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 The paper studies the occurrence of kinetic phase transitions in porous media with 

thermodynamic phase transitions, which affect filtration flow through permeability or 

viscosity: in the simplest case, permeability is a step function of local temperature. The 

dependence of phase boundary under stationary heating and cooling processes has features 

that are concerned with the non-linearity of Stefan condition. These features result in 

limited stability of filtration flow. Calculations show that there exist critical temperatures in 

the vicinity of those stationary filtration flow becomes impossible due to the thermal 

interaction of phase transition and advection processes. The solutions form two branches; 

one of those is stable, and the other is unstable; the connection between the branches is a 

critical point. Several different setups are considered: flat and cylindrical channels, melting 

of the porous carcass, and crystallization of flowing liquid. Critical conditions for these cases 

are obtained in the form of approximate formulas that can be used to calculate heat transfer 

in thermal engineering units, including heat accumulators. 
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1. Introduction 

Filtration flows with phase transitions are 
common objects of study in geophysics and 
thermal engineering [1, 2]. When the 
permeability of a porous medium depends on its 
phase state, then filtration flow may drastically 
change behaviour under a smooth change of 
control parameters. For example, agglomeration 
of polymer-containing waste combustion [3] and 
gas hydrates self-preservation [4] occur in this 
way. In some cases, phase transitions lead to the 
failure of heat-conducting elements [5]. To 
control or prevent these phenomena, detailed 
physico-chemical models are developed. At the 
same time, these phenomena have similarities 
that can be studied using relatively simple 

examples. In this paper, we investigate such 
simplified problems that allow exact solutions. 

Heat transfer processes in granular beds are 
intensively studied in connection with thermal 
energy storage. Phase-changing materials 
heating by fluid heat carriers was 
experimentally and theoretically studied in 
works [6-8], where methods for the heating rate 
calculating under a steady flow were proposed. 
The influence of the domain and particle 
geometry was studied by authors [2, 9, 10] using 
numerical simulation. Models of processes in 
individual particles are proposed in papers [11, 
12]. The issues of temperature stratification and 
the influence of free convection were considered 
in [13]. Thermochemical processes of energy 
storage were studied in works [14, 15]. 
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The object of the study is a porous medium 
domain with stationary heating/cooling 
conditions. In the papers listed above, porous 
structure was considered to be stable, which 
may not be the case. When the porous medium 
permeability is a step function of temperature, 
then introducing a non-linear boundary 
condition (namely, Stefan condition) results in 
critical phenomena: under fixed filtration flow 
velocity (i.e., fixed pressure drop), there exist 
limit temperatures dividing partial and full 
blocking of the porous medium section. These 
critical conditions have a simple geometric 
interpretation, and under realistic 
approximations, they can be written explicitly. 
The novelty of the paper consists of the new 
problem statement and new solutions. 

2. Problem statement 

Let us consider a domain of porous medium 
(for example, particle packing or a foam, see  
Fig. 1). Porous medium allows to assume the flat 
velocity profile (U(r) = const). Porous 
characteristics are reduced to the average fluid 
velocity through corresponding filtration 
relations [16]. Heat energy conservation is given 
by the equation: 
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If the domain is relatively low or the 
filtration velocity is high, one can neglect the 
longitudinal temperature gradient compared to 
the radial gradient. This allows to average eq. (1) 
in z-direction: 
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The boundary conditions are as follows: 
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here T0 is the input flow temperature; Th is the 
wall temperature. 

Using characteristic temperature T*, one can 
transform eqs. (2) and (3) to obtain their non-
dimensional form: 
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here ξ = r/R; θ = (T – T*)/(Tm – T*); Pe is Peclet 
number (Pe = cρUR2/λL); and Bi is Biot number 
(Bi = αR/λ). Characteristic temperature T* 
depends on the problem statement (for example, 
Tin or Th). 

Similar problems were studied earlier in 
papers [17-19] for stationary volumetric 
heating. Experimental and theoretical studies of 
phase change materials melting in porous 
mediums without flow were conducted in 
papers [20-22]. Heat transfer model reduction 
was proposed in the works [23]. Natural 
convection problems are reviewed in [24]. In the 
present paper, we consider the approximate 
stationary linear advection term, which 
significantly changes the solution of (2a) 
compared to pure conduction heat transfer. 

Phase transitions may change flow 
conditions in porous media. Two cases are 
considered here: 

(1) Melting of porous material results in 
pore collapse and permeability drop; 

(2) Crystallization of flowing liquid results 
in increasing viscosity and flow 
blocking. We are also interested in two 
basic geometries: flat porous channel  
(n = 0) and cylindrical porous channel 
(n = 1). 

