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 The Runge-Kutta method combined with the shooting technique is used to solve the 

numerical results of the theoretical model for the electrically conducting micropolar fluid 

through two parallel plates in the presence of a heat source or sink and first-order chemical 

reactions in the flow heat and mass transfer equations. This work encourages us to use the 

Homotopy analysis approach to develop semi-analytical solutions for dimensionless velocity, 

dimensionless microrotation, dimensionless temperature, and dimensionless concentration. 

The answers are used to produce the analytical approximations of the physical 

characteristics, such as the skin friction factor, Nusselt number, and Sherwood number. 

Additionally, tabular values for the physical parameters, such as the skin friction factor, 

Nusselt number, and Sherwood number, are provided. Graphs are also used to illustrate how 

characterizing parameters behave. We found a high correlation between the semi-analytical 

and numerical findings of this study when we compared our semi-analytical works with the 

earlier studies. Compared to the prior method, this approach to the model is simpler, and it 

may be readily extended to find semi-analytical solutions to other MHD and EMHD fluid flow 

issues in the physical sciences and engineering. 
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1. Introduction 

Because the topic of micropolar fluid 
dynamics is becoming more and more used in the 
processing sector, many professionals are 
interested in studying it. In order to account for 
the microstructure and the local motion of the 
particles inside the fluid's volume element, 
Erigen created micropolar fluids in 1966. Erigen 
[1] investigated the effects of inertial spin, local 
rotary inertia, and the pair stresses in order to 
develop a model for the non-Newtonian behavior 
observed in suspended fluids, such as blood, 

polymers, paints, lubricants, and other non-
Newtonian materials.  

The study of electrically conducting fluid 
motion in the presence of a magnetic field, or the 
interaction of the magnetic field and the fluid 
velocity of electrically conducting fluids, such as 
in dynamos and MHD pumps, is known as 
magnetohydrodynamics (MHD). A lot of studies 
employ MHD flow for mass and heat transfer 
because of the primary effect of magnetic fields. 
Studying analytically and numerically, nuclear 
reactors, MHD generators, and other engineering 
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science fields now heavily rely on electrically 
conducting fluids.  

Mishra et al. [2] examined the flow of mass 
MHD-free convection and heat in a micropolar 
fluid with a heat source. Hague et al. [3] 
investigated the behavior of micropolar fluids in 
steady MHD-free convection flow with joule 
heating and viscous dissipation. Rahman et al. [4] 
talked about the heat transmission in a 
micropolar fluid down an inclined permeable 
plate with different fluid characteristics. The 
unsteady MHD mixed convection flow of a 
micropolar fluid down inclined surfaces is 
studied in the study of Aurangzaib et al. [5]. In the 
work of Srinivasacharya, and Bindu [6], the 
creation of entropy in a micropolar fluid flow via 
an inclined channel is examined. 

An impulsively begun infinite vertical porous 
flat plate containing a viscous, incompressible, 
and electrically conducting fluid in the presence 
of a porous material was explored in [7] to 
examine the impacts of MHD, Dufour, and Soret 
on unstable free convection and mass transfer 
flow. According to Soret and Dufour effects, MHD 
thermo solutal convection in a porous cylindrical 
cavity filled with Casson nanofluid was studied 
[8]. Mass transport and temperature variation 
both cause unsteady MHD convection to flow 
through a loosely packed porous material and 
into a precipitately begun perpendicular plate 
[9]. 

Researchers have been particularly interested 
in the study of heat and mass transfer effects in 
their fluid flow problems in recent years because 
of the significance of chemical reactions in 
industries during the production process. The 
MHD Casson nanofluid flow via a linear 
stretching surface in the presence of a chemical 
reaction coefficient and the slip condition were 
described by Swapna et al. [11]. 

By incorporating the hitherto unrecognized 
magnetic field effect on the flow of micropolar 
fluid through the two parallel plates in the 
presence of a heat source or sink and a first-order 
chemical reaction in the flow heat and mass 
transfer equations, respectively, the expanded 
work was derived by Dash et al. [12]. The firing 
technique was used with the fourth-order Runge-
Kutta method to solve nonlinear differential 
equations.  

The aforementioned studies forced us to 
investigate these kinds utilising analytical 
techniques because most publications have used 
numerical methods.  For numerical study, we can 
refer to the numerical study of the boundary 
layer flow problem over a flat plate by the finite 

difference method [13], and the numerical study 
of chemical reactions and magnetic flow over a 
flat plate [14]. 

Boundary value problems in potentiometric 
biosensors [15], reactive gas absorption [16], 
several two-point non-linear elliptic boundary 
value problems [17], and transient current 
potential for redox enzymatic homogenous 
systems [18] can also be consulted for analytical 
solutions. We have already covered a number of 
approximate analytical solutions. An 
approximate solution technique that does not 
depend on a small parameter [19], an 
approximate analytical solution of a non-linear 
kinetic equation in a porous pellet [20], semi-
analytical expressions of a non-linear  boundary 
value problem for immobilised enzyme in porous 
planar, cylindrical spherical [21], non-linear 
mathematical models, including the Variational 
Iteration method [22], Homotopy Perturbation 
technique [23],. Homotopy perturbation method 
for a new non linear analytical technique [24], 
Homotopy perturbation method to linear and 
non linear Schrodinger equations [25], new 
homotopy perturbation method [26],  Modified 
Adomain Decomposition technique [27], 
Homotopy Analysis method for non-linear 
problems [28], Homotopy Analysis method  for 
Non-    linear Initial Value Problem for an 
Autocatalysis in a continuous stirred Tank 
Reactor[29], Modified Homotopy Analysis 
method for analytical expressions of a boundary 
layer flow of viscous fluid[30], Semi-analytical 
solution of MHD free convective Jeffrey fluid flow 
in the presence of heat source  and chemical 
reaction[ 31], Ananthaswamy Sivasankari 
method for solving some non-linear initial value 
problems in physical sciences [32], 
Ananthaswamy Sivasankari method for solving 
non-linear boundary value problem in heat 
transfer through porous fin [33]. Adapting 
techniques in the pioneering works are 
mentioned in Table 1. Also, several numerical 
techniques were utilised for resolving MHD flow 
issues via MATLAB regarding RK4 [36], and 
bvp4c [37]. 

