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 Fluidized bed apparatuses are widely used in chemical engineering. Description of the 

hydrodynamic state of the apparatus is the starting point for predicting most technological 

operations in gas-solid flows.The object of this study is the gas and solids distributions in a 

fluidized bed column. The key aim of the study is to develop a simple yet informative 

mathematical model of the migration of gas and particulate solid in a fluidized bed column. 

The model is developed to solve the problem in a two-dimensional formulation. The phase 

migrations of the fluidized bed along the height of the column are described on the basis of 

the mathematical apparatus of the theory of Markov chains, and an explicit difference 

scheme is used for the mathematical model of particle transfer in the radial direction. A cell 

of small but finite size acts as a representative volume of the simulated system. The 

representative volume of such geometry is apparently used for modeling the motion of 

fluidized bed phases for the first time. At the same time it is precisely this model structure 

that corresponds to the tradition of identifying the radial and axial coefficients of particle 

macrodiffusion. Parametric identification of the model is carried out on the basis of the 

empirical relationships known from the literature. The numerical experiments performed in 

the study showed the qualitative consistency of the proposed model. Comparison of 

calculations with the results of a natural experiment also confirmed the presence of 

predictive capabilities in the model. Thus, the proposed model can be considered as a 

reliable scientific basis for computer methods for calculating fluidized bed devices. 
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1. Introduction 

Fluidized beds are widely used in the chemical 

and other fields of process engineering for a large 

variety of processes [1–5]. However the gas-solid 
contacting pattern in a fluidized bed is extremely 
complex, which leads to problems with design 

and operation fluidized bed devices [1,3,6]. 

In the literature the different aspects of the 

gas-solid fluidization process have been extensively 

studied using different theoretical and 
experimental instruments [1,5,7,8]. The bank of 
accumulated knowledge about the operation of 
fluidized bed units is practically inexhaustible 
[3,7,8] and has long acquired the properties of a 

«Shakespeare paradox» (that is, their volume is 
so large that it cannot be mastered by the human 
mind), which was already mentioned decades 
ago in the generalizing well-known book by 
Harrison and Davidson [3]. Certainly, since the 
publication of the mentioned generalizing book 
[3], the volume of this knowledge has increased 
significantly and the current progress and 
understanding in the hydrodynamics and 
transport phenomena of fluidized beds are 
based on more widespread investigations, but 
far from being exhausted . 

It should be noted that the «fluidized bed» 
concept includes various forms of the state of 
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the ensemble of particles, which are obtained as 
a result of the contact interaction of the 
suspended agent and particulate solid [3,10–12]. 
Classifications of bulk media have been 
developed that allows to speak with some 
confidence about how the gas-solid suspension 
will behave in the apparatus (the most well-
known example is the Geldart classification [13], 
which, however, can also be subjected to 
reasonable criticism [14,15]). However, in all 
cases, practical technical systems consist of a 
number of hierarchically connected subsystems, 
with the hydrodynamic subsystem playing a 
decisive role in heat and mass transfer 
processes. Thus, a description of the 
hydrodynamic parameters of fluidization is 
necessary for a better understanding of the 
production process as a whole [1,3,4,8].  

The entire spectrum of studies in the field of 
fluidization area can be qualitatively divided into 
experimental and theoretical.  

The experimental invasive and noninvasive 
techniques can be employed to study the gas-
solid flows in a fluidized bed [10,16–18], but 
noninvasive observation methods are more 
reliable and informative [16]. These noninvasive 
methods (first of all, such as magnetic resonance 
imaging, positron emission particle tracking 
e.t.c.) provide valuable insight in fluidized bed 
due to the great level of its detalization and 
significantly deepen the understanding of the 
fluidization phenomenon [16,18]. 

The development and applicability of various 
computational tools for fluidization modeling 
have been also discussed in numerous papers 
[1,2,5,8,19–26]. However, progress in this field 
of theoretical research is less clear. One of the 
reasons is that when developing a mathematical 
model, increasing the degree of decomposition 
of a gas-solid flow doesn’t always lead to an 
increase in the accuracy of the forecast and the 
adequacy of the description of the ensemble of 
particles [5,22,24,26–28].  

Gas–solid fluidization systems are typical 
nonlinear, heterogeneous ones. Mobile clusters 
of particles of various configurations and scales 
form a certain distribution of particles in the 
volume of the fluidized bed [29]. This nature of 
the formation of the structure of a fluidized 
medium leads to the idea that the tool used to 
construct a mathematical model should allow a 
flexible approach to the spatial discretization of 
the modeling objekt [5,29].  

Nowsays the most popular approach (and 
continuing to gain popularity [1]) for modeling 
of fluidization are built on the basis of 
combination of a computational fluid dynamics 
(CFD) and a discrete element method (DEM). 
The original idea behind this approach is to 
introduce into circulation a conditionally 

infinitely small volume, so such simulations have 
a very high computational cost [7,9,19,21]. 

