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 Numerous industrial and biological processes like water filtering, air filtering, blood flow 

through arteries, and absorption of digested foods are a few examples of flow with 

suction/injection at the walls. Studies related to the injection/suction of Newtonian fluids 

have been reported by several researchers in the past, but studies related to the flow of non-

Newtonian fluids with injection/suction are scarce in the open literature. Rivlin-Eriksen 

fluid (also known as third-grade fluids) is an important class of non-Newtonian fluids that is 

applied for modeling crude and slurry material in a liquid state, molten lava, blood flow, 

petroleum etc. Considering this, the flow of a Rivlin-Ericksen fluid of grade three through 

large porous parallel plates with bottom injection and top suction (same velocity of suction 

and injection) is analyzed in the present study. The governing equations of fluid flow are 

solved by using the least square method, which is an important part of the present study. 

Choosing the trial function for the least square method in this particular case is a difficult 

task since the velocity profile turns out to be asymmetric for higher velocity of suction and 

injection. In this study, proper implementation of the least square method is demonstrated 

for such types of asymmetric velocity distribution, which is a novelty.  In the present study a 

solution for non-dimensional velocity distribution is obtained, and the results are validated 

with the solution obtained by perturbation method. The results reveal that with an increase 

in the non-Newtonian parameter (when the cross-flow Reynolds number is low), velocity 

decreases at the same rate, both near the bottom and top walls. However, when the cross-

flow Reynolds number is higher, velocity near the bottom plate is nearly unaffected by a 

decrease in the non-Newtonian parameter, whereas, near the top plate, velocity decreases 

with an increase in the non-Newtonian parameter. 
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1. Introduction 

In mass transfer, cooling, suction or injection 
(blowing) through boundaries can play a crucial 
role by significantly affecting velocity profiles. As 
a consequence, heat transfer to or from surfaces 

is also affected appreciably. Injection and 
suction through porous walls are of immense 
practical importance due to their application of 
boundary layer control in wire coating, film 
cooling and polymer fiber coating [1].  
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The effect of suction is to enhance heat 
transfer rate and to increase skin friction, 
whereas the effect of the injection is just the 
opposite. During emergency shutdowns in 
nuclear reactors, slot suction/injection can serve 
to be very effective [2]. In view of this, numerous 
researchers studied the impact of 
injection/suction on flow and heat transfer 
behavior over slender cylinders. Ishak et al. [1] 
examined the effect of uniform suction/injection 
on the flow and heat transfer characteristics 
over a cylinder in stretching condition. The 
partial differential equations, using a set of 
similarity transformations, were converted to a 
set of ordinary differential equations and a 
numerical solution was obtained. The impact of 
the suction/injection parameter, Reynolds 
number, and Prandtl number on the velocity, 
temperature, Nusselt number and skin friction 
coefficient were analyzed. The results revealed 
that temperature was reduced for both air 
(Prandtl number 0.7) and water (Prandtl 
number 7) with an increase in the 
suction/injection parameter. In the study of 
Datta et al. [2], effect of slot injection/suction on 
flow over a slender cylinder, with the formation 
of a boundary layer, was studied, and the 
governing dimensionless equations were solved 
numerically. Effects of viscous dissipation, 
curvature, and Prandtl number on velocity, 
temperature and skin friction were discussed. 
Researchers also studied magnetohydrodynamic 
(MHD) transport and heat transfer in nano fluids 
through parallel plates with injection/suction.  
Heat transfer in Al2O3-Cu/Water micropolar, 
hybrid nano fluid flowing through a channel 
with a permeable wall, including chemical 
reaction and magnetic field, was examined by 
Mollamahdi et al. [3]. The lower wall was 
considered to be hot, and the cold fluid was 
injected from the top. The governing equations 
were solved by the least square method (LSM), 
and the effects of Reynolds number, Hartmann 
number, micro rotation factor, concentration of 
nano particles on the velocity and heat transfer 
were examined. Results indicated that the 
temperature reduced and concentration 
increased with an increase in Hartmann number. 
The studies cited in the preceding discussion 
considered flow through porous boundaries only. 
Flow and heat transfer of fluids through porous 
bounding surfaces of porous media is also an 
important research area as it finds wide 
applications in the fields of biomedical, chemical, 
filtration, solar heat exchangers, ground water 
movement etc. Even the desalination process [4] 
is affected by the porosity of the nano sheet [5]. 
The case of combined conduction-convection-
radiation heat transfer, arising in the field of 
solar heat exchangers filled with fluid saturated 