In this work, the homotopy analysis method is 
employed to solve the equations found in [12]. 
The answers are used to produce the analytical 
approximations of the physical characteristics, 
such as the skin friction factor, Nusselt number, 
and Sheerwood number. and the results are 
contrasted with the numerical results. Graphs 
obtained through modifications of the controlling 
parameters are also analysed in detail. 
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Table 1. Comparison of Past studies with present work 

Past Studies 

Reference Subject Matter Approach Study Method Outcomes  

Mishra et al. 
[2] 

Study of Heat and Mass Transfer 
in MHD Flow of Micropolar Fluid 
over a Curved Stretching Sheet 

Numerical SOR Method 
External magnetic field tends to raise 
temperature profiles. 

Ziaul Haque 
et al. [3] 

Micropolar fluid behavior on 
steady MHD free convection and 
mass transfer through a porous 
medium with constant heat and 
mass fluxes  

Numerical 

Nachtsheim–
Swigert 
iteration 
technique 

The skin friction is larger for lighter 
particles and air than heavier 
particles and water, respectively. The 
micropolar fluid temperature is more 
for air than water. 

Kasim 
Aurangzaib 
et al. [5] 

The unsteady 
magnetohydrodynamic mixed 
convection flow of a micropolar 
fluid over an inclined plate  

Numerical 
Implicit finite-
difference 
scheme 

A solution could be obtained for all 
positive values of the buoyancy 
parameter λ. 

Srinivasachar
ya et al. [6] 

Entropy generation of 
micropolar fluid flow through an 
inclined channel of parallel 
plates with constant pressure 
gradient 

Numerical 
Spectral quasi 
linearization 
method 

The entropy generation number 
increases with the increase in 
Brinkman number and angle of 
inclination. Further, it is observed that 
the increase in coupling number, 
Prandtl number and Reynolds 
number reduces the entropy 
generation number. 

Mustapha EI 
Hamma et al. 
[9] 

Numerical study of the model 
thermosolute natural convection 
in porous, isotropic and 
saturated media filled with 
Casson nanofluids (aluminum 
nanoparticles) under the 
influence of a magnetic field 

Numerical 
Finite volume 
method 

An uneven decrease in the thermo 
solutal transfer with the increase in 
the Hartmann Soret and Dufour 
numbers. 

Meenakshi et 
al. [10] 

Dufour and Soret Effect on 
Unsteady MHD Free Convection 
and Mass Transfer Flow Past an 
Impulsively Started Vertical 
Porous Plate Considering with 
Heat Generation 

Numerical 
Implicit finite 
difference 
method 

The Skin-friction coefficient 𝐶𝑓 
decreases with the decrease of Soret 
number Sr. 

The Nusselt number Nu value 
increases with the effect of suction 
parameter 𝜈0, while it decreases with 
the effect of magnetic field parameter 
M . 

No change in Nu and Sh for the 
different values of permeability 
parameter λ 

Dash.et al. 

[12] 

Chemical Reaction Effect of MHD 
Micropolar Fluid Flow between 
two Parallel Plates in the 
Presence of Heat Source/Sink 

 

Numerical 

Runge–Kutta 
method along 
with shooting 
technique 

An increase in magnetic parameter 
velocity profile decreases whereas the 
microrotation profile enhances for 
N>1 but reverse effect is observed for 
N<1. 

Both Dufour and Soret enhance the 
thermal and concentration boundary 
layer respectively. 

Present 
work 

Study on non-linear boundary 
value problem for MHD fluid flow 
with chemical effect  

Semi -
Analytical 

Homotopy 
analysis 
approach 

High correlation between the semi-
analytical and numerical findings of 
this study. 

Compared to the prior method, this 
approach to the model is simpler, and 
it may be readily extended to find 
semi-analytical solutions to other 
MHD and EMHD fluid flow issues in 
the physical sciences and engineering. 
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2. Mathematical Formulation of the 
Problem 

As The mixed convection flow of a constant 
incompressible micropolar fluid between two 
parallel plates separated by a distance h has been 
considered. The y-axis is perpendicular to the 
plates, and the flow direction is along the x-axis. 
Whereas the fluid's temperature and 
concentration at the upper plate are and, 
respectively, those at the lower plate are and 
(and). A transverse magnetic field is applied with 
increasing field strength. The heat source and 
sink, as well as the chemical reaction, are taken 
into account in the formulas for mass and energy 
transfer, respectively. The cross-flow velocity of 
transpiration is constant where denotes the 
injection velocity and represents the suction 
velocity. 

