there are outliers, they should be removed from 
the data. A box plot of all data can help to find any 
possible outlier. The box plot of data has been 
plotted in Fig. 4. 

 
Fig. 4. The box plot of all data 

According to Fig. 4, it can be observed that 
there is no outlier in the data set. Thus, all data 
can be implemented for building models. 

4.1. The MLP model 

One of the main challenges in MLP modeling is 
determining the best network structure to yield 
the best results. Generally, the MLP has some 
inputs, some hidden layers, and one output layer. 
The problem imposes the number of inputs and 
outputs. However, the main challenge arises 
when the number of hidden layers and the 
number of neurons in each hidden layer should 
be determined. In this case, it is common to use a 
trial-and-error procedure to find the best 
structure [26-28]. 

For modeling by the MLP technique, the data 
set should be divided into three subsets: the 
training set, the validating set, and the testing set. 
The training procedure is performed in the first 
step of the neural network using training and 
validating datasets. So, validation is a part of 
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training that guarantees the generality of the 
network performance [28]. Lastly, the test data 
will examine the network's ability, which are new 
to the network and have not been used in the 
training procedure. To better decide on the 

network’s accuracy and precision, the network 
with a specific configuration was run 20 times. In 
each run, the data implemented in training, 
validating, and testing procedures are randomly 
picked up from all data. 

Table 1. The data used in the modeling process 

 
Solid Volume 
Fraction of 
Nanoparticles 

Heat Flux 
Reynolds 
Number 
(Re) 

Average Nusselt 
Number (𝑁𝑢̅̅ ̅̅ ) 

 
Solid Volume 
Fraction of 
Nanoparticles  

Heat Flux 
Reynolds 
Number 
(Re) 

Average 
Nusselt 
Number (𝑁𝑢̅̅ ̅̅ ) 

No. (𝜔) (w/m2)   No. (𝜔) (w/m2)   
1 0 32000 239 4.971 31 0.05 32000 239 5.425 
2 0 32000 420 7.201 32 0.05 32000 420 7.94 
3 0 32000 689 8.22 33 0.05 32000 689 9.582 
4 0 32000 962 9.885 34 0.05 32000 962 12.072 
5 0 32000 1368 11.368 35 0.05 32000 1368 14.302 
6 0 40000 242 5.193 36 0.05 40000 242 5.238 
7 0 40000 423 6.892 37 0.05 40000 423 6.99 
8 0 40000 693 8.647 38 0.05 40000 693 9.549 
9 0 40000 963 9.985 39 0.05 40000 963 11.604 
10 0 40000 1369 12.236 40 0.05 40000 1369 14.119 
11 0 48000 245 5.446 41 0.05 48000 245 5.405 
12 0 48000 426 7.457 42 0.05 48000 426 7.193 
13 0 48000 698 8.897 43 0.05 48000 698 9.488 
14 0 48000 970 10.457 44 0.05 48000 970 11.214 
15 0 48000 1375 12.12 45 0.05 48000 1375 13.115 
16 0.02 32000 239 5.032 46 0.1 32000 239 5.643 
17 0.02 32000 420 7.153 47 0.1 32000 420 7.993 
18 0.02 32000 689 8.448 48 0.1 32000 689 10.614 
19 0.02 32000 962 10.077 49 0.1 32000 962 12.201 
20 0.02 32000 1368 11.986 50 0.1 32000 1368 14.417 
21 0.02 40000 242 5.123 51 0.1 40000 242 5.604 
22 0.02 40000 423 6.504 52 0.1 40000 423 7.412 
23 0.02 40000 693 8.641 53 0.1 40000 693 9.983 
24 0.02 40000 963 10.011 54 0.1 40000 963 12.115 
25 0.02 40000 1369 12.137 55 0.1 40000 1369 15.299 
26 0.02 48000 245 5.421 56 0.1 48000 245 5.72 
27 0.02 48000 426 6.991 57 0.1 48000 426 7.698 
28 0.02 48000 698 8.85 58 0.1 48000 698 10.059 
29 0.02 48000 970 10.632 59 0.1 48000 970 12.062 
30 0.02 48000 1375 12.229 60 0.1 48000 1375 14.668 

 

The performance of networks with different 
structures can be compared using some criteria. 
One of the most common criteria is the relative 
error RE determined by Eq. (8) for each test 
sample. 

𝑅𝐸 =  
𝑡 − 𝑦

𝑡
× 100 (8) 

where y is the network prediction, and t is the 
target value. It should be noted that the sign of RE 
can determine the distribution of the errors 
around the zero value, which is the ideal value for 
the error. The absolute value of relative errors 
must be averaged for all test data to show the 
accuracy of the network prediction. So, the 
average relative error (AvgRE) is defined as Eq. 
(9). 

𝐴𝑣𝑔𝑅𝐸 =
 ∑ |𝑅𝐸𝑘|𝑛

𝑘=1

𝑛
 (9) 

where n is the number of test data. Another 
suitable way to check the network performance 
is the correlation coefficient between the 
predicted outputs and their targets. More details 

about the calculation of this coefficient can be 
found in Refs. [10, 33]. The last criterion is the 
standard deviation of the AvgRE (i.e., stdRE), 
which indicates whether the prediction ability of 
the trained network is acceptable in multiple 
runs. 