cellular porous medium, was examined by 
Deghan et al. [6]. The flow was modeled by the 
Darcy-Brinkman equation, and the Homotopy 
perturbation method (HPM) was applied to 
obtain a semi-analytical solution, and a 
numerical solution was obtained by the finite 
difference method. The influence of porous 
medium shape number and radiation parameter 
on thermal performance were discussed. The 
influence of uniform suction/injection on drag 
coefficient and turbulence characteristics at 
moderate Reynolds number up to 2500 was 
considered by Kametani et al. [7]. Results 
revealed that 10% drag reduction and 
enhancement were achieved by injection and 
suction, respectively. Unsteady MHD convection 
through a loosely packed permeable media into 
a precipitately started perpendicular plate was 
studied by Chandrasekhar et al. [8]. Velocity was 
observed to decrease with an increase in 
magnetic field. The Stagnation-point flow of a 
Walters’ B fluid towards a vertical stretching 
surface, which was embedded in a porous 
medium, with chemical reaction and 
deformation, was studied by Akinbo and 
Olajuwon [9]. Governing partial differential 
equations were converted to ordinary 
differential equations by similarity 
transformation, and an analytical solution was 
obtained. Chemical reaction and radiation effects 
on unsteady coupled heat and mass transfer in 
natural convection from a vertical plate 
embedded in a porous medium were studied by 
Aly et al. [10]. The governing equations were 
solved numerically by the finite difference 
method, and the effects of relevant parameters 
on velocity, temperature and Nusselt number 
were examined. Umavathi et al. [11] investigated 
oscillatory, unsteady heat transfer and flow in a 
horizontal channel filled with composite 
substances. The Darcy-Brinkman equation was 
applied to model the flow. Partial differential 
equations were solved, and analytical solutions 
were obtained utilizing functions that were 
harmonic and non-harmonic. The influence of 
porous medium parameter, viscosity ratio, 
Prandtl number, and oscillation amplitude were 
analyzed. Velocity and temperature were 
reduced with an increase in porous parameter. It 
was found that when the porous parameter 
increased from 1 to 2, the maximum velocity 
reduced from nearly 1.8 to 1.3. Thermally 
developing forced convective heat transport in a 
channel filled with porous material was 
examined by Deghan et al. [12]. The channel 
walls were subjected to uniform heat flux. The 
two-energy equation model, along with Darcy’s 
law of motion, were considered. Nusselt number 
for thermally developing condition in a porous 
material for LTNE (local thermal non 
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equilibrium) and the developing length was 
predicted. The impact of variable thermal 
conductivity on forced convective heat transfer 
through a parallel-plate heat exchanger filled 
with porous medium was studied by Deghan et 
al. [13]. The channel walls were subjected to 
uniform and constant heat flux and the 
governing equations were analytically solved 
using the perturbation method. Expressions for 
Nusselt number and temperature distribution 
were deduced in terms of porous parameter and 
thermal conductivity variation parameter. 
Deghan et al. [14] also studied conjugate heat 
transfer in microchannels filled with porous 
medium. The effect of slip and internal heat 
generation were considered. Analytical solution 
was obtained for local thermal non-equilibrium 
condition, and the effect of dimensionless wall 
resistance, Bio number, heat generation 
parameter, fluid to solid effective conductivity 
ratio on Nusselt number and temperature were 
examined. Chakravarty et al. [15] studied heat 
transport in mixed convection, occurring in an 
enclosed space having a porous bed with heat 
generating capacity and injection of cold fluid 
from the bottom of the porous bed. During post 
accident situations in nuclear reactors, this type 
of condition occurs when enhancement of heat 
removal is essential by cold fluid injection from 
the bottom. In this study, the Darcy-Brinkman-
Forchheimer approximation was used for 
modeling the flow through porous media. 
Equations governing the physical phenomenon 
were solved by the computational fluid 
dynamics software ANSYS FLUENT. It was 
observed that permeability factor of the flow 
media significantly affected the flow near the 
inlet. Heat transport in mixed convection in a 
porous, square cavity in nano fluids considering 
injection/suction regions, Brownian diffusion 
and thermophoresis was investigated by 
Sheremet et al. [16]. The finite difference 
method was employed to yield numerical 
solutions to the equations, and the outcomes 
were validated with the experimental study. It 
was reported that an increment in cross-flow 
Reynolds number (indicating the inlet vertical 
velocity of nano fluid inside the cavity) causes 
thinning of the thermal boundary layer near the 
hot wall. 
The above discussion highlighted a few 
important studies on the influence of 
injection/suction on flow characteristics and 
heat transfer characteristics through porous 
media and through porous boundary with the 
flow of Newtonian fluids. It is well known that 
many fluids used in industries fall in the 
category of non-Newtonian fluids, and heat 
transport and flow involving various non-
Newtonian fluids were analyzed by researchers. 

Some of the frequently adopted non-Newtonian 
fluid models are the Power law model [17, 18], 
the Casson model [19,20], the Visco-elastic 
model [21-23], Rivlink-Eriksen fluid of grade 
two [24], three [25-27] (second and third grade 
fluids).  Due to the importance of porous media 
and porous boundary transport, researchers are 
actively engaged in the study of different aspects 
of flow features and heat transport of non-
Newtonian fluids in porous media and through 
porous boundaries.  Gupta et al. [17] studied the 
impact of injection/suction on the flow features 
and heat transport of a power law fluid over a 
flat plate. It was reported that steady state 
solution exists for only shear-thinning fluids for 
which the power-law index n varies in the range 
0 < n <1 and suction takes place at the plate. In 
the case of injection, steady state velocity 
distribution was not observed to exist. The heat 
transport of a non-Newtonian power law fluid 
passing a moving surface was examined by 
Radnia and Nazar [18], considering uniform 
injection/suction. The surfaces were assumed to 
be subjected to uniform wall temperature. The 
results indicated that the boundary layer 
thickens with an increase in suction. It also 
increases with internal heat generation. 
Thermosolute free convection in isotropic, 
porous cylindrical cavity, filled with Casson nano 
fluid, subjected to external magnetic effect was 
studied by Mustapha et al. [19]. The governing 
equations were solved numerically by the finite 
volume method, and the effects of different 
parameters on heat transfer rate and 
concentration were analyzed. Mass and heat 
transfer rates were observed to increase with 
the rise in the Casson fluid parameter, and this 
increase is significant when the Casson fluid 
parameter lies in the range 0.1-0.4. 
Magnetohydrodynamic flow in Casson fluid with 
slip condition, with a stretching sheet, under the 
effect of injection/suction was examined by 
Madhy [20]. The partial differential equations, 
describing the flow and heat transfer effect, 
were reduced to a set of ordinary differential 
equations by a similarity transformation method 
and were solved numerically. It was reported 
that an increment in the Casson parameter 
suppressed the velocity field. The temperature, 
on the other hand, increased with an increase in 
Casson parameter. Dash and Ojha [21] studied 
MHD flow of a visco-elastic fluid between two 
porous parallel plates under the action of a 
pressure gradient which was sinusoidal. Results 
indicated that an oscillating pressure gradient, 
with low frequency, prevents the back flow and 
skin friction was reduced significantly by 
embedding the channel in porous medium. 
Electro kinetic transport of visco-elastic and 
Newtonian fluids in model porous media with 
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long micro pores was studied by Khan and 
Sasmal [22]. Numerical solution for both 
Newtonian and viscoelastic fluids were obtained. 
Over the entire range of parameters considered 
in the study, a steady and symmetrical velocity 
field was observed for Newtonian fluids. For 
visco-elastic fluids, a transition from symmetric 
and steady to asymmetric and unsteady profile 
takes place when the Weissenbarg number 
crosses a critical limit. Padma Devi and Srinivas 
[23] considered bi-layered, immiscible flow of a 
viscoelastic liquid in a porous, vertical channel 
including the effects of Hall current, chemical 
reaction and radiation. The pressure gradient 
was considered as oscillatory. Solutions for 
concentration, velocity, and temperature were 
obtained utilizing the perturbation method. For 
a Newtonian fluid, a symmetric and steady field 
was observed, whereas for viscoelastic fluids, it 
was observed that a transition from symmetric 
and steady flow to an asymmetric and unsteady 
flow took place when the Weissenberg number 
crossed a critical limit. Third-grade fluid is 
another class of non-Newtonian fluids that drew 
the attention of various researchers. The second, 
and third fluids come in a subclass of differential 
type Rivlin-Ericksen fluids.  It was reported that 
blood [25] and scientifically treated petroleum 
motor oil [26] additives consisting of 
polyisobutylene polymer, in dissolved condition 
in petroleum, follow the third-grade fluid model. 
The third-grade fluids have shear dependent 
viscosity, but this characteristic is missing in 
second grade fluids. Due to this shortcoming, 
second grade fluids are not able to predict shear-
thinning and shear-thickening properly. 
However, second grade fluids can predict the 
normal stress difference. Flow features and heat 
transport characteristic of third grade fluids and 
their different aspects have been studied by 
researchers [25-28]. Flow features and heat 
transport aspects of third grade fluids through 
porous media were considered in those studies. 
Hayat et al. [27] studied MHD flow of a third-
grade fluid in a porous channel. Homotopy 
analysis method was applied to find the velocity 
distribution. The entropy generation rate in the 
MHD flow of a third-grade fluid in parallel plates 

