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 The study explores the impact of Hall and ion slip and velocity slip on the heat and mass 

transfer characteristics of MHD two-layered peristaltic motion of Casson-micropolar and 

Newtonian liquid in an inclined channel embedded in a porous space.  The governing flow 

equations have been linearised under the assumptions of long-wavelength approximation 

and low Reynolds number.  Closed-form expressions for pressure rise, wall frictional force, 

and mechanical efficiency over a complete wavelength cycle are derived. Results are 

presented graphically to analyse the impact of key parameters, such as the Hartmann number, 

porous parameter, Froude number, velocity slip, and inclination parameter, on velocity, 

temperature, concentration, mechanical efficiency, entropy generation, along with Nusselt 

number and Sherwood number.   Our findings reveal that as inclination, microrotation, and 

Casson parameters grow, there is a corresponding rise in liquid velocity.  The liquid 

temperature falls with the rise of the Froude number and Casson parameter.   Furthermore, 

when the chemical reaction parameter and Schmidt number grow, the concentration 

distribution reduces.  It is also observed that when the micropolar fluid and inclination 

parameters rise, both the pressure gradient and pressure rise increases.  Mechanical 

efficiency improves with the rise of the microrotation parameter, and entropy generation 

escalates with the rise in the inclination parameter.  A comparative analysis has been 

performed to confirm the validity of the obtained results.   These studies can be applied to 

physiological systems; specifically, esophageal peristalsis is governed by central and 

peripheral neural mechanisms, which involve extrinsic sympathetic or parasympathetic 

nerves and the myenteric plexus, respectively. Additionally, such investigations are relevant 

to biomedical engineering applications, including thermal therapy procedures.  
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1. Introduction 

A progressive wave that contracts or expands 
along the length of a distensible tube or channel 
carrying the liquid is known as peristaltic transport. 
It is the main mechanism governing the flow of 
chyme and food in the intestines, the movement of 
spermatozoa through the cervical canal, the flow of 
bile in the bile ducts, and the passage of urine in the 

ureter.  Finger and roller pumps use peristalsis to 
pump corrosive materials, preventing the fluid from 
touching the interior surfaces directly.  The study of 
peristalsis has been receiving a lot of attention ever 
since the initial analysis carried out by Latham [1], 
both theoretical, computational and experimental 
studies have been extensively carried out to 
improve the understanding of peristaltic motion in 
various environments, due to its significance in 
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biological systems and mechanical and industrial 
problems ([2]-[16] and several references therein). 

In physiological systems like the ureter, 
esophagus, and small blood vessels, where the wall 
structure is responsible for pumping, the wall is 
often lined with a liquid that has different 
properties from the transported fluid. To 
understand the impact of this fluid coating on 
transport, it is necessary to expand the analysis of 
peristaltic pumping from a single fluid to a two-fluid 
model. This can be accomplished by introducing a 
peripheral layer with varying viscosity.  Following  
Shukla et al. [17], researchers have shown a keen 
interest in this area of study [18-29].  The two fluid 
flow of a power-law fluid varying viscosities 
through a cylindrical tube has been analytically 
studied by Misra and Pandey [20].  Assuming a long 
wavelength and low Reynolds number, Kavitha et al. 
[21] examined the peristaltic motion of a Jeffrey 
liquid interacting with a Newtonian liquid in an 
inclined, symmetric channel.  The peripheral region 
becomes narrower and the interface shape changes 
as the Jeffrey liquid parameter rises. The study by 
Vajravelu et al. [22] focused on the impact of 
peristalsis and heat transfer on physiological flow 
within a two-liquid model in a symmetric channel 
with permeable walls. The core contains a Jeffrey 
liquid and the periphery a Newtonian liquid.   In a 
flexible cylindrical tube, Sadaqut Hussain et al. [23] 
have conducted an analysis of the two immiscible 
peristaltic pumping of Phan-Thien-Tanner liquid 
with applied electro-osmotic force.  The fluid in the 
core (inner) layer follows the PTT fluid model's 
constitutive equation, whereas the fluid in the 
peripheral (outer) layer is Newtonian.  The findings 
indicate that controlling trapping and reflux is 
possible through either increasing the electric field 
strength or leveraging the viscoelastic and 
extensional behavior of the fluid in the core region. 
Ali et al. [24] illustrated the peristaltic motion of two 
immiscible liquids in a tube along with electro-
osmosis. At the periphery, fluid aligns with a 
Newtonian model, while the core fluid is 
represented by the Ellis constitutive equation.  The 
streamline pattern is generated for each region 
when the interface's shape is not known 
beforehand. The flow and heat transfer 
characteristics of the peristaltic flow of two 
immiscible liquids in a vertical channel have been 
examined by Sankranthiand Akkiraju Naga Satya 
[25]. According to their results, an increase in 
viscosity ratio alters the interface shape, which 
leads to a reduced thickness of the peripheral layer 
in the pump's constricted region.  Both zones are 
filled with Newtonian fluids with varying viscosity 
and density. Rushi Kesava and Srinivas [26] 
conducted an investigation on the peristaltic motion 
of a two-layered channel, with a Casson liquid in the 
inner layer and a porous space in the outer layer, 
considering a shear stress jump boundary condition 