The number of all data is 60. Among all, 12 
data are separated from the rest as the test data 
and 6 data are used to validate. Each network 
with a specific architecture was run 100 times. 
The results obtained from the MLP have been 
listed in Table 2. The table shows the network 
structure by the number of hidden layers, 
including neurons. For example, the structure {3} 
indicates that the network has one hidden layer 
with 3 neurons, and {3,7} shows that the network 
has two hidden layers with three neurons in the 
first hidden layer and seven neurons in the 
second hidden layer. Table 2 shows that 
generally, the networks with one hidden layer 
have better results. Considering all criteria 
simultaneously, it can be concluded that a 
network with one hidden layer and 11 neurons 
could be selected as the best one. 
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Table 2. The results of the MLP network calculated 
using the test data 

Network 
Structure 

AvgRE MinRE stdRE CorrCoef 

{3} 4.5300 1.9539 3.2966 0.9708 

{7} 4.2500 1.2846 1.7951 0.9897 

{11} 3.9455 2.0496 0.9388 0.9954 

{15} 3.9364 2.1414 1.0325 0.9902 

{19} 4.0551 2.4433 1.1020 0.9901 

{23} 4.3047 1.9233 2.2375 0.9903 

{3,3} 5.5231 1.9006 6.6050 0.9577 

{3,7} 7.7874 1.7346 9.7504 0.9212 

{3,11} 4.2080 2.2888 1.37 0.9890 

{11,7} 5.5594 1.7140 7.1409 0.9125 

The outputs of the best run are presented to 
visualize the results of the selected network. The 
predicted values against the targets for the train 
and test data sets have been illustrated in Fig. s 5 
and 6. The absolute values of relative errors 
computed via Eq. (8) for the best run of the 
selected network have been demonstrated in Fig.  
7. The maximum value of error is 5.59% 
according to data number 35 and the minimum 
one is 0.03% according to data number 50. 
Furthermore, 4 data have errors less than 1%, 
and 7 have relative errors less than 2%. 
Moreover, the average relative error for the test 
data set is 2.0496. 

 

Fig. 5. The MLP performance based on the train data 

 

Fig. 6. The MLP performance based on the test data 

 
Fig. 7. Target values together with network outputs and 

absolute values of relative errors 

Finally, the correlation between the predicted 
outputs by the MLP network and the targets 
obtained from the experiments has been 
illustrated in Fig.  8. The correlation coefficient 
between the test data set and predicted values is 
99.54% for the best run.  

 

Fig. 8. Correlation plot between predicted values and targets 
obtained from the experiments (MLP network) 

It should be noticed that according to the 
results presented in Table 2, since the standard 
deviation of errors, which is computed for 100 
runs, is very low, it can be confidently said that 
the network performance remains acceptable in 
any further run. Overall, the results show that the 
MLP with a suitable construction can be a 
powerful tool for modeling the process, and 
additional analyses are now possible using the 
constructed model. 

4.2.  The RBF Model 

As the new RBF in MATLAB software has been 
employed to construct the RBF neural network, 
the most critical parameters that should be 
carefully tuned are the spread (𝜎) and the 
maximum number of neurons (N). Here, the 
simulated annealing (SA) algorithm has been 
implemented to find the best combination of 
these parameters. In each iteration of the SA, an 
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RBF network is constructed using the two 
parameters mentioned. Then, a constructed 
network is run 30 times, and in each run, the test 
data set (containing 12 data) is picked up 
randomly from all data. The average value of 
relative error computed via Eq. (9) is considered 
as the objective that should be minimized. 
Therefore, the optimization problem is defined 
as:  

Min 𝑓(𝜎. 𝑁) = 𝐴𝑣𝑔𝑅𝐸 (𝜎. 𝑁) 

0.01 ≤ 𝜎 ≤ 3,    1 ≤ 𝑁 ≤ 100 

The initial temperature was considered to be 
about 22.19 degrees, which is 80 times higher 
than that obtained in the first iteration. If the 
initial temperature is chosen high enough, the 
algorithm can search maximum points of the 
search space. As the number of iterations 
increases, the temperature decreases using a 
linear relationship. 

When the optimization process has finished, 
the optimum values of 𝜎 and N are presented and 
the best performance of the RBF network has 
been achieved. The SA convergence plot has been 
presented in Fig. 9. 

 

Fig. 9. The SA convergence procedure to improve  
the RBF performance 

Fig. 8 displays that the network average error 
in the initial iterations is about 23%, but further 
iterations of the SA lead to improving the 
network performance. Therefore, the network 
error gradually decreases. It can be observed that 
after 1813 iterations, the lowest error value 
(1.417%) has been met. But, to ensure no further 
improvement occurs, the optimization procedure 
has continued up to 3000 iterations. 