The requirement to develop approaches for 
constructing mathematical descriptions on a 
compromise scale of the processes modeling 
with granular matter is regularly discussed in 
research [26,30]. However at the subject level 
such works are rare, although the published 
results of simulations are quite encouraging 
[22,23,31]. In particular, there are practically no 
two-dimensional mathematical models of a 
fluidized bed based on a cellular representation 
of a fluidized bed. Although in the single work, 
where the efficiency of the DEM-CFD model and 
the stochastic Markov model are compared, it 
was shown that with comparable accuracy, the 
calculation speed of stochastic model was 70 
times faster than CFD–DEM [31]. However, these 
stochastic two-dimensional models apparently 
have not received further development, which is 
a significant gap in the development of 
approaches to fluidization modeling.  

The authors point to the relatively low 
adaptability of the stochastic model to changing 
operating conditions as a limiting factor, while 
CFD–DEM shows relatively strong adaptability 
[31]. At the same time, it can be assumed that 
the indicated difficulties were a consequence of 
the choice of a flat two-dimensional fluidized 
bed, for which the bank of parameters is still 
limited, although devices of a similar 
configuration are used for laboratory 
installations [32,33]. 

In the context of this study, the author 
focuses on the description of the conventional 
bubble-free fluidized bed and the bubbling 
fluidized bed [11]. Due to this paper the author 
hopes to contribute to filling the gaps in the 
development of fluidization models based on the 
use of a compromise modeling scale. 

The main goals of the study are: 
1) to develop a two-dimensional cellular 
model of a batch fluidized bed column to 
describe the movement of bed components in 
radial and axial directions; 
2) to show that the adaptability of the 
proposed model is sufficiently high by 
identifying its parameters using data known 
from the literature; 
3) to perform a preliminary verification of 
the developed model by comparing the obtained 
simulations with the data of a lab-scale 
experiment. 

The compromise size of the calculation 
domain is ensured by using the mathematical 
apparatus of the theory of Markov chains. The 
ideology of Markov chains allows choosing the 
cell size based on the needs and tasks of 
modeling. Thus the final goal of the study is to 
develop a simple yet informative mathematical 
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model of the migration of gas and particulate 
solid in axial and radial directions a fluidized 
bed column. 

2. Theoretical background 

2.1. Concepts of fluidized bed simulations 

The theoretical approaches for mathematical 
modeling of fluidization are very diverse. If stat 
considering particles and a fluidizing agent as 
interpenetrating continuous media it is logical to 
use the equations of hydromechanics with their 
initial and boundary conditions to describe 
them. This approach ultimately realize in using 
of CFD [20,34–36]. Recently, CFD modeling has 
been used intensively for creation of models of 
particulate transport in different units with 
fluidized bed. The Eulerian approach or the so-
called two-fluid model is forming the theoretical 
concept of the CFD models. According to it the 
solid flows are statistically averaged and treated 
as interpenetrating continua [34,37].  

Conceptually opposite is the approach in 
which particles are considered as separate 
discrete elements. Within this approach, it is 
necessary using of the conservation laws for 
angular momentum and quantity of motion for 
an individual particle. This is the so-called 
discrete element method (DEM) [38–41]. Since 
the movement of particles in a fluidized bed 
occurs due to their contact interaction with the 
gas (liquid) flow, the gas flow must also be 
somehow described mathematically. For this 
reason DEM models usually work in conjunction 
with CFD models (this combination also called in 
this case the discrete particle method – DPM) 
[42–45]. 

Qualitatively the combination of the two 
above mentioned approaches (Lagrange-Euler) 
looks like an impeccable choice for constructing 
fluidization models. The application of this 
approach is very productive in terms of setting 
and researching scientific problems, since 
various scenarios can be considered and 
plausible solutions can be obtained for analysis. 
However this method cannot be called 
productive for engineering problems. Real 
particle system consists of large number of 
elements, which makes the calculations 
cumbersome [1,9].  

It seems quite probable that computational 
difficulties of the DEM-CFD models can be 
overcome with the development of computer 
technology. It also seems that the problems 
associated with the parametric identification of 
numerous parameters will be far from being 
resolved for a long time. Firstly because there 
are just a lot of these parameters, and their exact 
list depends both on the process being modeled 

and on the vision of the problem by a particular 
researcher (which parameters will be 
considered the characteristics of the first order 
of significance). Second, it is important that all 
parameters involved in the model be reliably 
quantified simultaneously. Thirdly, the 
procedures for identifying many parameters in 
such models are a scientific problem, when the 
solution cannot be expressed by a short formula, 
but often represents a certain concept within 
which particular solutions can be formed. The 
following are examples of such problems: 
definition of the contact point of particles and 
number of contacting elements, calculation of 
forces acting on particles, contact models and 
etc. A comprehensive review of advantages and 
disadvantages of CFD-DEM coupling methods 
can be find in scientific literature and almost all 
authors point out that there are still some 
problems to be solved in the future [2,46]. 

