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 A propionic acid fermentation process not only provides a more sustainable approach, but 

also opens the door to propionic acid production capacity in regions with limited petroleum 

supplies. With fermentation, low-cost substrates can be used, such as residual biomass; 

reducing their concentration in nature. This process becomes interesting because from it 

propionic acid is considered natural. Several models have already been developed to describe 

the dynamics of components such as: Microorganism (biomass), nutrients (substrate), 

metabolites (product). However, a challenge is how to define the model that best represents 

the kinetic term, and therefore, there are several models for this modeling. This article's 

novelty is the application of the Bayesian technique (Computational Bayesian 

Approximation) to estimate parameters and simultaneously select the best model. Model 

validation was carried out considering propionic fermentation regarding experimental data 

from the literature which one was selected the Andrews model as the best to predict the 

dynamic of biomass, substrate and product been the following parameters estimated 𝜇𝑚𝑎𝑥= 

0.192, ms = 0.005, mp = 0.017. 
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1. Introduction 

Propionic acid, with the molecular formula 
C3H6O2, is a colorless substance with a strong 
odor. This short-chain fatty acid has various 
applications, such as a preservative in animal 
feed, dairy products, and baked goods. 
Additionally, it is used as a chemical intermediate 
in the production of pharmaceuticals, herbicides, 
cosmetics, and cellulose acetate[1-2]. 

Although the chemical synthesis of propionic 
acid is economically viable, petroleum, a finite 
resource, faces increasing challenges and 
restrictions, such as limited access and a lack of 
complex catalysts. Due to pollution caused by 
non-renewable sources, many studies aim to 
improve the sustainable production of propionic 
acid, including alternatives like fermentation. [3-
4]. 
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A propionic acid fermentation process not 
only provides a more sustainable approach, but 
also opens the door to propionic acid production 
capacity in regions with limited petroleum 
supplies. With fermentation, low-cost substrates 
can be used, such as residual biomass; reducing 
their concentration in nature. This process 
becomes interesting because from it propionic 
acid is considered natural[1-4]  

Initially, the kinetic study of a dynamic 
fermentation process involves analyzing the 
concentration evolution of one or more 
components of a system. It comprises 
components: Microorganism (biomass), 
nutrients (substrate), metabolites (product). 
Which are generally represented by X, S and P in 
mathematical models [5]. 

A tool that contributes to the advancement of 
the process is the development and application of 
mathematical models. In mathematical modeling 
of the fermentation process, it is necessary to 
determine the kinetic model that represents the 
process [6]. Kinetic models indicate how the 
variables under study affect the speed of cell 
growth, product generation and substrate 
consumption.  

The choice of kinetic model varies according 
to the type of process being worked on, such as in  
[7], where the Anaerobic Digestion Model No. 1 
(ADM1) is modified to simulate biogas 
production in a large-scale agricultural plant by 
dividing carbohydrates into starch, cellulose, and 
hemicelluloses, and proteins into rapidly and 
slowly degrading fractions. Lactic acid was also 
added to the model. The model calibration was 
carried out in several stages: initial selection of 
coefficients based on the literature, sensitivity 
analysis to identify important parameters, and 
determination of the final parameter values, 
ensuring accuracy within a 95% confidence 
interval. The article aims to improve ADM1 for 
more accurate and relevant simulations of biogas 
production in agricultural contexts. 

In another approach, still concerning 
anaerobic digestion, [8] describes pressurized 
anaerobic digestion as an effective method for 
producing biogas with high methane content, 
reducing the costs of upgrading and injecting 
biogas into the distribution network. This 
process has attracted scientific interest in the last 
decade, leading to the development of kinetic 
models for its optimization. The mentioned work 
proposes a modified model, model n.1, which 
analyzes the autogenerative high-pressure 
anaerobic digestion of volatile fatty acids in a 
batch system, evaluating the impact of the 
increased autogenic pressure in the reactor on 
the efficiency and dynamics of biogas production. 

In this work, three kinetic models described in 
the literature were analyzed: Monod, Andrews 

and Alba. Where each model presents different 
hypotheses to make inferences about the 
analyzed process. 