 
Fig. 1. Scheme of the porous channel: (a) flat case; (b) cylindrical case. 
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3. Single-Phase Solution and Melting 
Start 

The characteristic temperature difference for 
the melting problem is the difference between 
the melting temperature and the reference 
temperature. The solution of the single-phase 
problem written as (2a) and (3a) is the 
following: 
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here Ik is the k-th order modified Bessel function 
of the first kind [25]. 

Let us consider θin = 0 (the domain is heated 
through the side wall). For non-zero Biot 
number, one can find the melting start condition 
using the following formulas: 
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For a large Peclet number, the critical wall 
temperature can be approximately calculated:  

* 1 . +w

Pe

Bi
 (6) 

When the Peclet number is close to zero, one 
can use Taylor expansion to obtain another 
approximation: 

* 1 . +w

Pe

Bi
 (7) 

In the limit of small Peclet and Biot numbers, 
melting starts when the temperature in the 
vicinity of the wall turns 1. Filtration flow and 
heat transfer give correction for the wall 
temperature which is proportional to flow 
velocity and heat transfer resistance.  

Melting temperature is achieved in the center 
of the domain under the following conditions: 

( ) ( )** cosh sinh ,  0, = + =w

Pe
Pe Pe n

Bi
 (8a) 

( ) ( )**

0 1 ,   1. −= + =w

Pe
I Pe I Pe n

Bi
 (8b) 

4. Two-Phase Solution 

When porous material melting results in 
pore blocking, then filtration flow velocity is a 
step function of spatial coordinate: 
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here Pe0 is Peclet number in the permeable 
region. 

In this case, temperature distribution in a flat 
channel can be found in the following form: 
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To find the phase boundary, we are to solve 
the heat balance condition: 
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here κ is a ratio of heat conductivities of phases. 
This transcendental equation can be solved 
numerically or graphically. To this end, let us 
transform eq. (11) to the form: 
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The left-hand side contains a concave 
function (Fig. 2). In the limit of large Biot 
numbers, this function has roots ξm = 0 and ξm = 
1. The right-hand side is constant. Generally 
speaking, this equation may have up to two 
roots. When the right-hand side is small, then 
the phase boundary lies near the wall, i.e., the 
physical root is the bigger one.  

 
Fig. 2. Dependence of left hand side of eq. (11a)  

on spatial coordinate and Peclet number 
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When wall temperature gradually increases, 
then in tangency point of the left-hand side and 
the right-hand side of eq. (11a) the number of 
roots changes. That is, the phase boundary 
moves non-smoothly: at a given filtration flow 
velocity, there is a critical wall temperature, 
which corresponds to the conditions when the 
phase boundary cannot be held stationary (the 
whole domain melts, the filtration flow stops). 
Then, the full melting condition can be 
expressed as the tangency condition for the left-
hand side concave function with the right-hand 
side constant level line.  

Obviously, the tangency can occur only in the 
concave function maximum point, where its 
derivative becomes zero. At this point, the phase 
boundary becomes unstable and disappears at 
the point determined by the following equation 
(see Fig. 3): 
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 − =m m Pe
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Fig. 3. Graphical solution of the eq. (12) at 

 different Peclet numbers. 

Under small Peclet numbers, the tangency 
point position is equal to 0.5. For large Peclet 
numbers, one can use the following approximate 
formula (Fig. 4): 
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here W is Lambert function. For finite Biot 
numbers, this formula has a correction of 1/Bi.  

 
Fig. 4. Dependence of the critical phase boundary position 

on Peclet number (solid line – numerical calculation, 
 dashed line – approximate formula (13)). 

The wall temperature corresponding to the 
full melting can be found from the eq. (11) given 
phase boundary position from eq. (12). For large 
Peclet numbers, one can use a simple 
approximation: 
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Using approximate formula (13), one can 
obtain:  
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The qualitative picture of the critical 
phenomenon does not change for cylindrical 
symmetry. The temperature distribution is as 
follows: 
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Then Stefan condition gives the equation 
determining phase boundary position: 
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As in the flat case, the left-hand side has roots 
ξm = 0 and ξm = 1 in the limit of large Biot 
numbers. In the unit segment, this function is 
not concave (see Fig. 5), although very close to 
concave (i.e., it has a "concavity margin" [26]). 
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Fig. 5. Dependence of the left hand side of the eq. (17)  

on spatial coordinate and Peclet number. 