The equations regulating the flow of 
incompressible micropolar fluids are [12] under 
the aforementioned presumptions and 
Boussinesq approximations with energy and 
concentrations. 
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where u  is velocity components in the x - 

directions,  is micro rotation,  and j are the 

fluid density and gyration parameter,  ,, are 

the material constants (viscosity coefficients), g  

is the acceleration due to gravity, p is pressure, 

T  is the coefficient of thermal expansion, C is 

the coefficient of solutal expansion, fk the 

coefficient of thermal conductivity, D  is the 

mass diffusivity, pc is the specific heat of fluid, 

sC  is the concentration susceptibility, mT  is the 

mean fluid temperature, and TK  is the thermal 

diffusion ratio. 
The boundary conditions are: 
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,,,0,,0 220 CCTTvvu ===== at hy =      (7) 
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We obtain the following non-linear system of 
ordinary differential equations from Eqs. (1) 
through (5): 
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constant pressure gradient, 
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the micropolar parameter, 
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Boundary conditions (6) in terms of  

𝑓, 𝑤, 𝜃, 𝜑 become 

00,0,0,0 =====  atwf          (13) 

11,1,0,0 =====  atwf         (14) 

2.1. Physical Quantities of Interest 

The major physical quantities of interest are 

the skin friction coefficient fC , Nusselt number

Nu , and Sherwood number Sh , which are 

defined as, 
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Where surface shear stress, Surface heat and 
mass flux are defined as  
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Using the non-dimensional variables (8), we 
get 
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3. Semi-Analytical Expressions of the 
Non-Linear Boundary Value 
Problem Using the Homotopy 
Analysis Method 

Liao's 1992 invention of the Homotopy 
analysis method is a noteworthy one for locating 
answers to non-linear issues. HAM is 
independent of any small or big physical 
parameters. Second, HAM offers a practical 
means of ensuring the convergence of solutions. 
In conclusion, HAM offers us a practical 
instrument to resolve extremely non-linear 
issues in science and engineering. 

Consider a differential equation 

  0)( =fN         (18) 

where N  is a non-linear operator,   denotes 

independent variable and )(f is a semi-

analytical solution of Eq. (17) which is unknown 
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an initial approximations of 

)(),(),(),(  wf  respectively. )(H is 

known as auxiliary function and L  denotes an 
auxiliary linear operator, h  is non – zero 

embedding parameter lies between -1 and 1.  

Then the Homotopy is given by, 
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where ]1,0[p is an embedding parameter. 

Without having to solve the supplied non-
linear problem, we can determine the suitable 
base functions to represent the answer by 
evaluating the boundary conditions of the non-
linear differential problem. 
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4. Results and Discussion 

In Fig. 1 and Fig. 2 , the fixed parameter values 
are: 

,2,2.0,71.0Pr,2,5.0 ===== ScGrRN
  

,2.0=Sr ,2=Gc ,001.0,1 == jaa ,1Re = ,0=   

,0,1,1,1 ==== DuBrmp  where as the varying 

parameters and its values are given in figures.  

Fig. 1 illustrates how a magnetic parameter 
affects flow phenomena when there is no heat 
source, no chemical reaction, and other physical 
parameters present. When data from Dash et al. 
[12] were compared in the absence of the current 
discovery, an intriguing observation was found; 
increasing the magnetic parameter improves the 
velocity profile  by 12.5 % at every site in the 
velocity boundary layer. For  < 0.4,  velocity 

profile increases as the magnetic parameter 

increases. After that, it decreases, corresponding 
to the magnetic parameter. So the variation of the 
magnetic parameter shows a significant effect on 
the thickness of the boundary layer. 

In Fig. 2 Near the first plate, the micro rotation 
profile increases by 46.15 % as the magnetic 
parameter  increases; however, the opposite 
effect is observed after that.  The impact of the 
magnetic parameter on the velocity profiles for 
N=2.5 is seen in Fig. 3. It can be seen that the 
effect in this profile is the opposite of what it is in 
Fig. 1. With an increase in the magnetic 
parameter, the velocity profile slows down.  So 
the variation of the magnetic parameter does not 
show a significant effect on the thickness of the 
boundary layer. 

 
Fig. 1. Dimensionless coordinate  versus the 

dimensionless velocity profile ).(f  The curve is plotted 

using eq. (28). The curve is plotted using eq. (28) for various 
values of dimensionless parameters and in some fixed values 

of dimensionless parameters. 

 
Fig. 2. Dimensionless coordinate  versus the dimensionless 

micro rotation profile ).(w  The curve is plotted using eq. 

(29) for various values of dimensionless parameters and in 
some fixed values of dimensionless parameters. 
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Fig. 3. Dimensionless coordinate  versus the 

dimensionless velocity profile ).(f  The curve is plotted 

using eq. (28) for various values of dimensionless parameter 
and in some fixed values of dimensionless parameters. 

Fig. 4 illustrates how magnetic factors affect 
the micro rotation profiles for N=2.5. It has been 
observed that, depending on the micro rotation 
profile, the intermediate layer of the channel 
exhibits opposite properties. For the purpose of 
accommodating the inadequate boundary 
conditions, the profile slows down before the 
region and then accelerates after it. 

 
Fig. 4. Dimensionless coordinate  versus the 

dimensionless micro rotation profile ).(w  The curve is 

plotted using eq. (29) for various values of dimensionless 
parameters and in some fixed values of dimensionless 

parameters. 

Fig. 5 for N = 0.5 illustrates how the thermal 
and mass buoyancy properties affect the velocity 
profile that is displayed when magnetic and other 
parameters are present. It can be seen that the 
velocity attains its maximum when the thermal 
buoyancy parameter is 2.0. It is interesting that 

the increase in thermal and mass buoyancy 
parameter velocity profile increases significantly. 
When the buoyancy parameter and the fluid 
velocity increase, the thermal boundary layer 
decreases . It causes more fluid in the boundary 
layer. The Buoyancy effect causes the velocity in 
the fluid to increase. So there is an increase in 
higher values of Gr. 