The mathematical models are composed of 
the initial biomass value (X), substrate-to-
product conversion factor (Yp/s), substrate-to-
cell conversion factor (Yx/s), cell maintenance 
coefficient (ms), coefficient product mass (mp) 
and specific cell growth speed (µx). However, in 
order to have the complete model, it is still 
necessary to have a function for µx (kinetic 
model). Kinetic models are generally represented 
by a system of ordinary, coupled differential 
equations that describe reactions and 
interactions between reaction elements [9-10]. 

In this sense, with the intention of 
determining which model best represents the 
phenomenon studied, we chose to use the 
Bayesian technique Approximate Bayesian 
Computation (ABC), since this technique, in 
addition to estimating parameters, 
simultaneously selects the best model. 

 

2. Fermentation Kinetic Models 

 
The mathematical modeling and parameters 

of the fermentation process were based on [11]. 
This is a kinetic evaluation and mathematical 
modeling in propionic fermentation. The 
materials used in the system were: analytical 
grade glycerin (P.A. CHEMCO) as the carbon 
source and the microorganism 
Propionibacterium acidipropionici CCTT4843 
(NRRL B-3569) for the fermentations. The 
concentration measurements were performed 
using gravimetry (dry weight), and the 
concentrations of organic acids and glycerol were 
determined by high-performance liquid 
chromatography (HPLC). The process occurred in 
batch mode, meaning that all the substrate was 
added at the beginning and no reagents were 
added to the system, except for those used for 
process control and safety. The kinetics of a 
bioprocess consists of analyzing the evolution of 
concentration values of one or more components 
of the production system, as a function of the time 
of the bioprocess. The mathematical model uses 
mass balances to describe growth kinetics, 
substrate consumption and product production. 
The unstructured substrate, biomass and product 
models are presented in Eqs (1.a-c): 

 
𝑑𝑆

𝑑𝑡
= − (

𝜇𝑋

𝑌𝑋 𝑠⁄
+ 𝑚𝑠) . 𝑋                                                       (1.a) 

𝑑𝑋

𝑑𝑡
= 𝜇𝑋𝑋                                                                                        (1.b) 

𝑑𝑃

𝑑𝑡
= 𝜇𝑋. 𝑌𝑃/𝑋. 𝑋 + 𝑚𝑝. 𝑋                                                    (1.c) 
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where 𝜇𝑋 is the specific cell growth rate; 𝑌𝑋 𝑠⁄  

is the substrate-to-cell conversion factor; 𝑚𝑠 is 
the cell maintenance coefficient; 𝑌𝑃/𝑋 is the 

product yield factor in relation to biomass; 𝑚𝑝 is 

the mass coefficient of the product. 
The models evaluated differ in the way they 

represent the specific speed (μx). Below are some 
formulations for μx. 

 
Monod. 
The simplest kinetic model is the Monod 

model (eq. 2a). This model presents the specific 
speed as dependent on the limiting substrate 
concentration in the medium (S). 

 

μx = μm
S

KS+S
                                                                        (2.a) 

 
where µm (h-1) is the maximum cell growth 

speed, Ks (g.L -1) is the saturation constant 
 
The constant Ks is known as Monod's constant 

and represents the substrate concentration at 
which the growth rate is half the maximum speed 
[12]. The Monod model is a simplification of the 
complicated mechanism of cell growth. This 
model does not consider the inhibition effect due 
to substrate and product concentrations; it only 
considers the substrate as limiting. 

 
 Andrews. 
At high substrate concentrations, cell growth 

can be inhibited. Aiming to represent the 
inhibition effect [13] proposed Eq. 2.b. In this 
model, in addition to considering the substrate as 
limiting, it also considers it as an inhibitor. 

 

μx =
μmS

KS+S+
S2

Ki

                                                                        (2.b) 

where  Ki (g.L -1) is substrate inhibition 
constant 

 
When the substrate concentration (S) is lower 

than the value of the constant Ki, the value of the 
inhibition term (S2 /Ki) tends to zero. Therefore, 
there is no influence of the term on the value of 
microbial kinetics. When the inhibition term is 
nullified, the Andrews model is reduced to the 
Monod model. 