Thus the search for simplified numerical 
methods for describing the structure of a 
fluidized bed is still relevant. This largely 
determines the objectives of this study. It is 
necessary to propose a model of the fluidized 
bed structure, which, on the one hand, would 
make it possible to describe it as an object with 
distributed spatial characteristics, but, on the 
other hand, would be much simpler in terms of 
the number of identification parameters and the 
difficulty of their determination. 

Stochastic modeling methods for describing 
the movement of granular media are relatively 
often used in chemical engineering [25,47,48]. 
The most conceptually close to the model 
proposed here are the stochastic models 
proposed by Dehling et al. [24], Mitrofanov et al. 
[49] and Zhuang et al. [31]. However in the 
works of Dehling et al. [24], Mitrofanov et al. 
[49] one-dimensional models of a fluidized bed 
was proposed; accordingly, calculations allow 
one to judge only the distribution of phases of 
the bed along its height.  

In the paper of Zhuang et al. [31] the task of 
fluidization modeling is solved in a two-
dimensional formulation, and very complex 
forms of existence of a fluidized bed (with the 
formation and bubbles dynamics) are 
considered and the comparison is made with the 
results of DEM modeling. 

From a methodological point of view, this 
work is very interesting, but a flat two-
dimensional bed is considered, when the 
computational domain is a rectangular cell. This 
assumption seems quite justified, since the 
installations with flat bed are often used to study 
concentration fields in fluidized beds [33,50].  

However cylindrical devices are more 
common in engineering practice. This geometry 
of the devices requires the construction of 
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simple but informative two-dimensional 
mathematical models in terms of axial and radial 
(lateral) coordinates. It’s in these terms that the 
intensity of mixing in a fluidized bed is usually 
discussed [51,52]. 

2.2. Solids mixing in fluidized bed 

The nature of the mixing of particles in a 
fluidized bed isn’t completely understood 
[53,54], however, some qualitative 
characteristics have been established quite 
definitely. Many researchers reported that the 
intensity of axial mixing is usually higher than 
lateral mixing [52,54,55]. For example in the 
experiments [54] the axial solids mixing was two 
orders of magnitude faster than the lateral solids 
mixing. This follows quite logically from the 
recognition that gas bubbles are the basic mixing 
factor [54,56]. Despite the complexity of the 
mixing mechanism, when describing lateral 
mixing numerically it is usually fitted to a 1D 
Fickian-type diffusion equation [54]. It can be 
mentioned that the values of dispersion 
coefficient in the literature are very scattered 
[54,57]. It is customary to consider the lateral 
effective diffusion coefficient Dsr to be well 
correlated with an excess gas velocity (U0-Umf), 
where the U0 is superficial air velocity and the 
Umf is the minimum fluidization velocity. 

It was reported [54] that the correlation of 
Borodulya et al. [58] predicts quite well the 
experimental values of the lateral dispersion 
coefficient Dsr. The correlation of Borodulya et al. 
has the following form [58]: 

( )
0 5

015
0 0

0

0 013 − 
= −  

 
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sr mf
D

D . H U U Fr
H
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where Dc is the equivalent bed diameter, Fr is 
the Froude number. 

The axial diffusion coefficient Dsa can be 
calculated from the relationship proposed by 
Esin&Altun [12]: 

( )
1 4710

00 051
 

=  − 
 

.
sa mf

mf

U
D . U U

U
 (2) 

3. Mathematical Model 

It is convenient to consider the process of 
constructing a two-dimensional mathematical 
model of fluidization of a granular medium in a 
cylindrical apparatus as a combination of two 
models. The first of them describes the axial 
movement of particles while the second model 
describes the movement of the granular medium 
in the radial direction. 

3.1. Mathematical model of the particle 
movement along the height of the 
apparatus 

The concept of the mathematical model 
proposed in our previous work [23] is used here 
in order to describe the gas and solid phase 
migration over the fluidized bed height. This 
model developed by means of the Markov chain 
approach. The basic principles of how to use the 
theory to model processes with particulate 
solids are clearly described by H. Dehling et al. 
[22] and by H. Berthiaux and V. Mizonov et al. 
[36]. According to this approach the volume of 
the apparatus is separated into n perfectly mixed 
cells of the length Δy=H/n, where H is the height 
of the column. These cells form a chain of cells 
which is characterized by the system state 
vector S. The state vector S characterizes the 
distribution of the observed additive property 
along the chain of cells. The basic principle of 
representing the apparatus with a Markov chain 
is illustrated schematically in Fig. 1. 