 
Fig. 5. Dimensionless coordinate  versus the 

dimensionless velocity profile ).(f  The curve is plotted 

using  eq. (28) for various values of GcGr,  and in some 

fixed values of dimensionless parameters. 

The influence of thermal buoyancy and mass 
buoyancy forces is seen in Fig. 6 (N = 0.5). These 
forces within the region react negatively, similar 
to the velocity in Fig. 5, until the trend is reversed.  

 
Fig. 6. Dimensionless coordinate  versus the 

dimensionless micro rotation profile ).(w  The curve is 

plotted using eq. (29) for various values of GcGr,  and in 

some fixed values of dimensionless parameters. 
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The temperature profile for N = 2.5 is shown 
in Fig. 7 as a function of the Prandtl number and 
the heat generation (source)/absorption (sink) 
parameter. When it comes to water, the 
temperature rises when it is near the source and 
falls when it is near the sink. Stated differently, 
sink has the opposite effect on the temperature 
profile. Interestingly, the fluid's temperature 
increases as the Prandtl number increases. There 
was not a heat source in one instance. There is 
good agreement between the present finding and 
that of [6].  

 
Fig. 7. Dimensionless coordinate  versus the 

dimensionless temperature profile ).(  The curve is 

plotted using eq. (30) for various values of dimensionless 
parameter and in some fixed values of dimensionless 

parameters 

The coupling number between Figs. 8 and 10 
is 0.5. It is significant to observe that in Fig. 8, the 
fluid temperature rises in tandem with the 
Dufour number. The presence of a source can 
raise the fluid temperature of the thermal 
boundary layer everywhere. Fig. 9 illustrates how 
the fluid concentration grows with the number of 
sorets. A high Schmidt number inclusion with a 
soret number promotes increased fluid 
concentration by 33.3 % in the concentration 
boundary layer.  

Fig. 10 discusses the consequences of a 
destructive chemical reaction, a non-chemical 
reaction, and a constructive chemical reaction. It 
is clear that the chemical reaction was more 
significant. As stated otherwise, a destructive 
chemical reaction causes the fluid concentration 
to slow down, whereas a constructive reaction 
results in a negative consequence. In addition, if 
there is no chemical reaction, the fluid 
concentration becomes linear. Moreover, the 
heavier species slow down the fluid 
concentration at every point in the concentration 
boundary layer. 

 
Fig. 8. Dimensionless coordinate  versus the dimensionless 

temperature profile ).(  The curve is plotted using eq. 

(30) for various values of dimensionless parameter and in 
some fixed values of dimensionless parameters 

 
Fig. 9. Dimensionless coordinate  versus the 

dimensionless concentration profile ).(  The curve is 

plotted using eq. (31) for various values of Sr and in some 

fixed values of dimensionless parameters. 

 
Fig. 10. Dimensionless coordinate  versus the 

dimensionless concentration profile ).(  The curve is 

plotted using eq. (31) for various values of Sc, and in 

some fixed values of dimensionless parameters. 
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In Fig. 11 and Fig. 14 , the fixed parameter 
values are: 

,71.0Pr,2,5.0,5.2 ==== RMN ,1Re =  

. ,Gr 0 2= , . ,Gc 2 Sr 0 2= =   

,1,1,1,001.0,1,0 ====== DuBrmaa pj  

.0= ,1,001.0 == pj ma ,1,0 == a  

It should be noted that as the thermal 
buoyancy parameter rises, the velocity falls, as 
seen in Fig. 11. The influence of temperature and 
mass buoyancy forces is shown in Fig. 12. which 
first react in the opposite way inside the region as 
that of velocity in Fig. 6 before trending in the 
opposite direction. Fig. 13 illustrates how the 
fluid concentration increases in proportion to the 
Soret number. A high Schmidt number inclusion 
with Soret number promotes increased fluid 
concentration in the concentration boundary 
layer. 

 
Fig. 11. Dimensionless coordinate  versus the 

dimensionless velocity profile ).(f  The curve is plotted 

using Eq. (28) for various values of GcGr,  and in some 

fixed values of dimensionless parameters. 

 
Fig. 12. Dimensionless coordinate  versus the 

dimensionless micro rotation profile ).(w  The curve is 

plotted using Eq. (29) for various values of GcGr,  and in 

some fixed values of dimensionless parameters. 

 
Fig. 13. Dimensionless coordinate  versus the 

dimensionless concentration profile ).(  The curve is 

plotted using eq. (31) for various values of Sr and in some 

fixed values of dimensionless parameters. 

Fig. 14 illustrates the consequences of a 
destructive chemical reaction, a non-chemical 
reaction, and a constructive chemical reaction. It 
is clear that the chemical reaction was more 
significant. As stated otherwise, a destructive 
chemical reaction causes the fluid concentration 
to slow down, whereas a constructive reaction 
results in a negative consequence. In addition, if 
there is no chemical reaction, the fluid 
concentration becomes linear. Moreover, the 
heavier species slow down the fluid 
concentration at every point in the concentration 
boundary layer.  

 
Fig. 14. Dimensionless coordinate   versus the 

dimensionless concentration profile ).(  The curve is 

plotted using eq. (31) for various values of Sc, and in 

some fixed values of dimensionless parameters. 