Alba. 
 In this model, inhibition without product 

competition is considered. 

μx =
μm

(1+
KS
S

)(1+
P

Kp
)
                                                              (2.c) 

  
 The phenomenon of cell growth 

inhibition only applies to relatively low S values, 
less than or equal to Ks. 

 

3. Computational Bayesian 
Approximation 

 

In several scenarios in mathematical 
modeling there are difficulties in determining 
unknown parameters that in some models cannot 
be determined directly or the experiment to 
determine them is expensive [14-19]. One of the 
solutions to this difficulty is to perform inference 
through statistical techniques. 

Among the classical statistical techniques, the 
most widespread is the least squares method, 
while among the Bayesian techniques, the most 
used are Maximum Likelihood and the Monte 
Carlo method via Markov Chain. Bayesian 
techniques are based on Bayes' theorem to make 
inferences [20-24]. 

 
𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖(𝜃|𝑑𝑎𝑡𝑎) 𝛼 𝜋𝑝𝑟𝑖𝑜𝑟𝑖(𝜃)𝐿(𝑑𝑎𝑡𝑎|𝜃)(3) 

 
where 𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖(𝜃|𝑑𝑎𝑡𝑎) represents the 

posterior probability density of the parameters, 
𝜋𝑝𝑟𝑖𝑜𝑟𝑖(𝜃) prior probability distribution and 

𝐿(𝑑𝑎𝑡𝑎|𝜃) the likelihood function. 
 
In some cases it is difficult to represent the 

likelihood function and in these cases it becomes 
unfeasible to use the Maximum Likelihood and Monte 
Carlo via Markov Chain methods. Because of this 
difficulty, the Computational Bayesian Approximation 
technique was used, since this technique does not 
require the Likelihood function to be represented. 

Using the algorithm proposed by Toni et al. 
(2009)[25], the ABC technique uses transition 
populations to update the posterior probability 
distribution of the parameters referring to each model 
studied, in this way the posterior probability of each 
parameter is represented by the last population [26-
25-30. However, one of the challenges of applying ABC 
lies in choosing the appropriate stopping criterion. 
Therefore, this work proposes an algorithm with 
stopping criteria based on the coefficient of variation 
(CV) of particle distances that were accepted in the 
previous population, as follows in Table 1. 

 
 
 
Table 1: Modified ABC Algorithm. 

1 Initialize with tolerance ε and high 
CV1 coefficient of variation. Establish 
the limit value of the CVlimit coefficient 
of variation. Define the indicator 
population pop = 0.  

2 Define the indicator particle  i = 1 
3 Sample the model m∗ from the 

model prior π(m). If pop = 0, draw the 
set of parameters  θ∗ of model 𝑚∗ 
independently of the prior parameters 
of the model drawn π(θ(m∗)). If 
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pop > 0, draw θ∗ of the previous 
population {θ(m*)

pop-1
} with weight 

w(m∗)
pop-1

 and move the particle θ∗ 

with a transition kernel (Kpop) para 

obter θ∗∗~ Kpop(θ|θ∗). If π(θ∗∗) = 0, 

return to step 3.  
Simulate a set of candidate data 

from the posterior distribution: [S P X] 
~ π([S P X] |θ∗∗, m∗). If the distance 
function d([S P X]exp, [S P X] ∗) ≥ 𝜀, 
come back to step 3. 

4 Define mpop
(i)

= m∗ and add  θ∗∗ for 

the particle population {θ(m*)
pop

} and 

calculate the weight of the particle 
θ∗∗𝑎𝑠: 

wpop
(i)

= {

1,                                                   𝑖𝑓 pop = 0,

π(θ**)

∑ wpop-1
(j)

Kpop(θpop-1
(j)

|θ**)N
j=1

                  if pop > 0   
 

5 If i < N, define i = i + 1 and come 
back to step 3. 

6 For each model m, normalize the 
weights of the accepted particles. 

7 If CVpop > CVlimit, define 

pop = pop + 1 and come back to step 2. 
Otherwise, stop. 