For large Peclet numbers, the ratio of Bessel 
functions is close to 1, and the maximum 
position becomes close to e-1 (for finite Biot 
numbers – to e–1+1/Bi). The critical wall 
temperature, corresponding to the full melting, 
can be approximately calculated using the 
following formula: 
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5. Liquid Crystallization in Pores 

Now let us consider the reverse situation, 
when melt flows through the porous medium, 
and its crystallization blocks pores. That is, the 
input flow has a temperature higher than the 
melting point, and crystallization occurs due to 
cooling by the wall (θw = 0).  

The general solution for a flat channel is as 
follows: 
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Then Stefan condition again gives the 
equation determining phase boundary position: 
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This equation is similar to eq. (11a) and can 
be treated the same way. Particularly, phase 
boundary position is given using the same 
approximate formula. However, the critical 
temperature formula slightly changes: 
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The Stefan condition in the cylindrical 
channel, in turn, looks similar to the eq. (17): 
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From there, the critical temperature can be 
found using a formula similar to (18): 

* 1 .in
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6. Discussion of Results 

The main result of the study is the simple 
model of critical flow phenomena in porous 
media with phase transitions. Under heating and 
cooling, there are parameter ranges in which the 
phase boundary expands to the whole domain. 
Non-smooth dependences of the phase 
boundary position on the wall/input 
temperature and flow velocity are a 
consequence of the non-linearity of the Stefan 
condition. When phase transition worsens the 
heat transfer, it may lead to feedback: the more 
the section blocked for filtration, the further the 
phase boundary moves. Thermodynamic phase 
transition initiates kinetic phase transition [27]. 

In this regard, filtration flow with phase 
transitions becomes similar to non-linear 
chemical reactions. The effects of the interaction 
between chemical kinetics and heat and mass 
transfer are widely studied, such as thermal 
runaway and ignition stability [28]. Phase- 
changing materials may be used in the thermal 
control of chemically reacting media, so studying 
the interaction between exothermal reactions 
and melting materials has a practical interest 
[21, 29]. 

Qualitative effects concerned with the 
obtained solutions may explain processes of 
failure and agglomeration in heat exchangers 
and chemical reactors, for example, in heat-
generating elements (in energy storage systems 
and electronics cooling [30-32]) and 
thermochemical conversion of unconventional 
fuels (plastic waste and fuels with low-melting 
ashes [33]). It should also be mentioned that we 
did not consider the kinetics of phase 
transitions, which may influence critical 
conditions of heat and mass transfer [34, 35]. 

It can be seen that when the flow is zero in 
the whole section, then the formulas reduce to 
the well-known results of heat transfer theory. 
In comparison to the results of [3], bed material 
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in the present work is not supposed to degrade, 
so permeability restoration is not considered 
here. It is interesting to consider other heat 
sources, for example, internal heat generation 
[18] or lid heating [15, 36], which may cause 
more complex behaviour of bed packings. 

7. Conclusions 

In the present work, we studied the 
approximate heat transfer problem for a porous 
medium with melting and crystallization 
processes accompanied by flow permeability 
drop. Stefan problem is solved for the 
corresponding statements; approximate 
analytical formulas are derived. It is shown that 
the solutions to these problems have features 
that are concerned with non-linear phase 
boundary conditions. These features result in 
critical phenomena during the heating and 
cooling of porous channels when a fluid flow 
drops to zero in its entire section. The formulas 
are obtained that connect characteristic 
temperatures and filtration flow velocity at the 
stability edge for flat and cylindrical channels. 
These formulas allow to calculate heat transfer 
conditions corresponding to the meltdown or 
freezing of channels with phase transition. 

Nomenclature 

Bi Biot number, αR/λ 

Ik Modified Bessel function of the first kind 

L Channel length, m 

Pe Peclet number, cρUR2/λL 

Pe0 Peclet number in the permeable region 

R Channel size, m 

T Temperature, K 

U Fluid velocity, m/s 

W Lambert W-function 

c Heat capacity, J/kg/K 

n Geometric factor 

m Melting point 

r Radial coordinate, m 

z Axial coordinate, m 

α Heat transfer coefficient, W/m2/K 

κ 
The ratio of thermal conductivities in 
solid and fluid phases 

λ Thermal conductivity, W/m/K 

ρ Densit, kg/m3 

θ Dimensionless temperature 

ξ Dimensionless spatial coordinate 
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