with porous media was studied by Adesanya and 
Falade [28]. The flow was actuated by applied 
constant pressure gradient and influenced by 
the applied magnetic field. The equations were 
solved using the perturbation method.  

The discussion above establishes the 
requirement of studies on flow features and heat 
transfer of third grade fluids in porous media 
and through porous boundaries. Therefore, in 
the recent study, the flow of a third-grade fluid 
in large parallel plates with the effect of uniform 
injection and suction is considered. This type of 
study was carried out for the second-grade fluid 
by Ariel [24]. In the study of Ariel [24], exact 
solutions for the non-dimensional velocity 
distribution were obtained for two geometries. 
One was for flow through large parallel plate and 
the second was for flow through concentric 
annular cylinders. For a third-grade fluid flow, in 
the current study, the least square method (LSM) 
is applied to find the solution for the non-
dimensional velocity field. LSM is a very useful 
semi-analytical method which was employed by 
numerous researchers [3, 29] for solving fluid 
flow and heat transfer problems. In the present 
study, the non-linear governing differential 
equations are first reduced to their 
dimensionless forms, and then solution by the 
LSM is obtained. Further, a solution by the 
traditional perturbation method is obtained for 
small values of the third-grade fluid parameter 
and cross-flow Reynolds number. These two 
results are compared for validation purposes, 
and the results are in excellent agreement. 
Further, the results of the LSM solution are 
compared with the outcomes of a Newtonian 
fluid in the limiting case of vanishing non-
Newtonian parameter. It is observed that the 
LSM results are in exact match with that of the 
Newtonian solution. These two comparisons 
serve the purpose of validation of the results 
obtained in the present study. Then, the impact 
of cross-flow Reynolds number and third-grade 
fluid parameter on the dimensionless velocity 
are analyzed. To highlight the novelties of the 
present study, a brief review of the previous 
studies on non-Newtonian fluids in this field is 
presented in Table 1. 

Table 1. Studies on porous media and porous boundary flow with suction/injection in non-Newtonian fluids 

References  Content 

Padma Devi and Srinivas 
(2023) 

Authors considered bi-layered, immiscible flow of a viscoelastic liquid in a porous, 
vertical channel, including the effects of Hall current, chemical reaction and 
radiation. The pressure gradient was considered as oscillatory. Solutions for 
concentration, velocity, and temperature were obtained utilizing the perturbation 
method. For a Newtonian fluid, a symmetric and steady field was observed. 
Whereas, for viscoelastic fluids, it was observed that a transition from steady and 
symmetric flow to an unsteady and asymmetric flow took place when the 
Weissenberg number crossed a critical limit. 
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Mustapha et al. 
(2023) 

Thermosolute free convection in porous, isotropic media filled with Casson nano 
fluid (Aluminium nano particles) subjected to a magnetic field was studied. 
Extended Darcy law of Brinkman-Forchhiemer was employed to model the flow, 
and the equations were solved by finite volume method. It was observed that mass 
and heat transport increased with an increase in the Casson fluid parameter. This 
increase is significant when the Casson fluid parameter lies in the range of 0.1- 0.4. 

Khan and Sasmal  
(2023) 

Electro kinetic transport of visco-elastic and Newtonian fluids in model porous 
media with long micro pores was studied. Numerical solutions for both Newtonian 
and viscoelastic fluids were obtained. Over the entire range of parameters 
considered in the study, a steady and symmetrical velocity field was observed for 
Newtonian fluids. For viscoelastic fluids, a transition from symmetric and steady 
to an unsteady and asymmetric profile takes place when the Weissenbarg number 
crosses a critical limit. 

Das and Ojha  
(2018) 

 In this study, MHD flow of a viscoelastic fluid between two porous parallel plates 
under the action of a pressure gradient which was sinusoidal, was examined. The 
governing partial differential equations were solved analytically. Results indicated 
that oscillating pressure gradient with low frequency prevents the back flow and 
skin friction was reduced significantly by embedding the channel in porous 
medium. 