The temperature profile for N = 0.5, is 
influenced by the Prandtl number and the heat 
generation (source) / absorption (sink) 
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parameters, as illustrated in Fig. 15. When it 
comes to water, temperature increases occur in 
the source while temperature drops in the sink. 
As stated differently, the sink has the opposite 
effect on the temperature profile. Interestingly, 
the fluid's temperature increases as the Prandtl 
number increases. There was not a heat source in 
one instance. There is good agreement between 
the present finding and that of [6]. It's 
noteworthy to see that in Fig. 16, the fluid 
temperature raises in tandem with the Dufour 
number by 66%. The fluid temperature of the 
thermal boundary layer can always be raised by 
the presence of a source at N = 2.5. 

 
Fig. 15. Dimensionless coordinate  versus the 

dimensionless temperature profile ).(  The curve is 

plotted using eq. (30) for various values of dimensionless 
parameter and in some fixed values of dimensionless 

parameters. 

 
Fig. 16. Dimensionless coordinate  versus the 

dimensionless temperature profile ).(  The curve is 

plotted using eq. (30) for various values of dimensionless 
parameter and in some fixed values of dimensionless 

parameters. 

The impact of Re and N on Skin friction 

coefficient is presented in Fig. 17. Skin friction 
coefficient In both cases ( 0M and 0M ), the 

Skin friction coefficient decays with an increment 
in the coupling number ( N ) and Reynolds 

number ( Re ). Fig. 18 represents the effect of Gr

and K . Increasing the value of temperature, 
Grashof number and coefficient of thermal 
conductivity, elevates the Skin friction coefficient. 
The values are given in Table 2. It is observed that 
the increasing value of the magnetic parameter, 
thermal and solutal buoyancy, decreases the skin 
friction in magnitude whereas an increase in the 
material parameter, N increases the skin friction 
coefficient. 

 

Fig. 17. Impact of Re and N  versus Skin friction. 

 

Fig. 18. Impact of Gr and K  versus Skin friction. 
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Table 2. The Skin Friction Coefficient 𝑓′(0) are given as follows: 

 

 

𝑁, 𝐺𝑟, 𝐺𝑐, 𝐴, 𝑅 

𝑀 0.5 1.5 2.5 

Numerical Solution - 0.157892 - 0.155528 -0.154781 

Analytical Solution - 0.157889 - 0.155412 -0.153217 

Error 0.000003 0.0000116 0.001564 

 

 

𝑀, 𝐺𝑟, 𝐺𝑐, 𝐴, 𝑅 

𝑁 0.5 1.5 2.5 

Numerical Solution - 0.154896 -0.414134 - 0.669917 

Analytical Solution - 0.154790 -0.401781 - 0.669906 

Error 0.000106 0.012353 0.000011 

 

 

𝑀, 𝑁, 𝐺𝑐, 𝐴, 𝑅 

𝐺𝑟 0.2 1 2 

Numerical Solution - 0.154896 -0.065104 - 0.038694 

Analytical Solution - 0.153712 -0.062561 - 0.037584 

Error 0.001184 0.002543 0.001110 

 

 

𝑀, 𝑁, 𝐺𝑟, 𝐴, 𝑅 

𝐺𝑐 1 2 3 

Numerical Solution -0.171851 - 0.154896 - 0.137380 

Analytical Solution -0170750 - 0.153128 - 0.136120 

Error 0.001101 0.001768 0.001260 

 

 

𝑀, 𝑁, 𝐺𝑟, 𝐺𝑐, 𝐴 

𝑅 2 3 4 

Numerical Solution - 0.154884 - 0.136780 -0.111598 

Analytical Solution - 0.154881 - 0.136618 -0.110130 

Error 0.000003 0.000162 0.001468 

 

 

𝑀, 𝑁, 𝐺𝑟, 𝐺𝑐, 𝑅 

𝐴 1 2 3 

Numerical Solution - 0.172392 - 0.142189 -0.126590 

Analytical Solution - 0.172100 - 0.141080 -0.124318 

Error 0.000292 0.001109 0.002272 

 

The variations of Nu  for different 

combinations of R and N is illustrated in Fig. 19. 

For small variations in the coupling number ( N ) 

and suction/Injuction parameter ( R ), there is a 
fall in the Nusselt number. The influence of Br

and Pr on the Nusselt number is studied in Fig. 
20. On varying the Brinkman number from 0 to 2 
with respect to the Prandtl numbers 0.71, 0.81, 
0.91,  then the Nusselt number gets increasing by 
33.33%. The values are given in Table 3. The 
Nusselt number is significantly affected by 
suction/injection parameter.  

 

Fig. 19. Impact of R and N  versus Nusselt Number. 

 
Fig. 20. Impact of Br and Pr  versus Nusselt Number. 

The effect of R and Sc on the Sherwood 
number is shown in Fig. 21. The Schmidt number 
shows a rapid increase on varying R  from 2 to 8, 
whereas it shows a little variation when 
increasing Sc from 2 to 4. Fig. 22 explains the 

variation of R and   when the Sherwood 

number. From the Fig., it can be concluded that 
for fixed 8=R and varying 10,4,0= , the 

Sherwood number remains 0. After that stage (i.e. 
for R = 8 to 9), the Sherwood number rises. The 
values are given in Table 4.  
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Fig. 21. Impact of R and Sc  versus Sherwood Number. 

 
Fig. 22. Impact of R and   versus Sherwood Number. 