 

4. Results 

 
The application of the computational 

Bayesian technique (ABC) was carried out 
considering propionic fermentation data from 
[11]. The a priori probability distributions were 
considered to be a uniform distribution with the 
values presented in Table 2. Since it is a kinetic 
process, the distributions follow positive values, 
making them physically possible. High values for 
the parameters were considered to fit the 
hypotheses. The initial conditions used for 
biomass, substrate and product were X(0) = 0.10, 
S(0) = 20.00 and P(0) = 0.00 respectively 
(Marinho et al. 2018). 

Table 2: Limits for the prior probability 
distribution (uniform distribution). 

Monod Alba Andrews 

ms 
(h-1) 

[0  
1.00] 

ms 
(h-1) 

[
0    

1.00
] 

ms 
(h-1) 

[0     
1.00] 

𝜇𝑚𝑎𝑥 
(h-1) 

[0    
1.00] 

𝜇𝑚𝑎𝑥 
(h-1) 

[
0    

1.00
] 

𝜇𝑚𝑎𝑥 
(h-1) 

[0     
1.00] 

Ks 
(g/L) 

[0   
40.00] 

Ks 
(g/L) 

[
0   

20.0
0] 

Ks 
(g/L) 

[0    
50.00] 

mp 
(h-1) 

[0     
0.20] 

Kp 
(g/L) 

[
0  

76.0
0] 

mp 
(h-1) 

[0    
0.30] 

  m
p (h-1) 

[
0.    

0.30
] 

Ki 
(g/L) 

[0    
60.00] 

 

By applying the Computational Bayesian 
Approximation Bayesian algorithm, considering 
the measurements of X, S and P presented by 
Marinho et al. 2018. The analyzes were carried 
out to verify whether the tolerance was 
monotonically decreasing (Figure 1), which 
model order best represents the experimental 
data (Figure 2), parameter estimates (Table 3) 
and analyze whether the models were able to 
simulate the experimental data by comparing the 
simulated and experimental data (Figure 3-5). 

 

 
Figure 1: Tolerance in each population of the 

algorithm. 
It can be seen in Figure 1 that tolerance 

satisfied the condition of being monotonically 
decreasing, observing that the greatest reduction 
was in the advancement from the second to the 
third population. However, the algorithm needed 
9 populations to reach the adopted stopping 
criterion. (C.V. = 0.30). 

The parameter estimates are presented in 
Table 2, the estimates were made by evaluating 
the samples of each parameter in the last 
population. With these samples, the mean and 
99% credibility interval for X, S and P for each 
model are calculated. 

 
Table 3: Parameter estimates (mean and 99% 

credibility interval). 
 

Monod Alba Andrews 

m
s  (h-

1)  

0.0
07 

(0.
002; 

0.103) 

m
s     

(h-1) 

0.00
8 
(0.0

05 ; 
0.013) 

m
s (h-1) 

0.0
05 

(0.
001 ; 

0.0013
) 
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𝜇𝑚𝑎𝑥 
(h-1) 

0.1
12 

(0.
083 ; 

0.214) 

𝜇𝑚𝑎𝑥 
(h-1) 

0.10
9 
(0.0

99 ; 
0.127) 

𝜇𝑚𝑎𝑥 
(h-1) 

0.1
92 

(0.
093; 

0.229) 
K

s 
(g/L) 

16.
146 

(8.
393 ; 

44.874
) 

K
s 

(g/L) 

13.2
51 

(10.
746; 

18.189) 

K
s 

(g/L) 

22.
912 

(2.
657 ; 

54.887
) 

m
p  (h-

1) 

0.0
24 

(0.
004 ; 

0.042) 

K
p 

(g/L) 

38.7
74 

(27.
869 ; 

51.044) 

m
p    (h-

1) 

0.0
26 

(0.
005 ; 

0.052) 
  m

p    (h-

1) 

0.01
7 
(0.0

07 ; 
0.028) 

K
i 

(g/L) 

27.
27 

(5.
993 ; 

72.42) 

 
 