Radnia and Nazar 
(2017) 

Heat transfer of Power law fluid flowing over a moving surface was examined 
considering uniform injection/suction. The surface was subjected to uniform 
temperature. Merk-Chao series was employed and a set of ordinary differential 
equations were obtained.  Results revealed that thickness of thermal boundary 
layers of pseudo plastic fluids are higher than the dialatant fluids. Internal heat 
generation increased the thermal boundary layer thickness. 

Madhy  
(2016) 

Magnetohydrodynamic flow in a Casson fluid with slip condition, with a stretching 
sheet, under the effect of injection/suction was studied. The partial differential 
equations describing the flow and heat transfer effect were reduced to a set of 
ordinary differential equations by a similarity transformation method and were 
solved numerically. It was reported that an increment in the Casson parameter 
suppresses the velocity field. Temperature, on the other hand, is increased with an 
increase in the Casson parameter. 

Adesanya and Falade 
(2015) 

Entropy generation rate in MHD flow of a third-grade fluid in parallel plates, with 
porous media, was studied. The flow was actuated by applied constant pressure 
gradient and influenced by the applied magnetic field. The equations were solved 
using the perturbation method.  

Hayat et al.  
(2008) 

Magnetohydrodynamic flow of third grade fluid through a porous channel was 
studied. Analytical solution for velocity was yielded by applying homotopy 
analysis method. Effect of different parameters on velocity were analyzed.  

 

From the review of the previous studies 
presented in Table 1, it is clear that studies on 
the flow of various non-Newtonian fluids 
through different geometries like parallel plates, 
channels, and pipes with suction/injection 
through porous walls are still an active area of 
research. Numerous studies have been 
conducted on Casson fluids, Power law fluids, 
and Visco-elastic fluids in this direction. 
However, studies on third-grade fluid flow 
through channels and parallel plates with 
suction/injection through porous walls are 
scarce in open literature. Further, studies 
employing LSM for solving non-linear governing 
equations arising in this field are also rare. In 
view of these, in the current study, the flow of a 
third-grade fluid through large parallel plates 

with uniform suction/injection through the 
porous walls is considered. The novelties of the 
current study are the following: 

• Study of the effect of uniform 
suction/injection on the velocity field for a 
third-grade fluid flow through large parallel 
plates. 

• Study of the impact of the third-grade fluid 
parameter on the velocity field in the 
presence of the wall injection/suction. 

• Implementation of the LSM in this case, 
where the velocity field distorts from 
symmetrical nature to asymmetry due to the 
cross-flow. This requires very tricky 
selection of the trial function for LSM and 
this selection process may be useful for 
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applying LSM in similar situations where 
velocity field is not symmetric about the 
central axis of the plate/channel. 

• Presenting a semi-analytical solution of the 
equation, for which no exact analytical or 
approximate analytical solution is reported. 
For second-grade fluid in similar flow 
condition, the exact solution is admissible, 
which was reported. But in the case of third-
grade fluid, no exact solution is reported for 
which a semi-analytical solution with high 
accuracy is obtained by LSM. 

• Flow rate per unit width of the plates are 
obtained, which is an important parameter 
from engineering point of view. Impact of 
third grade fluid parameter, cross-flow 
Reynolds number on the flow rate is 
discussed. 

2. Problem Formulation 

The problem under consideration is 
represented in Fig. 1. The frame of reference is 
chosen as shown in Fig. 1. The upper and lower 
plates are porous, and fluid is injected at the 
lower plate and sucked at the upper plate with 
uniform velocity. The flow is taking place along x 
direction, and due to the imposed pressure 
gradient flow takes place along x. The parallel 
plates are assumed to be very large along the z-
direction. The flow is considered to be laminar, 
incompressible, steady and hydro-dynamically 
fully developed. 

 
Fig. 1. Pictorial representation of the flow  

through parallel porous plates 

The continuity equation [25, 27] is given 
below as: 

. 0 =V  (1) 

where V is the velocity vector. Neglecting body 
forces, the momentum conservation equation 
[25, 27] in vector form is given below as follows: 

.=
DV

Dt
   (2) 

where τ is the stress tensor. The relation 
between the stress tensor and rate of 

deformation tensor [25-28] for a third-grade 
fluid is given by the following: 

( ) ( )

2

1 1 2 2 1 1 3

2

2 1 2 2 1 3 1 1

pI A A A A

A A A A trA A

    

 

= − + + + +

+ + +
 (3) 

where, p is the static pressure, μ, β1, β2, and β3 
are the material constants of third-grade fluids. 
A1, A2, A3 are given by the following relations [25, 
27]: 

( ) ( )
1

T

A gradV gradV= +  (4) 

In general, An is given by the following 
relation [25, 27]: 

( ) ( )1

1 1, 2,3
Tn

n n n

DA
A A gradV gradV A n

Dt

−

− −= + + =  (5) 

As the plates are very wide along the lateral 
direction, the velocity component u is 
independent of z. Further, a fully developed flow 
assumption leads us to search for a solution of 
the following form: 

( ) ,0,0V u y=   
 (6) 

Now, From Eq. (2), using Eq. (3)-Eq. (6), we 
have the momentum conservation equations in 
the x, y and z directions as follows: 

( )
22 2

2 32 2
6

d u d u du p du
v

dy dy dy x dy
   

  
+ + − = 

 

 (7) 

( )
2

1 22
   

+ =  
   

d du p

dy dy y
   

(8) 

0


=


p

z
 (9) 

Boundary conditions [24]: 

( ) ( )0 0= =u u h  (10.1) 

( ) ( )0 = = wv v h v  (10.2) 

From the boundary condition given by Eq. 
(10.2) for uniform blowing and suction, the y 
component of velocity v in the flow regime 
between the plates can be approximated as 
follows [24]: 

 wv v  (11) 

Therefore, Eq. (7) reduces to the following: 

( )
32 2

2 32 2
6 w

d u d u du du p
v

dy dy dy dy x
   

  
+ + − = 
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 (12) 
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From Eq. (9), we get the p is independent of z. 
Then, from Eq. (8), the following relation for p is 
obtained: 