Table 3. The Nusselt Number −𝜃′(0) are given as follows: 

 

 

𝑅, 𝑃𝑟, 𝐵𝑟, 𝐴, 𝛽 

𝑁 0.5 1.5 2.5 

Numerical Solution 0.820560 0.805481 0.788503 

Analytical Solution 0.820410 0.803210 0.788502 

Error 0.000150 0.002271 0.000001 

 

 

𝑁, 𝑅, 𝑃𝑟, 𝐵𝑟, 𝐴 

𝛽 0 -1 1 

Numerical Solution 0.818349 0.749083 0.821786 

Analytical Solution 0.817218 0.748072 0.810634 

Error 0.001131 0.001011 0.011152 

 

 

𝑁, 𝑅, 𝐵𝑟, 𝐴, 𝛽 

𝑃𝑟 0.71 0.81 0.91 

Numerical Solution 0.821877 0.758125 0.731681 

Analytical Solution 0.810811 0.748615 0.720623 

Error 0.010066 0.009510 0.011058 

 

Table 4. The Sherwood Number −𝜑′(0) are given as follows: 

 

 

𝑅, 𝛾 

𝑆𝑐 2 3 4 

Numerical Solution 0.166015 0.167984 0.168123 

Analytical Solution 0.165923 0.156321 0.167121 

Error 0.000092 0.011663 0.001002 

 

 

𝑅, 𝑆𝑐 

𝛾 0 -1 1 

Numerical Solution 0.157014 0.176388 0.156002 

Analytical Solution 0.146901 0.175123 0.155013 

Error 0.010113 0.001265 0.000989 

 

5. Conclusions 

The non-linear boundary value problem for 
MHD micropolar fluid between two parallel 
plates in the presence of a heat source and sink 
has been studied using a semi-analytical 
technique in this study. HAM solved the 
governing equations. The conclusions that follow 
are drawn. 

1. For N>1, the micro rotation profile 
increases while the magnetic parameter 
velocity profile falls; for N<1, the opposite 
impact is seen.  

2. Maximum velocity occurs at higher buoyant 
force values.  

3. The thermal and concentration boundary 
layers are both strengthened by Dufour and 
Soret, respectively.  

4. The concentration profile is retarded by 
heavier species as well as chemical 
reactions.  

5. While the rate of mass transfer increases, 
the skin friction coefficient and heat 
transfer rate decrease with an increase in N.  
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6. While the skin friction coefficient rises with 
an increase in material parameter N, the 
skin friction magnitude reduces with an 
increase in magnetic parameter, 
temperature, and solutal buoyancy values. 

7. The rate of heat transmission is decreased 
by all parameters other than the heat 
source and the destructive chemical 
reaction, but the rate of mass transfer 
exhibits the opposite effect. 

We notice that the numerical approach is 
convenient and closed when we compare our 
stated outcomes to it. The purpose of obtaining 
the graphical findings was to examine the effects 
of multiple parameters. The study's findings were 
generally consistent with those of earlier 
investigations. 

Comparing our stated results to the numerical 
approach, we find that it is closed and convenient. 
The graphical results were obtained in order to 
study the consequences of several parameters. 
The research results were in good agreement 
with the results of previous work. 

Nomenclature 

Symbol Meaning 

C  Fluid concentration 

D  Coefficient of the mass diffusivity 

A  Constant Pressure gradient 

Pr  Prandtl number 

Br  Brinkman number 

g  Acceleration due to gravity 

M  Magnetic parameter     

N  Coupling number 

k  Material parameter 

pC  Specific molecular diffusivity 

Sc  Schmidt number 

fC  Skin friction coefficient 

)(  Dimensionless temperature 

T  Fluid temperature 

  Dynamic viscosity 

T  Fluid temperature at infinity 

  Solutal buoyancy parameter 

0B  Magnetic flux density 

  Thermal diffusivity 

Sh  Sherwood number 

  Electrical conductivity 

fk  Thermal conductivity 

  Thermal buoyancy or mixed convection 
parameter 

Nu  Nusselt number 

Gr  Temperature Grashof number 

Gc  Mass  Grashof number 

  Density of the fluid 

vu,  Velocity components along x- and y-
direction 

  Vortex viscosity or micro rotation viscosity 

j  Micro-inertia density 

wC  Stretching sheet concentration 

Ec  Eckert number 

wT  Stretching sheet temperature 

yx,  Coordinates 

  Chemical reaction parameter 

  Kinematic viscosity 

1C  Species concentration at upper plate 

  heat source / sink parameter 

  Angular velocity or micro rotation vector 

)(  Non-dimensional concentration parameter 

)(f  Non-dimensional velocity parameter 
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Appendix 

Appendix-A: Semi-Analytical Solution of the 
Non-Linear Boundary Value Problem Using the 
Homotopy Analysis Method 

The given non-linear differential equations 
are 

0)1()1()1(
Re

)1(
Re

)1(

=−−−−−+

−++−−

NAfNMN
Gc

N
Gr

wNfNRf





   (A.1) 

0
22

.2

2
.

1

22

2

=
−

−
−

−


−

−
−

f
N

m

N

m
w

wR
N

m

N

N
aw

pp

p

j

                    (A.2) 

0PrPr

)(2

)2(

1

Pr

2

2

2

2

=++

















−+


−

+

−
+

−





Du

fwwN

w
m

NN
f

N

Br

R

p     (A.3) 

0=−+−  ScSrScRSc                     (A.4) 

with the boundary conditions 

00,0,0,0 =====  atwf     (A.5) 

11,1,0,0 =====  atwf                (A.6) 

We construct  the Homotopy  for the Eqs. (A. 
1) to (A. 4) are as follows : 
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The semi-analytical expressions of the 
equations of (A.1) to (A.4) are as follows: 
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Substituting the Eqs. (A.11) to (A.14) in the 
Eqs. (A.7) to (A.10) respectively and comparing 
the coefficients of the powers of srqp ,,, we get, 
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:0s 00 =



                                   (A.21) 

:1s 00001 =−+−  ScSrScRSc  (A.22) 