The system can include several observable 
additive properties, so several state vectors have 
to be introduced. Assume that the fluidized bed 
apparatus contains only uniform particles. Then 
it will be enough to introduce into consideration 
the vectors only for gas and for particulate. So 
for one-dimension model (axial transport 
model) the state vectors for particles (S) and for 
gas (Sg) are required. This scheme of the 
apparatus discretization is schematically shown 
in Fig. 1a and it corresponds to the one-
dimensional cell model. Such models were 
considered in particular in [22,23]. 

 
Fig. 1. General scheme for constructing the model of axial 
gas and solid transport in a fluidized bed: a) the general 

concept of representing the apparatus by a Markov chain; b) 
the diagram of possible movements of gas and solid phases 

of a fluidized bed 

The principle of such model is not only to 
represent the vessel as several cells, which 
makes it possible to describe the distribution of 
the additive properties under consideration 
along the apparatus for a certain fixed moment 
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in time. It is also important to study the 
transition between each of these cells over a 
certain time duration ∆t. In other words, it is 
necessary to describe changes of the state 
vectors. With the discrete Markov chain model 
we calculate the phase positions at discrete 
times only. The evolution of state vectors is 
described using recurrent matrix procedures. 
The next state vector is formed by multiplication 
of the transition matrix P (for solid phase) or Pg 
(for gas) on the current state vector (S and Sg 
correspond) until a steady state is reached [23].  

To move from the one-dimensional 
fluidization model to the two-dimensional it is 
possible to repeat the above reasoning 
descriptions for N chains. In this case, each chain 
will describe the transfer of properties in the 
vertical direction not in the entire section of the 
apparatus, but only in one cylindrical layer.  

The particle content distribution in the 
volume of apparatus is presented as the state 
massive S={Sr,i}, where r=1,2,…N denotes the 
number of the cylindrical layer and i=1,2,…n 
denotes the number of the cell in the chain. For 
certain r the state vector Sr={Si} determines the 
distribution of the material along the height of 
the r-th cylindrical layer. The common recurrent 
procedure for model particulate transport along 
the height of r-th cylindrical layer can be written 
in the following form [49,59]: 

1+ = k k k
r r rS S P    (3) 

where k is the time step number (the model 
calculates the evolution of the system state only 
for discrete moments of time tk = (k – 1)∙∆t), Pr is 
the transition matrix for particulate solid in the 
r-th layer [49]. 

The similar recurrent procedure for 
modeling gas transport along the height of r-th 
cylindrical layer is used [49,60]: 

1+ =  +k k k
g ,r g ,r g ,r rS S P F    (4) 

where F is the source vector of the gas flow 
(contains one non-zero elements equal to the 
amount of gas that during the time ∆t is supplied 
to the first cell of the chain). If the vector Fr is 
the same for all r, then we have a uniform 
distribution of air velocities across the cross 
section of the apparatus. In other words, the 
specific values of the elements of F for a given r 
determine the fluid velocity in the r-th 
cylindrical layer. 

A rate of material exchange between the cells 
of the chains (along the height of r-th cylindrical 
layer) is described in probabilistic terms. It is 
necessary to know the values of these transition 
probabilities to a neighboring cell for each k-th 
moment of time. The possible transitions are: 
staying in the same cell (p), moving upwards (u) 
to the next (located above) cell, moving 
downward to the previous cell (b). These 

probabilities have to be related to the physical 
characteristics of particle transport. The 
proposed model is used the following 
assumptions. The procedure for calculating the 
local gas velocity during of gas filtration through 
a section clogged with particles was proposed 
and verified within the framework of previous 
work [49]. The presence of particles in the 
apparatuses cross section (in each cell of the 
chain) naturally leads to the increase of the gas 
velocity. This in turn causes the decrease in the 
particulate concentration, which reduces the gas 
velocity. This continues until some equilibrium 
is established. The relationship between the 
particle content of particles and the gas velocity 
in a cell (indices are omitted) is given by the 
following ratio [49]: 

( )

0
2/3

max

U
U=

S1-π 8 S

  (5) 

where S and Smax are the corresponding k–th 
moment of time and the maximum (for a dense 
bed) values of the particle content in the cell (the 
indexes of the cell number and layer number is 
not given here, but calculation is made for each 
representative volume separately). The 
maximum content of particles with random 
packing Smax for a certain volume for a given 
particulate solid can be easily determined by 
simple tests with a bulk material [49,61]. 