( ) ( )
2

1 2

0

2

y
d du

p dy f x c
dy dy

 
  

= + + +  
   

  (13) 

where c is an integral constant. From Eq. (13), it 

is evident that p

x




 is dependent on x alone and 

can be replaced as dp

dx
. Therefore, Eq. (12) 

reduces to the following form: 

( )
32 2

2 32 2
6 w

d u d u du du dp
v

dy dy dy dy dx
   

 
+ + − = 

 

 (14) 

The left-hand side of Eq. (14) is dependent on 
y alone, as u depends only on y as per the 
assumption. The right-hand side of Eq. (14) 
depends on x only. The only possibility is that 
both sides are equal to a constant. For reducing 
Eq. (14) and boundary conditions in their 
dimensionless forms, dimensionless variables 
and parameters introduced are as follows: 

Dimensionless variables and parameters; 

( )

* *

0

2

2 3 0

2

2

0

, ,

,

Re ,w

y u
y u

h U

U
A

h

v h dp h
N

dx U

 





 

= =

 +
=  
 

= =

 

(15) 

where y* and u* are the dimensionless y 
coordinate and velocity along the flow direction. 
A is the third-grade fluid parameter, where A=0 
corresponds the case for Newtonian fluids. Re is 
the cross-flow Reynolds number based on the 
uniform wall blowing and suction velocity, and N 
is a measure of non-dimensional pressure 
gradient. In the current study, the reference 
velocity U0 [24] can be considered as follows: 

2

0

 
= − 

 

dp h
U

dx 
 (16) 

Therefore, N reduces as follows: 

1= −N  (17) 

Using the dimensionless variables and 
parameters, the non-dimensional equation is 
obtained as follows: 

( )
2

2 * 2 * * *

*2 *2 * *
6 1 Re

d u d u du du
A

dy dy dy dy

 
+ − − = 

 

 (18) 

Dimensionless boundary conditions: 

( ) ( )* *0 1 0= =u u  (19) 

For the sake of convenience, omitting the 
asterisk, we get the non-dimensional governing 
equation and boundary conditions as follows: 

22 2

2 2
6 1 Re

d u d u du du
A

dy dy dy dy

 
+ + = 

 

 (20) 

( ) ( )0 1 0= =u u  (21) 

3. Solution 

3.1. Solution by LSM: 

Equation (20) is a non-linear, ordinary 
differential equation for which getting an exact 
analytical solution may not be possible. LSM is a 
highly effective semi-analytical technique that 
produces a very accurate approximate solution. 
For applying LSM, first, trial functions or base 
functions have to be chosen. In the present study, 
the trial functions have to be chosen very 
carefully. From the solution of the Newtonian 
fluid flow problem, it is known that when the 
cross-flow Reynolds number is 0, then the 
velocity profile is symmetric about the 
centerline of the parallel plates. With the 
increase in Re, the velocity profile deviates from 
symmetry and displays an asymmetric pattern. 
In view of this, the approximate solution is to be 
chosen as a combination of symmetric and 
asymmetric functions with respect to the 
centerline of the parallel plate channel. 
Therefore, the base/trial functions 

( ) ( )2 31 , 1y y y y− −  are chosen, which are 

asymmetric functions and ( )1y y−  is the 

symmetric function (symmetric with respect to 
the centre line of the channel). The trial 
functions are picked up such that the boundary 
conditions given by Eq. (21) are satisfied. 
Therefore, the approximate solution is chosen as 
a combination of all these asymmetric and 
symmetric functions. c1, c2 and c3 are the 
constants to be evaluated. When the velocity 
profile deviates from symmetry, c3 should 
decrease and c1 and c2 should increase. When 
the cross-flow Reynolds number decreases, the 
reverse should occur. In view of these, the 
following approximate solution is chosen for Eq. 
(20) [3]. 

( ) ( ) ( )2 3
1 2 31 1 1u c y y c y y c y y= − + − + −  (22) 

Upon substitution of Eq. (22) in Eq. (20), the 
residual function results as follows: 

22 2

2 2
6 1 Re

d u d u du du
A R

dy dy dy dy

 
+ + − = 

 

 (23) 
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In the present study, all steps of LSM are 
carried out by the Symbolic Computation tool of 
MATLAB. The residual R as obtained in MATLAB 
is presented below as: 

( ) ( )1 2 3 3 1 1

2 3

3 3 1 2

2

2 1

2

2

3 1 1

2 2

2 2

2
2

3 3 1

3 2

2 1 2

, , , 1 2 4 2 ( 1)

( 1)

6 Re 2 ( 1)

3c ( 1)

2 4 2 ( 1)
6 ( 1) 6

6 6 ( 1)

( 1)

2 ( 1) 3 ( 1)

R y c c c c c y c y

c y c y c y c y

c y c y y

y y

c c y c y
c y y A

c y c y y

c y c y c y

c y c y y c y y

= − − − − −

 + − + +
 

− + + − 
 + − 

+ + − 
− − −  

+ + − 

 + − + +
 

+ − + −  

 

(24) 

Now, as per the requirement of LSM [3, 29], 
the summation of the square of the error or 
residual (R) is to be obtained over the entire 
domain. This is accomplished as follows: 

1

2

0

= S R dy
 

(25) 

Then, the next task is to minimize S with 
respect to the unknowns c1, c2 and c3. This will 
generate three non-linear, coupled algebraic 
equations. The equations [3, 29] are generated 
as follows: 

1 1

2

1 1 10 0

0
   

= = = 
   

 
S R

R dy R dy
c c c

 (26) 

1 1

2

2 2 20 0

0
   

= = = 
   

 
S R

R dy R dy
c c c

 (27) 

1 1

2

3 3 30 0

0
   

= = = 
   

 
S R

R dy R dy
c c c

 (28) 

Equation (26)-Eq. (28) lead to the following 
equations: 

2 5
2 4 4 3 2 3 2 3 21

1 2 1 3 1 2 1 2 3 1 3

2 2 3 2 2 2 2 2 2 2 2 3

1 2 1 2 3 1 2 3 1 3

2 4 2

1 2 1
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455 455 385 35

559296 892512

1001 455

A c
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1 3 1 2

978048 10032

385 7
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A c c A c c A

+ +

+ + + +

+ + + + +

− − −
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(29) 
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( ) ( ) ( ) ( ) ( ) ( )
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(30) 
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(31) 

 
Equation (29)-Eq. (31) is a set of coupled 

non-linear algebraic equations. This set is solved 
by the Symbolic computation tool of MATLAB. 
The solution depends on A, Re.  