The initial approximations are as follows : 

....,3,2,1,0)0(,0)0(0 === iff i  (A.23) 

....,3,2,1,0)0(,0)0(0 === iww i            (A.24) 

....,3,2,1,0)0(,0)0(0 === ii
           (A.25) 

....,3,2,1,0)0(,0)0(0 === ii
           (A.26) 

....,3,2,1,0)1(,0)1(0 === iff i  (A.27) 

....,3,2,1,0)1(,0)1(0 === iww i            (A.28) 
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....,3,2,1,0)1(,1)1(0 === ii
  (A.29) 

....,3,2,1,0)1(,1)1(0 === ii
                (A.30) 
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 =)(0     (A.38) 
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According to HAM, for 11 − h  , as ,1→p  

1,1,1 →→→ srq we acquire the following: 
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)(lim fhfff
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                    (A.40) 
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10
1

)(lim  h
s
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   (A.43) 

Substituting Eqs. (A.31) to (A.39) into Eqs. 
(A.40) to (A.43), we obtain the results in the text 
Eqs. (28) to (31) respectively. 

References 

[1] Eringen, A.C., 1966. Theory of 

micropolar fluids. Journal of 

mathematics and Mechanics, pp.1-18. 

[2] Mishra, S.R., Dash, G.C. and Pattnaik, 

P.K., 2015. Flow of heat and mass 

transfer on MHD free convection in a 

micropolar fluid with heat source. 

Alexandria Engineering Journal, 54(3), 

pp.681-689. 

[3] Haque, M.Z., Alam, M.M., Ferdows, M. 

and Postelnicu, A., 2012. Micropolar 

fluid behaviors on steady MHD free 

convection and mass transfer flow with 

constant heat and mass fluxes, joule 

heating and viscous dissipation. Journal 

of King Saud University-Engineering 

Sciences, 24(2), pp.71-84. 

[4] Rahman, M.M., Aziz, A. and Al-Lawatia, 

M.A., 2010. Heat transfer in micropolar 

fluid along an inclined permeable plate 

with variable fluid properties. 

International Journal of thermal 

sciences, 49(6), pp.993-1002. 

[5] Aurangzaib, Kasim, A.R.M., Mohammad, 

N.F. and Shafie, S., 2013. Unsteady MHD 

mixed convection flow of a micropolar 

fluid along an inclined stretching plate. 

Heat Transfer—Asian Research, 42(2), 

pp.89-99. 



Petchiammal and Ananthaswamy / Journal of Heat and Mass Transfer Research 11 (2024) 237 - 254 

252 

[6] Srinivasacharya, D. and Bindu, K.H., 

2016. Entropy generation in a 

micropolar fluid flow through an 

inclined channel. Alexandria 

engineering journal, 55(2), pp.973-982. 

[7] Ananthaswamy, V., Nithya, T. and 

Santhi, V.K., 2019. A Mathematical study 

on MHD pIane Poiseuille flow in a 

porous channel with non-uniform plate 

temperature. Journal of Applied Science 

and Computations, 6(3), pp.1178-1194. 

[8] Sekhar, B.C., Kumar, P.V. and Veera 

Krishna, M., 2023. Changeable Heat and 

Mass Transport on Unsteady MHD 

Convective Flow Past an Infinite 

Vertical Porous Plate. Journal of Heat 

and Mass Transfer Research, 10(2), 

pp.207-222. 

[9] El Hamma, M., Aberdane, I., Taibi, M., 

Rtibi, A. and Gueraoui, K., 2023. Analysis 

of MHD thermosolutal convection in a 

porous cylindrical cavity filled with a 

Casson nanofluid, considering Soret and 

Dufour effects. Journal of Heat and Mass 

Transfer Research, 10(2), pp.197-206. 

[10] Meenakshi, V., 2021. Dufour and Soret 

Effect on Unsteady MHD Free 

Convection and Mass Transfer Flow 

Past an Impulsively Started Vertical 

Porous Plate Considering with Heat 

Generation. Journal of Heat and Mass 

Transfer Research, 8(2), pp.257-266.. 

[11] Swapna, D., Govardhan, K., Narender, G. 

and Misra, S., 2023. Viscous Dissipation 

and Chemical Reaction on Radiate MHD 

Casson Nanofluid Past a Stretching 

Surface with a Slip Effect. Journal of Heat 

and Mass Transfer Research, 10(2), 

pp.315-328. 

[12] Dash, A.K., Mishra, S.R. and Acharya, B.P., 

2017. Chemical reaction effect of MHD 

micropolar fluid flow between two 

parallel plates in the presence of heat 

source/sink. Model Measurement 

Control B, 86(3), pp.593-608. 

[13] Rafiq, M., Rehman, A., Sheikh, N., Saleem, 

M., Umar Farooq, M., 2023. Numerical 

Study of the Boundary Layer Flow 

Problem over a Flat Plate by Finite 

Difference Method. Applied 

Engineering, 7(2), pp. 27-36. 

[14] Oyelami, F.H., Olumide, F.B., Olubunmi, 

I.E. and Yetunde, S.B.O., 2024. 

Numerical Study of Chemical Reaction 

and Magnetic Field Effects on MHD 

Boundary Layer Flow over a Flat Plate. 

CFD Letters, 16(3), pp.55-68. 

[15] Mehala, N. and Rajendran, L., 2014. 

Analysis of mathematical modelling on 

potentiometric biosensors. 

International Scholarly Research 

Notices, 2014(1), p.582675. 