The predicted values against the targets for 
the train and test data sets are presented in Fig.s 
10 and 11. In addition, the absolute values of 
relative errors computed via Eq. (8) for the 
optimal RBF network have been demonstrated in 
Fig. 12. 

 

Fig. 10. The RBF performance based on the train data 

 

Fig. 11. The RBF performance based on the test data 

The absolute values of relative errors 
computed via Eq. (8) for the optimal RBF network 
have been demonstrated in Fig. 12. The 
maximum error value is 3.74% according to data 
number 9, and the minimum one is 0.10% 
according to data number 53. Furthermore, 6 
data have errors of less than 1%, and 9 data have 
relative errors of less than 2%. Moreover, the 
average relative error for the test data set is 
1.42%, according to the optimization results. 

Correlation between the predicted outputs by 
the optimal RBF network and the targets 
obtained from the experiments has been 
demonstrated in Fig. 13. The correlation 
coefficient between the test data set and 
predicted values is 99.91% for the optimized 
model. Fig.s 10-13 show that the network 
performance in predicting new data is 
acceptable. Now, further analyses of the process 
are possible using the constructed RBF model. 
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Fig. 12. Target values together with network outputs and 

absolute values of relative errors 

 

Fig. 13. Correlation plot between predicted values and 
targets obtained from the experiments (RBF network) 

5. Conclusions 

This study employed multi-layer perceptron 
(MLP) and radial basis function (RBF) neural 
networks to analyze the heat transfer process in 
a mini-channel heatsink with an alumina/water 
nanofluid. The optimal structure of the MLP was 
determined through trial and error, yielding the 
best network performance. On the other hand, 
the simulated annealing approach significantly 
increased the RBF network's performance.  

Testing various structures of the MLP 
networks showed that inappropriately 
determining the number of hidden layers and 
hidden neurons could seriously damage the 
network performance. Furthermore, in the 
optimization process of RBF performance, it was 
seen that the inappropriate selection of the 
network parameters, highly affects the network 
error value so that in the initial iterations of the 
SA algorithm, the amount of network error can 
reach to more than 22%. The best combination of 
RBF parameters was found by increasing the 
iterations, and the errors fell below 1.5%. This 
clarifies the importance of the optimization 
process.  

It can be concluded that the use of artificial 
neural networks can be used to simulate these 
processes effectively and efficiently, hence 
reducing the need for numerous laborious 
experimental procedures. In comparison, more 
data were predicted with an error of less than 2% 
when the optimized RBF network was used. 
Additionally, the RBF network has a stronger 
correlation coefficient between the projected 
data set and the targets than the MLP network, 
and the average relative error calculated using 
the RBF outputs is roughly 30% lower than the 
latter. The modeling time is a significant 
determining element when choosing the optimal 
technique. The RBF network optimization 
procedure took more than 60 minutes despite the 
fact that all MLP structures were run 100 times in 
less than 15 minutes (this run time might vary 
according to SA algorithm iterations and the 
number of RBF runs in each iteration). In 
summary, artificial neural networks are effective 
instruments for simulating these kinds of 
processes, and their application can help save a 
lot of time by avoiding a lot of laborious 
experimental procedures. Additionally, the RBF 
network performs more accurately while 
requiring less processing time than the MLP. 

Nomenclature 

A Heat transfer area [m2] 

CP Specific Heat [J/(kg. K)] 

ck Centre of the basis function 
associated with the kth node in the 
input space 

f(x) Objective function 

ℎ̅ Average Heat Transfer Coefficient 
 [W/(m. K)] 

k Thermal conductivity [W.(m. K)] 

N Number of channels 

𝑁𝑢̅̅ ̅̅  Average Nusselt number 

𝑄̇ Heat transfer rate [W] 

qo,corr Corrected electric power [W] 

qo,eff Effective heat input absorbed by the 
working fluid [W] 

qo Electric input power [W] 

Re Reynolds number 

R2 Correlation coefficient 

T Temperature in the SA algorithm [K] 

𝑤𝑘  Weight corresponding to the kth node 
of the hidden layer in RBFNN 
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Greeks and Symbols 

ρ Density [kg.m-3] 

𝜑𝑘  Processing function for the node 
number k of the hidden layer in 
RBFNN 

 Concentration of nanoparticles [%] 

𝜎 Spread 

Subscription 

in Inlet 

out Outlet 

w Wall 

corr Corrected 

h Hydraulic 

Abbreviation 

ANN Artificial Neural Network 

MLP Multi-Layer Perceptron 

RBF Radial Basis Function 

SA Simulated Annealing 

CI Computational Intelligence 

FL Fuzzy Logic 

GAs Genetic Algorithms 

RBFNN Radial Basis Transfer Function 

MAPE Mean Absolute Percentage Error 

BP Back Propagation 

RE Relative error 

AvgRE The average value of relative error 

stdRE Standard Deviation of the AvgRE 

MinRE Minimum value of relative error 

CorrCoef Correlation coefficient between the 
predicted outputs and their targets 

RTDs Resistance Temperature Detectors 
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