As stated earlier, when Re=0, A=0, c1=0, c2= 0 
and c3=0.5. When Re=1, A= 0, c1=0.1232, c2= 
0.0407 and c3= 0.418. When, the cross-flow 
Reynolds number is zero indicating no 
suction/injection, then the contribution of c1 and 
c2 is zero, and that of c3 is 100%. When the 
cross-flow Reynolds number increases, the 
contribution of c3 decreases and the 
contribution of the other constants increase.  

3.2. Solution by Perturbation Method: 

Another solution to the governing equation is 
yielded by the traditional perturbation method. 
The traditional perturbation method is a very 
popular analytical technique that is still in use 
today. This is used to find the analytical solution 
of non-linear partial differential equations and 
ordinary differential equations. In the present 
study, the perturbation method is used to obtain 
the solution of the governing equation for small 
values of the cross-flow Re and the non-
Newtonian parameter A. For implementing the 
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perturbation method, Re and A are considered to 
be small and used as a perturbation parameter.  

( )
22 2

2 2
6 1 0

 
− + − − = 

 

d u du d u du

dy dy dy dy
   (32) 

In Eq. (32), Re=A= ε is substituted. For 

implementing the perturbation method, the 

solution for u is assumed to be as follows: 

2

0 1 2 ...= + + +u u u u   (33) 

Where a solution for the second order is 
considered. Following the standard procedure of 
the perturbation method, putting Eq. (33) in Eq. 
(32) and combining the coefficients of ε0, ε1and 
ε2 and equating zero, 0th order, 1st order and 2nd 
order equations are as follows: 
0th order equation: 

2

0

2
1

d u

dy
= −  (34) 

For obtaining the boundary conditions, Eq. 
(33) is substituted in Eq. (21), and the 
coefficients of ε0, ε1and ε2 are equated to zero, 
and the boundary conditions required are given 
below: 

Boundary conditions: 

( ) ( )0 00 0, 1 0= =u u  (35) 

1st order equation: 

222

0 0 01

2 2
6 0

 
− + = 

 

du d u dud u

dy dy dy dy
 (36) 

Boundary conditions: 

( ) ( )1 10 0, 1 0= =u u  (37) 

2nd order equation: 

2 22 2

0 0 02 1 1 1

2 2 2
6 12 0

du d u dud u du d u du

dy dy dy dy dy dy dy

 
− + + = 

 

 (38) 

Boundary conditions: 

( ) ( )2 20 0, 1 0= =u u  (39) 

Solutions: 

Equation (34), Eq. (36) and Eq. (39) along 
with the boundary conditions are solved to 
obtain the 0th order, 1st order and 2nd order 
solutions as follows: 

0th order solution: 

( ) 2

0

1
( 1)

2

−
= −u y  (40) 

1st order solution: 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

33 2 4
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(41) 
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(42) 

The final solution for u is obtained by 
substituting u0, u1 and u2 from the Eq. (40), Eq. 
(41) and Eq. (42) in Eq. (33).  

3.3. Solution for Newtonian fluids: 

If A=0 is substituted in Eq. (20), the 
governing equation for Newtonian fluids is 
retrieved, which is given below: 

2

2
Re 1

d u du

dy dy
− = −  (43) 

The boundary condition remains the same as 
given by Eq. (21). The solution to Eq. (43) with 
the boundary conditions given by Eq. (21) is 
given as follows: 

( )
Re

Re

1
1

ReRe 1
 = − + 

−

y y
u e

e

 
(44) 

3.4. Dimensionless Flow Rate: 

In this study, the flow rate per unit width of 
the plate is obtained, and the influence of the 
third-grade fluid parameter and the cross-flow 
Reynolds number on the flow rate is studied. 
The limitation of this result is that it is only valid 
near the central region of the plates. Due to the 
large plate assumption, the variation of the axial 
velocity in the lateral direction is not considered. 
The dimensionless flow rate per unit width is 
calculated as follows: 

1

0

= q udy  (45) 
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where, 
*

0

q
q

U h
= , q* is the dimensional flow rate.  

By substituting the expression for u from Eq. 
(22) to Eq. (44), the dimensionless flow rate is 
obtained as follows: 

31 2

12 20 6
= + +

cc c
q  (46) 

For different values of A and Re, 
dimensionless flow rate can be evaluated from 
Eq. (46).  

Dimensionless shear stresses [25, 27] at the 
upper plate and lower plates are as follows: 

3

1 1

2uw

y y

du du
A

dy dy


= =

   
= +   
   

 (47.1) 

3

0 0

2lw

y y

du du
A

dy dy


= =

   
= +   
   

 (47.2) 

Substituting the expression for u from Eq. (22) 
into Eq. (47) yields the following: 

( ) ( )
3

1 2 3 1 2 32uw c c c A c c c = − + + + − + +  
 (48.1) 

3

3 32= +lw c Ac  (48.2) 

4. Results and Discussion 

In this section, the effects of different 
parameters like a third-grade fluid parameter 
and cross-flow Reynolds number on the velocity 
distribution are analyzed. Before that, validation 
of the results has to be carried out. In the 
present study, a solution of the velocity 
distribution is obtained by LSM and the 
traditional perturbation method. The outcome of 
the perturbation method is valid for small 
parameters only. Therefore, a comparison of the 
outcomes of LSM and perturbation methods is 
made for small parameters. Further, outcomes of 
the LSM are compared with those Newtonian 
fluids in the limiting case of the non-Newtonian 
parameter as zero. The comparisons are shown 
in Fig.2 (a) and Fig. 2(b). 