The probabilities of particle moving from the 
i-th cell forming the i-th column of the P 
transition matrix are related to the process 
parameters by the following dependencies [49]: 

i iu d= for i iU V=    (6) 

( )i i i iu d U V t y= + −  ( ) / for i iU V  (7) 

i ib d=  for i iU V    (8) 

( )i i i ib d V U t y= + −  ( ) /  for i iU V , (9) 

1− −i i ip = b u    (10) 

where aerodynamic size of the particle is 
characterized here by the particle settling 
velocity V and the symmetrical part of transport 
probability d (diffusion probability) is calculated 
by the following relation [49,59]: 

( )
2

 i sad =D t / y    (11) 

The settling velocity V is related to the weight 
P of the particle as [49,60]: 

2
d gP=0.5 C f V       (12) 

where Cd is the drag force coefficient, f is the 
area of the largest cross-section of a particle 
perpendicular to the velocity vector; g is the gas 
density. This parameter is not completely 
uniquely definable and a comparative analysis of 
various models is possible both for a single 
particle and for an ensemble of particles [62–
64]. In this study, the reference point is taken on 
the following well-known dependence [64]: 
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( )
0 450 31 0 062 25 0 36−=  + 
.. .

dC . Re . Re  (13) 

where Re is the dimensionless Reynolds number. 
The above mentioned probabilities for 

particulate transport allows forming the matrix 
P (the indexes «r» for the layer number is not 
given here, but the calculations are made for 
each representative volume separately) in the 
following form [49,60]: 

1

3

0 0 0

0 0

0 0

0 0

0 0 0

 
 
 
 
 
 
 
 

2

1 2

2

n-1 n

n-1 n

p b

u p b

= u ... ...

... p b

u p

P   (14) 

The structure of the transition matrix is such 
that the fractions of particles remaining in the 
observed cell are located on the main diagonal of 
this matrix. The fractions of particles moving 
from the observed cell back (to the cell below) 
and upward (to the cell above) are placed on the 
diagonals located above and below the main one 
correspondently. 

The transition matrix for gas is formed in the 
similar way. It is assumed that the gas flow 
moves in the plug-flow mode, so the transition 
matrix for each given cylindrical layer contains 
only two non-zero diagonals. The local gas 
velocity is calculated for each cell according to 
the relation (5), therefore the fraction of gas 
leaving the i-th cell during the time ∆t can be 
represented in the following form [49,60]: 

= i ig w t / y     (15) 

Then the matrix of transition probabilities 
for the gas phase will have the following form 
[49,59]: 

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 

1

1 2

2

n-1

n-1 n

1-g

g 1-g

= g ...

... 1-g

g 1-g

gP  (16) 

3.2. Mathematical model of lateral particle 
movement 

The lateral particles migration is considered 
simplistically as a purely random walks 
(diffusion) process. From a formal mathematical 
point of view, such problem is close to the 
description of radial thermal conductivity in a 
cylinder [65]. Fig. 2a shows a schematic diagram 
of the configuration of the computational 
domains. For each k-th time step the state 
massive Sr is adjusted taking into account the 
diffusion transport. When considering the 
balance of solids content in the r-th cell chain 
(cylindrical layer), it is taken into account that it 
borders neighboring layers with numbers (r-1) 

and (r+1). The volumes of bulk material 
transported in the radial direction is calculated 
as [61,65]: 

for 2 3=r , ,...,N : 

( )1

1 1

1

= 2π−

− −

−

  −
−        

k k k
k sr ,i r ,i r ,i
r ,i r ,i

r ,i r ,i

D S S
q r y t

r V V
(17) 

for 1 2 1= −r , ,...,N : 

( )= π1

1

1

2+

+

+

  −
−    

   

k k k
sr ,i r ,i r ,ik

r ,i r ,i

r ,i r ,i

D S S
q r y t

r V V
 


(18) 

The factors in square brackets on the left side 
of the equations (17)-(18) represent linear mass 
flux densities. Thus the radial transport of 
particles is described in the usual way based on 
difference formulations of 1D Fickian-type 
model [65,66]. In this case the terms in 
parentheses on the left side of equations (17)-
(18) make it possible to take into account the 
radius-dependent transfer surface (domain 
shape) [49,61]: 

for 2 3 1= −r , ,...,N  
k+1 k k k
r r r-1 r+1S = S +q +q ,  (19) 

for 1=r  
1

1

+

+= +k k k
r r rS S q ,   (20) 

for =r N  
1

1

+

−= +k k k
r r rS S q ,   (21) 

 
Fig. 2. General scheme for constructing the model:  
a) a schematic diagram of the configuration of the 

computational domains for a radial particulate transport; 
 b) the computational domain for the proposed two-

dimensional model 

3.3. Mathematical description of the 2-D 
model of particle movement 

The mathematical description of the two-
dimensional fluidized bed model is based on a 
combination of the axial particle transport and 
the radial particle movement models. The final 
form of the computational domain for the 
proposed two-dimensional model is shown in 
Fig. 2b. The basic equation for this model of 
vertical migrations of particles is expression (3). 
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And the resulting relations of the radial 
transport model are the equations (19)-(21). 
Their combination gives the following resulting 
equations [49,60,61]: 

for 2 3 1= −r , ,...,N  

k+1 k k k k
r r r r-1 r+1S = S P +q +q ,  (22) 

for 1=r  
1

1

+

+=  +k k k k
r r r rS S P q ,   (23) 

for =r N  
1

1

+

−=  +k k k k
r r r rS S P q ,   (24) 

 

4. Experimental procedure 

A drying column employed in another study 
was used for preliminary verification of the 
model. The kinetics of drying are not considered 
in this study. In fact an identical (triplicate 
realized) experiment on drying potato cubes 
with the side of 6 mm is considered. A 
continuous changes occurred in the fluidized 
bed structure due to particles dehydration 
(particles sizes and mass were changing). The 
experiments were carried out at the air 
temperature 70oC and the superficial gas 
velocity U0 = 5.5 m/s.  