at the interface. Sreenadh et al. [27] reported the 
influence of elasticity on the peristaltic transport of 
a Jeffrey and Newtonian liquid in a uniform tube 
using a two-layer liquid model.  The results indicate 
that the elasticity of the tube walls causes the 
interface to extend more in the core region.  
Recently,  Kumar and  Yadav [28] explored heat and 
mass transfer characteristics in the peristaltic 
transport of immiscible Newtonian and micropolar 
liquid via a porous saturated channel along with the 
generation of entropy. The findings from the 
analysis highlight that naturally occurring porous 
materials lead to higher values of flow properties 
than man-made porous materials. 

Non-Newtonian fluids have been a significant 
area of research for several decades. Due to the 
widespread use of various non-Newtonian fluids, 
such as lubricants, in industrial applications, 
considerable attention has been directed toward 
modelling and analysing their rheological 
properties. This non-linearity can appear in 
numerous fields, including food processing, drilling 
operations, and bioengineering (see the references 
[29-40]).  The Casson micropolar fluid model 
combines the properties of Casson fluids, with their 
nonzero yield stress, and micropolar fluids, which 
exhibit micro-rotational behavior. This combination 
is vital in medical applications, particularly for 
blood rheology and the study of conditions like 
clotting or abnormal flow. Beyond medicine, the 
model is also valuable in predicting and controlling 
the flow of industrial fluids with complex 
compositions, such as slurries, emulsions, inks, and 
paints, which exhibit both viscoplastic and 
micropolar characteristics. Its accuracy is essential 
in fields that demand precise flow control, including 
biomedical devices, drug delivery systems, and 
microfluidic applications. Mehmood et al. [31] 
examined the effects of microrotation on the mixed 
convective flow of a Casson fluid driven by a 
stretched sheet.  In their research, the velocity and 
microrotation profiles show opposing behaviour 
with respect to the micropolar parameter. Iqbal et 
al. [32] investigated the effects of an angled 
magnetic field and viscous dissipation on the flow of 
a micropolar Casson fluid across a stretched sheet.  
Using the scaling group of transformation the 
resulting system of equations are converted to a set 
of non-linear ODEs. These equations are then solved 
using the Keller box technique. The micropolar 
Casson fluid and its significant effects on the 
magnetic field were studied by Chun et al. [33]. The 
numerical procedure was carried out by use of the 
Lobatto IIIA numerical computing technique. The 
effects of material behavior, thermophoresis, the 
buoyancy ratio parameter, and Brownian motion, 
on MHD micropolar Casson liquid over a solid 
sphere enclosed by a porous space have been 
explored by Hazarika and Ahmed [34]. El-Dabe et al. 
[35] explored an incompressible micropolar Casson 



Srinivas and Anasuya / Journal of Heat and Mass Transfer Research 12 (2025) 345-376 