Fig. 2(a) presents the comparison of the 
results of the LSM (with the non-Newtonian 
parameter as zero) and the results of Newtonian 
fluids for which an exact solution is available. It 
is evident that the results exactly match. Figure 
2(b) presents the comparison of the results of 
LSM and the perturbation solution obtained in 
the present study. It is clear that the results are 

closely matching.  This comparison establishes 
the validity of the results of the current study. In 
the current study, the cross-flow Reynolds (Re) 
number has been chosen in the range of 0-4. The 
third-grade fluid parameter A varies nearly in 
the range of 0-0.3. 

 

 
Fig. 2. (a) Comparison of the velocity distributions, (b) 

Comparison of the from the Exact analytical solution velocity 
distributions from the and LSM for Newtonian fluids LSM 

and perturbation method. 

In Fig.3 (a), dimensionless velocity 
distributions for different non-Newtonian 
parameters are plotted when the cross-flow 
Reynolds number is fixed at 0.1. It is observed 
that velocity profiles are nearly symmetric about 
the central axis of the plates for all values of A. 
This is the result of a very low Reynolds number 
(Re=0.1), which indicates very low 
injection/suction velocity through the porous 
walls. It is evident with increase in A, velocity 
decreases. From Eq. (15), it is clear that A can 
increase in various ways. A can increase if β2 or 
β3 increase, keeping other parameters 
unchanged. Increase in β2 or β3 signifies increase 
in the flow resistance, which will result in a 
decrease in velocity. Therefore, velocity will 
decrease with an increase in A. Again, from Eq. 



Palai et al. / Journal of Heat and Mass Transfer Research 12 (2025) 45 - 60 

56 

(15), we conclude that if μ decreases, then also A 
can increase. If μ decreases, to keep Re fixed, h 
has to be reduced in the same order. This will 
result in a reduction in the reference velocity. 
This will also result in a decrease in the gap 
between the parallel plates, causing a higher 
flow resistance for fixed values of β2 or β3. 
Therefore, if A increases as result of a decrease 
in μ, velocity should decrease which is displayed 
in Fig. 3 (a). 

 

 
Fig. 3. (a) Velocity distribution (non-dimensional),  

(b) Velocity distribution for different A when Re is fixed at 
0.1 (non-dimensional) for different A when Re is fixed at 3 

In Fig.3 (b), dimensionless velocity 
distributions for different A are plotted for a 
higher cross-flow Reynolds number (Re=3). As 
displayed for Newtonian fluids, in the present 
case of third-grade fluid also, velocity profiles 
are distorted from their symmetric nature about 
the central axis of the plates for higher values of 
the cross-flow Reynolds number. 

The point of occurrence of the peak velocity 
is shifted towards the upper plate when the 
injection is through the lower plate. With 
increase in A, velocity decreases as explained 
earlier. But it is important to note that velocity is 
nearly unaffected by any change in A, starting 
from y=0.4 up to the lower plate. Of course, 
depending on Re, the value of y from where the 
velocity is unaffected by any change in A will 
differ in magnitude. For higher values of Re, the 
injection velocity is higher at the lower plate. 
Consequently, the flow resistance is higher and 
axial velocity near the wall is lower. With the 
increase in A, resistance increases further and 
up to a higher region from the plate; velocity 
remains low and is unaffected by changes in A. 
Another important observation is the shifting of 
the maximum velocity towards the central 
region with an increase in A. With the rise in A, 
velocity decreases which results in this shift of 
the maximum velocity. A similar trend was 
observed in the study of Ariel [24]. When Re=0.1, 
the maximum velocity decreases from 0.12 to 
0.11 with a change in A from 0 to 3. Whereas, 
when Re=3, velocity changes from 0.11 to 0.09 
when A changes from 0 to 3.  

Fig. 4 (a) and Fig. 4 (b) depict non-
dimensional velocity distributions for different 
values of Re with unchanged values of A. Like 
Newtonian fluids, with an increase in Re, 
velocity near the lower plate decreases due to 
higher values of injection, whereas near the 
upper plate, velocity increases due to higher 
values of suction in the wall. However, this 
increase in velocity near the upper plate is 
resisted with an increase in A, as shown in Fig. 4 
(b). For A=0.3 and Re=3, velocity near the lower 
plate (from y=0.7) is higher than the velocity for 
Re=0. But the increment is less compared to the 
increment in the case of A=0.04 when Re 
changes from 0 to 3, as depicted in Fig. 4 (a). For 
higher A, due to an increase in flow resistance, 
velocity is lower. Therefore, when Re changes to 
3, velocity increases near the lower plate, but the 
rate of increase is comparatively less (compared 
to the case of A=0.04). With further rise in A, this 
rate of increment of velocity with an increase in 
Re is still lower near the upper plate. Higher 
values of A, suppress the boundary layer 
thickness near the upper plate with increase in 
cross-flow Reynolds number. But higher values 
of A, increase the boundary layer thickness near 
the lower plate for higher values of the cross-
flow Reynolds number. 
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Fig. 4. (a)Velocity distribution (non-dimensional), (b) 

Velocity Distribution (dimensionless) for different 
 Re with A =0.04 for different Re with A=0.3  

It is important to discuss the effect of flow 
passage in the porous wall on velocity. If the 
area of the flow passage in the porous walls 
increases, then more mass transfer occurs 
towards the axially flowing fluid through the 
parallel plate. This increases the cross-flow 
Reynolds number. Increase in cross-flow 
Reynolds number will increase the boundary 
layer thickness near the lower wall and the 
reverse will take place near the upper wall. 
Consequently, shear stress in the lower wall will 
decrease and in the upper wall, shear stress will 
increase. With the increase in cross-flow mass 
transfer, axial velocity reduces. 