[16] Shirly, P.F., Narmatha, S. and Rajendran, 

L., 2013. Analytical solution of 

boundary value problem in reactive gas 

absorption. International Journal of 

Mathematical Archive-4 (6), pp.228-

242. 

[17] Ananthaswamy, V. and Rajendran, L., 

2012. Analytical solutions of some two-

point non-linear elliptic boundary value 

problems. 

[18] Rasi, M., Rajendran, L. and Subbiah, A., 

2015. Analytical expression of transient 

current-potential for redox enzymatic 

homogenous system. Sensors and 

Actuators B: Chemical, 208, pp.128-136. 

[19] Liao, S.J., 1995. An approximate solution 

technique not depending on small 

parameters: a special example. 

International Journal of Non-Linear 

Mechanics, 30(3), pp.371-380. 

[20] Ananthaswamy, V. and Rajendran, L., 

2012. Approximate analytical solution 

of non-linear kinetic equation in a 

porous pellet. Global Journal of pure and 

applied mathematics, 8(2), pp.101-111. 

[21] Subanya, R.R., Ananthaswamy, V. and 

Sivasundaram, S., 2023. Semi analytical 

expressions of a non-linear boundary 

value problem for immobilized enzyme 

in porous planar, cylindrical and 

spherical. Nonlinear Studies, 30(1). 



Petchiammal and Ananthaswamy / Journal of Heat and Mass Transfer Research 11 (2024) 237 - 254 

253 

[22] Wazwaz, A.M., 2014. The variational 

iteration method for solving linear and 

nonlinear ODEs and scientific models 

with variable coefficients. Central 

European Journal of Engineering, 4, 

pp.64-71. 

[23] He, J.H., 1999. Homotopy perturbation 

technique. Computer methods in applied 

mechanics and engineering, 178(3-4), 

pp.257-262. 

[24] He, J.H., 2003. Homotopy perturbation 

method: a new nonlinear analytical 

technique. Applied Mathematics and 

computation, 135(1), pp.73-79. 

[25] Mousaa, M.M. and Ragab, S.F., 2008. 

Application of the homotopy 

perturbation method to linear and 

nonlinear schrödinger equations. 

Zeitschrift für Naturforschung A, 63(3-

4), pp.140-144. 

[26] Shanthi, D., Ananthaswamy, V. and 

Rajendran, L., 2013. Analysis of non-

linear reaction-diffusion processes with 

Michaelis-Menten kinetics by a new 

Homotopy perturbation method. 

[27] Shirly Peace, F., Sathiyaseelan, N. and 

Rajendran, L., 2014. Analytical Solution 

of Nonlinear Dynamics of a Self‐Igniting 

Reaction‐Diffusion System Using 

Modified Adomian Decomposition 

Method. International Journal of 

Chemical Engineering, 2014(1), 

p.825797. 

[28] Liao, S., 2004. On the homotopy analysis 

method for nonlinear problems. Applied 

mathematics and computation, 147(2), 

pp.499-513. 

[29] Ananthaswamy, D.V. and Kala, S., 2014. 

L. Rajendran Approximate analytical 

solution of non-linear initial value 

problem for an autocatalysis in a 

continuous stirred tank reactor: 

Homotopy analysis method. 

International Journal of Mathematical 

Archive, 5(4), pp.1-12. 

[30] Anantliaswamy, V., Nithya, T. and 

Santhi, V.K., 2019. Approximate 

analytical expressions of a boundary 

layer flow of viscous fluid using the 

modified Homotopy analysis method. 

Journal of Information and 

Computational Sciences, 9(8), pp.534-

541. 

[31] Nisar, K.S., Mohapatra, R., Mishra, S.R. 

and Reddy, M.G., 2021. Semi-analytical 

solution of MHD free convective Jeffrey 

fluid flow in the presence of heat source 

and chemical reaction. Ain Shams 

Engineering Journal, 12(1), pp.837-845. 

[32] Sivasankari, S., Ananthaswamy, V. and 

Sivasundaram, S., 2023. A new 

approximate analytical method for 

solving some non-linear initial value 

problems in physical sciences. 

Mathematics in Engineering, Science & 

Aerospace (MESA), 14(1). 

[33] Chitra, J., Ananthaswamy, V., 

Sivasankari, S. and Sivasundaram, S., 

2023. A new approximate analytical 

method (ASM) for solving non-linear 

boundary value problem in heat 

transfer through porous fin. 

Mathematics in Engineering, Science & 

Aerospace (MESA), 14(1). 

[34] Venugopal, K., Eswari, A. and Rajendran, 

L., 2011. Mathematical model for steady 

state current at PPO-modified micro-

cylinder biosensors. Journal of 

Biomedical Science and 

Engineering, 4(09), p.631. 

[35] Ananthaswamy, V. and Narmatha, S., 

2019. Comparison between the new 

Homotopy perturbation method and 

modified Adomain decomposition 

method in solving a system of non-

linear self igniting reaction diffusion 

equations. International Journal of 

Emerging Technologies and Innovative 

Research (www. jetir. org), ISSN, 

pp.2349-5162. 

[36] Sharma, S. and Jain, S., 2024. Chemical 

Reactions on MHD Couple Stress Fluids 

towards Stretchable Inclined Cylinder. 

Journal of Heat and Mass Transfer 

Research. 



Petchiammal and Ananthaswamy / Journal of Heat and Mass Transfer Research 11 (2024) 237 - 254 

254 

[37] Konwar, H., 2022. Flow, Heat and Mass 

Transfer past a Stretching Sheet with 

Temperature Dependent Fluid 

Properties in Porous Medium. Journal of 

Heat and Mass Transfer Research, 9(1), 

pp.17-26. 

 