347 

fluid on a stretched surface with the influence of 
porous media and heat production. Ms-DTM has 
been employed to solve the governing equations. 
Abbas and Rafiq [36]  analysed a numerical study on 
the peristaltic motion of micropolar-Casson liquid 
in a channel. Results indicated that a rise in the slip 
parameter, coupling number, and micropolar 
parameter leads to a reduction in the pressure 
gradient. The flow and thermal characteristics of a 
hybrid nanofluid Casson micropolar liquid over a 
curved stretching sheet was investigated by 
Upadhya et al. [37], along with mass transfer.  In 
their results, the micropolar fluid exhibits more 
entropy generation than the Casson fluid. Nadeem 
Abbas et al. [38]  explored the dynamic behaviour of 
Casson-Micropolar-Sutterby liquid flow over a 
sheet exhibiting exponential curvature, analysing 
the effects of chemical reactions and magnetic fields 
on the flow.  Their results showed that the 
micropolar fluid profile curves increased with an 
increase in the curvature parameter values.  Sharma 
et al. [39] employed computational techniques to 
investigate the thermal efficiency of immiscible 
Casson micropolar and Jeffery fluid flow in a 
horizontal channel with a uniform pressure 
gradient.  Vaidehi and Sasikumar [40] examined the 
heat and mass transfer characteristics of 
micropolar-Casson liquid flow through a tapered 
oscillatory wavy channel, considering both low and 
high values of plastic dynamic viscosity. Where the 
radiation component of energy transfer is modelled 
using Plank’s approximation. The Crank-Nicolson 
method is employed to resolve the governing 
equations. 

In the presence of strong electromagnetic forces, 
the Hall effect becomes significant, especially when 
the Hall current is high due to a low electron-atom 
collision rate.  Since ions possess greater mass than 
electrons, their movement differs, producing 
distinct diffusion velocities. Because current density 
depends on diffusion velocity, electrons typically 
contribute more to current flow than ions. However, 
under strong magnetic fields, ion diffusion becomes 
notable, and the combined influence of both ion and 
electron diffusion is known as the ion-slip effect. 
Both Hall and ion-slip effects are widely used in 
engineering applications such as Hall sensors, 
accelerators, and in the design of pumps and 
turbines. Recent relevant studies on this topic can 
be found in references [41-44]. 

Inspired by previous research, the focus is on 
studying the influence of Hall and ion slip along with 
velocity slip on the two immiscible peristaltic 
transport in an inclined channel through porous 
space along with heat and mass transfer 
characteristics. Such an investigation have not yet 
been reported in the literature. Moreover, the 
vasomotion of blood vessels, sperm transport in the 
male reproductive tract, movement through the 
cervical canal, oesophagus, and intestinal flow all 

involve a mucus layer lining the inner surface. In 
most of these vessels, fluid viscosity differs between 
the core and peripheral regions. Additionally, many 
organs are structured with core and peripheral 
zones, key to the thermal exchange between blood 
and tissue. Therefore, the proposed model can help 
facilitate this heat exchange process.   This study 
investigates visco-plastic fluids that exhibit micro-
rotation at the particle level where, Casson-
micropolar liquid occupies the core region, whereas 
Newtonian fluid occupies the peripheral region.   
The Casson fluid model is applied to predict the flow 
nature of blood in arteries under low shear rates 
and accounts for non-zero yield stress, as well as 
understanding the behavior of pigment oil 
suspensions in printing inks, along with a dilute 
suspension of rigid, cylindrical, small 
macromolecules that move independently.  Under 
the assumptions of long wavelength approximation 
and small Reynolds number, the conversion 
equations are linearised and solved. Closed-form 
expressions are provided for pressure rise, time-
averaged flux, and Mechanical efficiency. The 
impact of pertinent  parameters on flow, heat, mass 
distribution, mechanical efficiency, entropy 
generation, rate of heat transfer, and Sherwood 
number have been examined and presented 
graphically. 

2. Flow Geometry 

Consider peristaltic motion in a channel 
containing a Casson-micropolar and Newtonian 
liquid in the core and peripheral regions, 
respectively, see the Figure 1.  

 

Fig. 1. Sketch of the model 

3. Mathematical Formulation 

The fluid flow within the channel where the 
walls are characterised by a time-varying function 

( ) ( )
2

, sinH X t a b X ct



= + −  with the interface  

( ) ( )1 1 1

2
, sin




= + −H X t a b X ct  where b , 1b  are the 

amplitude,  wavelength, c constant velocity with 

channel width a  and 1a  is the width of the 

interface.  
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The mathematical formulation has been 
proceeded with the following assumptions, 

• This study examines the peristaltic transport of 
two immiscible incompressible fluids in a 
symmetric porous channel. 

• Wall deformation arises from the propagation 
of an infinite train of sinusoidal peristaltic 

waves defined by ( )y h x= . 

• The channel is inclined at an angle  with 

respect to the horizontal axis. 