Variation of dimensionless flow rate per unit 
width with A for different Re is depicted in Fig. 5. 
From Fig.4 (a) and Fig. 4 (b), it is observed that 
with increment in A, velocity decreases for all 
values of Re. Therefore, the flow rate will be 
reduced for higher A. When Re increases, for all 
A, for most of the portion of the channel gap, 
velocity is reduced only with an increase near 
the upper plate (for top suction and bottom 
injection). Therefore, the flow rate decreases 
with an increase in Re. It is noted from Fig. 5 that 
the rate of decrease is higher for higher values of 

Re. That is, the decrement in flow rate is higher 
when Re changes from 2 to 3, compared to the 
case when Re changes from 0 to 1 or 1 to 2.  

The variation of wall shear stresses with Re 
for different A is plotted in Fig.6.  It is clear from 
Fig. 6 that shear stress at the upper plate is more 
sensitive towards change in A compared to the 
sensitivity of shear at the lower wall. The shear 
stress at the lower wall is nearly unaffected by 
any change in A. As already discussed during 
analyzing the effect of A on velocity profiles that, 
velocity distribution near the lower plate is 
unaffected by any change in A. Consequently, the 
shear stress is also unaltered by any change in A. 
Of course, shear stress for the third-grade fluid 
in the upper plate increases with an increase in 
Re, whereas in the lower plate, it decreases with 
a rise in Re. This is the same trend as displayed 
by the Newtonian fluids. Up to A =0.1, the shear 
stress at the upper plate displays no change. 
When A > 0.1, shear stress at the upper wall 
changes. In the lower wall, the shear stress is 
unaltered by any change in A.  

 
Fig. 5. Variation of dimensionless flow rate per unit 

 width with A for different Re 

 
Fig. 6. Variation of dimensionless wall shear stress  

(upper and lower plates) with Re for different values of A  
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5. Conclusions 

The flow of a third-grade fluid through a 
parallel plate channel with porous plate and 
uniform wall blowing/suction is studied. The 
results will be reversed if top injection and 
bottom suction are considered. The non-linear 
momentum conservation equation is solved both 
by the LSM and perturbation methods. The 
influence of the third-grade fluid parameter and 
the cross-flow Reynolds number on the 
dimensionless velocity distribution, flow rate 
and the wall shear stress are analyzed. The 
following important observations are made: 

For higher Re, velocity near the lower plate is 
unaffected by any alteration in A. Near the upper 
plate, however, velocity decreases with an 
increase in A. For higher values of A, the 
maximum velocity shifts towards the central 
region. When the cross-flow Reynolds number 
increases, it is known that for injection in the 
lower wall, boundary layer thickness increases. 
Near the upper wall with suction, boundary 
layer thickness decreases. But higher values of 
the third-grade fluid parameter suppress the 
boundary layer thickness near the lower wall 
and increase the boundary layer thickness near 
the upper wall. With higher values of A, velocity 
distribution becomes more symmetric about the 
central axis. When A=0.3, it is observed that for 
Re=3, velocity is nearly symmetric and displays 
the characteristics of Newtonian fluids. For 
higher values of cross-flow Reynolds number, 
when A decreases from 0.1 to 0, the increase in 
flow rate is less. This indicates that the rate of 
increase in flow rate with an increase in A is 
much less for higher values of the cross-flow of 
the Reynolds number. Another important 
outcome is the effect of the passage area of the 
porous plate on the velocity and shear stress in 
the lower and upper walls. With the increase in 
the passage area, due to more cross-flow mass 
transfer, shear stress in the lower wall decreases, 
and in the upper wall, shear stress is more. 

The shear stress at the upper wall is 
unaltered for any change in A up to A = 0.1. 
Shear stress at the upper wall decreases for 
higher values of A (A >0.2) only. That means for 
A < 0.1, the shear stress is the same as that of the 
Newtonian fluids. 

The shear stress at the lower wall is 
unaltered by any change in the non-Newtonian 
parameter. Shear stress is the same as that of the 
Newtonian fluids. 

The rate of decrease in flow rate is higher for 
higher values of the cross-flow Reynolds number.  

In this study, only the effect of uniform 
suction/injection on the flow field is studied and 

how the velocity field is affected is examined. 
The effect of this flow field on temperature 
distribution and heat transfer can be examined 
for further studies. Further, this study can be 
extended by considering both pressure and 
shear-driven flow through porous plates (i.e. top 
plate moving with constant velocity). 

Nomenclature 

A Third-grade fluid parameter 

A1, A2, 
A3, An 

Matrices required for stress and strain rate 

C, 
c1, c2, c3 

Constants 

h Gap between the parallel plates (m) 

N Dimensionless pressure gradient 

p Static pressure (Nm-2) 

q Dimensionless flow rate (m3s-1) 

R Residual function 

Re Cross-flow Reynolds number 

S Sum of the square of the residuals over the 
entire domain 

t Time (s) 

U0 Reference velocity (ms-1) 

u x component of velocity (ms-1) 

u0, u1, u2 0th order, 1st order and 2nd order solutions 
respectively (dimensionless) 

u* Dimensionless velocity along the axial 
direction 

V Velocity vector (ms-1) 

v y component of velocity (ms1) 

vw Velocity of suction/injection (ms-1) 

x Coordinate along the flow direction (m) 

y Coordinate perpendicular to the flow 
(m)direction 

y* Dimensionless y coordinate 

z Dimensional coordinate along lateral 
direction 

Greek Symbols 

α 1, α2 Material parameter (Ns-3m-3) 

β2, β3  Material parameters (Ns4m-3) 

ε Perturbation parameter 

μ Material parameter(viscosity) (kg m s-1) 
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ρ Density of the fluid (kg m-3) 

τ Stress tensor (Nm-2) 

τwall Dimensionless wall shear stress 

τwl Lower plate shear stress (dimensionless) 

τwu Upper plate shear stress (dimensionless) 
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