 
Where 𝑚𝑠 is the substrate maintenance rate, 

representing the minimum amount of substrate a 
microorganism needs to maintain its vital 
functions (cellular maintenance) without 
growing;  𝑚𝑝 is the specific production rate of the 
product, representing the rate at which a product 
(such as a metabolite) is formed per unit of 
biomass per unit of time; 𝜇𝑚𝑎𝑥 is the maximum 
specific growth rate, representing the maximum 
growth rate of microorganisms when the 
substrate is in excess and other environmental 
conditions are ideal; 𝐾𝑠 is the saturation constant 
(or affinity constant), representing the substrate 
concentration at which the growth rate is half of 
𝜇𝑚𝑎𝑥. It indicates the affinity of microorganisms 
for the substrate. 

These parameters are of fundamental 
importance as they improve fermentative 
processes in terms of efficiency and productivity, 
as well as help in monitoring and controlling the 
process, allowing real-time adjustments to 
maintain ideal conditions. Substrate optimization 
helps determine the ideal amount of substrate to 
be used, minimizing waste and maximizing 
microbial growth and metabolite production. 
They are fundamental for the planning of new 
fermentative processes and the improvement of 
existing processes, ensuring scalability and 
economic viability [12; 31-32]. 

When evaluating Table 2, it is clear that the 
parameters in common between the models (ms; 
μmax; Ks and mp) present estimates of the same 
magnitude. This assessment of the credibility of 
the estimate by having the same physical 
meanings. It can be concluded that the 
methodology has good precision when verifying 
that the range of the credibility interval is small 
when compared with the average of the 
estimates. However, it can be seen that the 

smallest range is precisely that of the Andrews 
model, which was selected as the best (see Figure 
2), as it has a higher frequency in the last 
population to be evaluated (ninth population). 

 

 
Figure 2: model selection according to 

population evolution. 
 
Finally, comparisons between the estimates of 

X, S and P with the experimental measurements 
were evaluated considering the 3 kinetic models. 
These comparisons are presented in Figures 3-5. 

 

 
Figure 3: Comparison between simulated and 

experimental measurements of product P.  
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Figure 4: Comparison between simulated and 
experimental measurements of biomass X. 
 

 
Figure 5: Comparison between simulated and 

experimental measurements of substrate S. 
 
Figures 3-5 present the estimates of the 

product P, substrate S and biomass X. It can be 
seen that in the first population in all state 
variables (P, S and X). This happens because in 
the first population the parameter samples are 
randomly drawn from the a priori probability 
distribution. As the populations advance, the 
parameter space of the parameters reduces and 
consequently the uncertainty of the state 
variables (P, S and X) reduces, as can be seen in 
Figures 3-5 when comparing the uncertainties in 
populations 1, 5 and 9. 

It is observed in Figures 3-5 that the Andrews 
model has a slightly slower kinetics compared to 
the other models. This effect occurs due to the 
presence of the inhibition factor by the substrate 
(Ks) and by the product (Ki), which slow down 
the cell growth rate. It is also noted that all 
substrate was consumed and the models predict 
the same amount of product formed. Therefore, 
using the Andrews model, there is no possibility 
of total inhibition due to the substrate 
concentration (µx = 0). This model implies that 
cells are capable of growing regardless of the 
substrate concentration in the medium, which is 
contrary to what is observed in reality. There is a 
concentration at which cell growth is completely 
inhibited (MULCHANDANI & LUONG, 1989). 

 

5. Conclusions 

 
The Bayesian technique Computational 

Bayesian Approximation proved to be robust and 
capable of estimating parameters and selecting 
models simultaneously in kinetic models applied 
to simulate the dynamics of substrate S, product 
P and biomass X. When applied to propionic 

fermentation data, the algorithm selected as the 
best model which represents the kinetics by the 
Alba equation been the parameters estimated 
𝜇𝑚𝑎𝑥= 0.192, ms = 0.005, mp = 0.017. In addition 
to this being the best model, it was verified that 
this model represents very well the dynamics of 
the state variables (S, P and X). Therefore, if to 
wish to simulate propionic fermentation in 
different scenarios, can use the system of coupled 
ordinary differential equations presented and 
considering the Andrews kinetic model with the 
estimated parameters. 
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