• The channel, whose length is considered an 
integral multiple of the peristaltic wavelength, 
is partitioned into two regions: a peripheral 
region occupied by a Newtonian fluid and a core 
region filled with a Casson micropolar fluid. 

• A uniform pressure difference is applied across 
the channel boundaries, with a periodic 
interface condition. 

• A uniform transverse magnetic field is imposed 
perpendicularly to the direction of fluid flow. 

• The generalised Ohm’s law is considered by 
accounting  Hall and ion slip currents while 
neglecting thermoelectric effects. 

• Two constant different temperatures 
1
T  and 

2
T  

are maintained at the lower and upper walls of 
the channel.  

• The analytical solution is determined under the 
assumptions of a long-wavelength 
approximation and a small Reynolds number. 

The fundamental equations required to describe 
the flow problem are ([28], [32], [36]) 
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J B  is the Lorentz force vector, and 
1
J J


  is the 

Joule heating term. With the inclusion of Hall and 
ion slip effect, the generalised Ohm’s law is 
represented as [36]: 
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Using the transformations given in the eqn (5) 
the governing equations are reduced to: 
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The nondimensional parameters are: 
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The Darcy number Da  measures the 

permeability of a porous medium. The viscosity, 
density, and thermal conductivity ratios  ,  , and 

  describe material property contrasts. The 
Brinkman number ( Br ) is a dimensionless 
parameter that represents the ratio of heat 
generated by viscous dissipation to the heat 
transferred through molecular conduction.. Mass 
transport behavior is captured through the Schmidt 
number Sc , Soret number Sr .  The magnetic field 

effect is represented by the Hartmann number M , 
buoyancy effects are indicated by the modified 
Froude number Fr , Collectively, these 
dimensionless variables provide a generalised 
framework to analyse the coupled effects of flow, 
heat, and mass transfer. 

Under the long-wavelength approximation, 
neglecting the term containing /a  , we obtain 

( )

( )

1

2

1

2

2

1 1

12 2

1 1 1

0

1
sin

1

1 1

1

1

1









 
− + +
 − 

 
+ + 

−  

 +
 − +
 + + 

=

p N w

x Fr N y

u

N y

M n MC
u

Dan n

 (18) 

2

1

2 2

2
2 0

− 
− + − =



uN w
w

ym y
 (19) 

( )

( )

2

1

12

2 2

1

1

2
2

12 2

1 1 1

1

2

0

1 


+ + 



     
+ +    

     
+ = 

 +
 + + 

T
Rd

y

u w
w b

y y
Br

M
u

n n

 (20) 

2 2

1 2

12 2

1
0

 


 
+ − =

 
Sr

Sc y y
 (21) 

( )

( )

2

2 2

2

2

1 1

22 2

1 1 1

1
sin

1 1
0

1








 
− + +
 

 +
 − + =
 + + 

r

p u

x Fy

M n
u

Dan n

 (22) 

( )

22

2 2

2

2

2

2 12 2

1 1 1

0
1







 +
+



+ +  =
+ +

  
   
   

 
  
 

T uRd
Br

yy

M
Br u

n n

 (23) 

2 2

2 2

22 2
0

 


 
+ − =

 

D
Sr K

Sc y y
 (24) 

The interface between the peripheral and core 

regions is represented by ( )1y h x= . At the lower 

boundary 0y = , a no-slip condition is applied, 

whereas the upper wavy boundary ( )y h x=  is 

characterized by slip conditions.  Along with the 
velocity distribution, both the walls of the channel 
are maintained at different constant temperatures 
and concentrations. 
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Whereas at the interface, velocity, shear stress, 
convective heat transfer, thermal flux, mass 
transfer, and mass flux remain continuous. And also, 
the angular micro-rotational velocity at the 
interface is defined as: 
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(26) 

The arbitrary constants in the solution of the 
equations (18) –(24) have been obtained using the 
above boundary conditions eqn 25 and 26 where,  
the solutions are given by  
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The dimensionless instantaneous flow rate is 
given by 

1

1

1 2
0

= + 
h h

h

q u dy u dy  (34) 

The mass must be conserved independently in 
the core and peripheral areas, since the viscosity 
ratio influences the shape of the interface (Li and 
Brasseur, 1993). The assumption is made that the 
interface  form  is not affected by the viscosity ratio. 
Consequently, it is possible to utilise the fact that the 
overall flux is the sum of the fluxes across the 
different sections: 

10 y h   and 
1h y h  .  