A geometric sketch of the experimental setup 
is shown in Fig. 3. 

 
Fig. 3. General scheme for constructing the model:  

1– fluidization column with nternal diameter 0.1 m, 2 – 
gas distributor, 3 –plenum chamber, 4 – centrifugal blower, 5 

– electrical heater, 6 – surge tank, 7– control valve, 8 –flow 
meter, 9 –samplers, 10 - bag filter, 11 – Pitot tubes 

 
The number of holes were made along the 

side of the column with a step of 0.1 m. Some of 
them were equipped with samplers to 
periodically collect samples of the material for 
weighing.  

Three straight-type Pitot tubes were used 
also for measuring the local values of gas 
velocity in the fluidized bed. The measurements 
of the local gas velocity were taken at heights of 
0.15 m, 0.35 m and 0.55 m from the gas 

distribution plate. When measuring air velocities 
with a pitot tube, measurements were first taken 
on the axis of the apparatus, and then the tube 
was moved toward the wall of the column by 2.5 
cm. The gas velocities values obtained in this 
way were recalculated using relation (5) in 
particle concentrations, which were compared 
with the model predictions. 

The hydrodynamic local characteristics of the 
fluidized bed were measured for two points in 
time: after 10 minutes and after 55 minutes from 
the start of the drying process. The initial weight 
of the sample was 1.7 kg with an average 
moisture content of 3.56 kg/kg. After 10 minutes 
of drying, the moisture content dropped to 2.5 
kg/kg, and by 55 minutes of the drying process it 
was about 0.12 kg/kg. As a result the 
hydrodynamic situation in the bed changed 
dramatically. After 10 minutes of the process the 
bed consisted of particles with an average size 
(5.6 mm) and a density 1322 kg/m3. Such 
fluidized bed contained a small number of 
periodically appearing large gas bubbles, but in 
general it was distinguished by the formation of 
large-scale particle flows within the bed, with a 
predominance of upward particle movement in 
the core of the bed and sliding down of particles 
at the periphery of the column. The minimum 
fluidization velocity Umf of for the specified 
particles (to determine it, the process was 
stopped and restarted with a gradual increase in 
gas rate to the operating velocity) was 2.4 m/s. 

After 55 minutes of the process the bed 
consisted of particles with an average size (4.2 
mm) and a density 646 kg/m3. The minimum 
fluidization velocity Umf of for the specified 
particles was 1.3 m/s. In this case a few 
centimeters from the ditributor an obvious 
dense zone of the bed formed, in which the 
particles were actively mixed by gas bubbles. 
Apparently due to the square shape the particles 
actively rotated relative to their own axes, so 
their movement in the dense phase of the bed 
was very chaotic, and the gas bubbles collapsed 
extremely quickly. A zone of diluted fluidized 
bed without bubbles was formed above the 
dense phase. It was visually noticeable here that 
the concentration of particles decreased with 
height tending to zero. 

The the dimensionless operation velocity 
Umf/U0 for the specified modes were 2.3 and 4.2. 

5. Results and discussions 

5.1 Numerical experiments 

The equalities (22)-(24) are the basic 
dependencies for the proposed model of balance 
equations. However the type of solution largely 
depends on how to approach the issues of 
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parametric identification when determining the 
model parameters.  

The following scenario was considered in the 
numerical experiment. The cylindrical apparatus 
is filled with spherical particles with d1=2.5 mm 
and a true material density of ρp=1800 kg/m3. 
The column of the apparatus is of 20 cm in 
height and 10.5 cm in diameter. The 
computational domain and grid of the 
fluidization column correspond to the model 
representations (fig.2b) and have ∆r=0.75 cm 
and ∆y=1 cm. 

To provide the gas velocity distribution along 
the radius of the column the power law model 
was used in following form [67]: 

 1= −max ( / )
m

rU U r R   (25) 

Fig. 4 shows the simplest case, when 
throughout the entire cross-section of the 
apparatus the superficial gas velocity is constant, 
and diffusion migrations are prohibited in both 
the radial and radial directions (Dsr=0 m2/s, 
Dsa=0 m2/s). First, the fixed bed of particles 
occupies a certain number of cells in height (Fig. 
3), while the concentration of particles is 
constant both in height and in width of the bed 
(with the exception of the upper cells of the bed, 
which are not completely filled). When the bed 
enters a fluidized state, the particles occupy a 
larger number of cells, but the picture does not 
change qualitatively (Fig. 5). 

 
Fig. 4. The results of a numerical experiment with a 

uniform distribution of gas velocities over the cross section 
of the apparatus and in the absence of diffusion transfer 

(Dsa=0 m2/s; Dsr = 0 m2/s) – distribution of volumetric 
density of particles for k=1 (fixed bed) 

Qualitative changes occur when diffusion 
transfer is “turned on” (Fig. 6). Numerical values 
of the diffusion coefficients are not given here 
since they will be different for the different 
computational domains. The introduction of a 
non-zero axial diffusion coefficient makes the 
distribution of particle concentration along the 
height of the fluidized bed distinctly un-uniform, 
while a dense zone and a dilute zone can be 
distinguished (Fig. 6). Thus, it can be seen in Fig. 
6 that the vertical distribution of particles has 
become quite plausible. In this case, each chain 

of cells is identical to the other (in other words, 
at the selected height, the same value of particle 
concentration is observed throughout the entire 
cross-section).  

 

Fig. 5. The results of a numerical experiment with a uniform 
distribution of gas velocities over the cross section of the 
apparatus and in the absence of diffusion transfer (Dsa=0 
m2/s; Dsr=0 m2/s) – distribution of volumetric density of 

particles for k=2001 (fluidized state at tk= (k – 1)∙∆t=20 s) 
 

 
Fig. 6. Results of a numerical experiment with a uniform 

distribution of gas velocities over the cross section of the 
apparatus under different diffusion conditions (fluidized 
state at tk= (k – 1)∙∆t=20 s) – Dsa > 0 m2/s and Dsr = 0 m2/s 

 

Since each chain of cells is identical to the 
neighboring chain of cells, the introduction of 
radial diffusion does not change the distribution 
(Fig. 7). Despite the fact that the distribution of 
particle concentrations in Fig. 7 remains 
unchanged (compared to Fig. 6), particle 
migrations into lateral direction occur, but their 
counter flows through any boundary between 
the computational domains compensate each 
other. 

In order for the influence of diffusion flows in 
the radial direction to be obvious, it is necessary 
to initially work with a non-uniform radial 
profile of gas velocities. The figure 8a shows the 
distribution of particle concentrations obtained 
for the superficial gas velocity profile 
corresponding to m=0.2 in Eq. (5). The degree of 
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non-uniformity of the velocity distribution for 
this case is shown in fig. 8b. 

 

 
Fig. 7. Results of a numerical experiment with a uniform 

distribution of gas velocities over the cross section of the 
apparatus under different diffusion conditions (fluidized 
state at tk= (k – 1)∙∆t=20 s) – Dsa > 0 m2/s and Dsr > 0 m2/s 

 

 
Fig. 8. Results of a numerical experiment with a non-uniform 
distribution of gas velocities over the cross section of the 
apparatus in the absence of diffusion transfer (Dsa = 0 m2/s 
and Dsr = 0 m2/s): a) solids distribution; b) degree of non-
uniformity of the superficial gas velocity distribution 

Results of fig. 9-10 show that diffusion as a 
process leads to some equalization of the 
particulate concentration. Thus the struggle 
between non-uniform distribution of the solid 
phase (created by the uneven profile of gas 
velocities) and diffusion processes in the radial 
and axial directions leads to the appearance of a 
completely qualitatively consistent distribution 
of the solid phase throughout the volume of the 
apparatus. 

 
Fig. 9. Results of a numerical experiment with a non-

uniform distribution of gas velocities over the cross section 
of the apparatus in the presence of diffusion transfer 

(fluidized state at tk= (k – 1)∙∆t=20 s): 
Dsa> 0 m2/s and Dsr=0 m2/s 

 
 

Fig. 10. Results of a numerical experiment with a non-
uniform distribution of gas velocities over the cross section 

of the apparatus in the presence of diffusion transfer 
(fluidized state at tk= (k – 1)∙∆t=20 s):  

Dsa> 0 m2/s and Dsr > 0 m2/s 

 

Several authors studied the particulate 
movement of Geldart B powders and came to the 
conclusion that it has certain qualitative 
characteristics. The authors have shown that in 
fluidized beds with aspect ratio greater than 
unity the suspended particles move downwards 
in the regions close to the wall and upwards at 
the central regions of the bed. There are two 
regions of particulate circulation can be 
observed in beds with aspect ratio greater than 
unity. The first forms near the distributor plate 
and the second forms above near the top of the 
bed. At higher gas flow rates the top region 
becomes more vigorous and become to 
dominate the entire solid mixing process 
[68,69]. In the figure 10 we can observe a similar 
situation obtained in a numerical experiment: in 
the central part of the bed particles are more 
likely to move upward, while in the peripheral 
part of the bed, movement is more likely to be 
downward. 
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5.2 Experimental results 

Fig. 11-12 shows the results of comparison of 
the results of the natural experiment (markers) 
and the calculated forecasts (lines). The 
parameters of the numerical model were 
brought into line with the physical parameters 
of the experiment described in the 
corresponding section of the article earlier. In 
this case the computational grid with ∆y=0.05 
and ∆x=0.005 was used. The non-uniformity of 
the gas flow in the apparatus was characterized 
by the exponent m=1/7 (eq. (25)), since this 
value corresponds to the physics of the process 
to a greater extent [67,70]. However it should be 
noted that m remains the calibration parameter 
of the model. 

 
Fig. 11. Comparison of calculated (lines) and 

experimental (markers) particle concentration profiles after 
10 min of fluidized bed drying: on the column axis (solid line, 
round marker) and at a distance of 2.5 cm from the column 

axis (dotted line, square marker) 

 
Fig. 12. Comparison of calculated (lines) and 

experimental (markers) particle concentration profiles after 
55 min of fluidized bed drying: on the column axis (solid line, 
round marker) and at a distance of 2.5 cm from the column 

axis (dotted line, square marker) 
 

From the fig. 11-12 it is evident that the 
model has sufficient predictive efficiency (the 
error at all points considered does not exceed 5-

6%), while it should be noted that the parameter 
m (equation (25)) is actually the calibration 
parameter. In addition, it is noteworthy that the 
model underestimates the values in the lower 
part of the fluidized bed, which may be due to 
the influence of the gas distribution device. In 
any case, these findings should be considered 
preliminary, and further experimental studies 
are necessary. 

6. Conclusions 

In the present study the cell mathematical 
model was firstly proposed to describe the 
motion of phases in a batch cylindrical column 
with a bubbling fluidized bed. 

The main achieved results of the study, which 
have sufficient novelty, should be noted as: 
1) the development of the two-
dimensional mathematical cellular-type model 
of a batch fluidized bed column to describe the 
movement of bed components in radial and axial 
directions; 
2) determination the connection between 
the parameters of the proposed mathematical 
model and the physical parameters of the phase 
motion in the fluidized bed; 
3) verification of the developed model by 
comparing the obtained simulations with the 
experimental data independent of the model. 

As comments to the above points, the 
following circumstances should also be noted. 

The phase transport of the fluidized bed 
along the height of the column are described on 
the basis of the mathematical apparatus of the 
theory of Markov chains, and an explicit 
difference scheme is used for the mathematical 
model of particle transfer in the radial direction.  

This calculation scheme has apparently been 
applied for the first time, and the shape of the 
elementary representative volume is such that it 
corresponds to the established tradition of 
describing the mixing of particles during 
fluidization through radial and axial 
macrodiffusion components. The latter 
circumstance made it possible to greatly simplify 
the parametric identification procedure and 
perform it on the basis of calculation 
dependencies known from the literature.  

The simplicity of the identification 
procedures, as well as the computational 
accessibility (not going beyond the capabilities 
of office computers) make the proposed model 
much more widely accessible for engineering 
practice than, for example, models based on 
DEM-CFD. At the same time the model supports 
intermediate scale of modeling. This scale of 
modeling allows to consider the formation of the 
structure of a fluidized bed as an object with 
distributed spatial characteristics. 
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The main objectives of further work with the 
proposed mathematical model are: 
1) changing the calculation scheme of the 
model in order to include the formation of gas 
bubbles in the calculation; 
2) comprehensive testing of the model in 
various fluidization modes; 
3) development of heat and mass transfer 
models in a fluidized bed based on the proposed 
fluidization model. 
 

Nomenclature 

b  
probability of moving back to the located 
below cell  

d  diffusion transfer probability 

d1 particle diameter [m]  

Dsa  axial dispersion coefficient [m2/s] 

Dsr lateral dispersion coefficient [m2/s] 

f 
area of the largest cross-section of a particle 
perpendicular to the velocity vector [m2] 

F source vector of the gas flow [m2] 

Fr Froude number 

H height of the column [m] 

k time step number 

m parameter in eq. (25) 

N total number of the cylindrical layers 

n 
total number of the cells in a Markovian 
chain 

P transition matrix for solid 

Pg transition matrix for gas 

p 
probability for particle to staying in the 
same cell 

Re Reynolds number 

r radial coordinate [m] 

R column radius [m] 

Smax maximum cell capacity [m3] 

S state vector [m3] 

t time [s] 

u 
probability for particle to moving upwards 
to the located above cell 

V settling velocity of the particle [m/s] 

U local gas velocity [m/s] 

U0 superficial gas velocity [m/s] 

Umf minimum fluidization velocity [m/s] 

 density [kg/m3] 

Subscripts 

g gas phase 

i number of the cell number 

k number of time step 

r number of the cylindrical layer 

s solid phase 
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