Following the analysis of [14] the relationship 

between 1e and 1h is provided by [17].  
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The pressure rise over one wavelength is  
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Over one wavelength, the mean volume flow is 
[18]. 
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The dimensionless friction force  
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Mechanical efficiency is defined as the ratio of 
the average rate at which the moving fluid performs 
work against a pressure head over each wavelength 
to the average rate at which the walls transfer work 
to the fluid and is given by 
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In any thermal system, entropy generation is 
unavoidable, leading to the degradation of the 
system’s available energy 
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In the eqn (40), the terms on the RHS denote 
entropy generation from heat flow, viscous 
dissipation of Casson-micropolar liquid, and the 
effect of the magnetic field, respectively. 

The dimensionless entropy generation number, 
Eg, following [37] is the ratio of the volumetric 
entropy generation rate to the characteristic 
entropy generation rate. The non-dimensional 
representation of the generation of entropy for both 
regions are:  
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To assess the irreversibility distribution, the 
Bejan number (Be)  is used and is given by: 
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The Bejan number ranges between 0 to 1, where 

0=Be  highlights that viscous dissipation is the 

dominant contributor to irreversibility, and 1Be =  

points to the dominance of heat transfer in 
irreversibility.  At 0.5=Be , the irreversibility 

resulting from heat transfer is the same as that from 
viscous dissipation in the entropy production. 

The rate of heat transfer is given by  
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The rate of mass transfer is expressed as 
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4. Results and Discussion 

The equations for flow, energy, and 
concentration have been solved after linearization 
by utilising a long-wavelength approximation and a 
low-Reynolds number. The effects of parameter 
variations on velocity, micro-rotation, temperature, 
and concentration, with a specific focus on Hall and 
ion slip influences, are demonstrated in Figure 2 to 
Figure 12. 

One can observe that velocity is higher in the 
presence of Hall and ion slip effects compared to 
their absence.  Mathematica’s built-in command, 
NIntegration was employed to obtain values for the 
pressure rise, friction force over one wavelength, 
and mechanical efficiency.  The findings are shown 
graphically by altering the relevant parameters in 
Figure 13 to Figure 16.  

Figure 17 and Figure 18 depict both entropy 
generation and the Bejan number. Figure 19 and 
Figure 20 deal with variations in the Nusselt 
number and Sherwood number. The 3D plots for 
velocity, temperature, and concentration 
distributions, as well as mechanical efficiency, are 
presented, emphasising the influence of Hall and ion 
slip conditions. 

With the rise of M , the velocity and temperature 
distributions reduce, as depicted in Figure 2(a) and 
Figure 2(b). The presence of a transverse magnetic 
field generates a Lorentz force that acts as a drag 
force, opposing the flow and thereby diminishing 
both the fluid's velocity and temperature 
distribution. Figure 2(c) shows that microrotation 
intensifies with an increase in M . 

Figure 3(a) and Figure 3(b) reveal that an 
increase in the permeability parameter Da  is found 

to enhance the velocity distribution, primarily due 
to the absence of porous material that typically 
restricts fluid and temperature flow. It is evident 
from Figure 3(c) that microrotation exhibits a 
reverse pattern.   

Figure 4(a) and Figure 4(b) indicate that as the 
channel's inclination angle, sin , increases, the 

velocity and temperature of the fluid also rise, due 
to the strengthening effect of gravity with greater 
inclination angles. Conversely, Figure 4(c) shows 

that microrotation decreases as sin  increases. 
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(a) 

  

(b) 

 

(c) 

Fig. 2. Variations of   a) Velocity;  b) Temprature ; c) Microrotation velocity with M for 𝐹𝑟 = 0.2, 𝑠𝑖𝑛𝛼 = 0.1, 

𝐷𝑎 = 0.5, 𝜇 = 0.5, 𝜀 = 0.5, 𝜀1 = 0.6, 𝛽=0.4, N=0.2, m=2, a=1, a1=0.4, Rd=1, Q=1, k=0.5  
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(a) 

  

(b) 

 

(c) 

Fig. 3. Variations of  a) Velocity;  b) Temprature ;  c) Microrotation velocity with Da for 𝐹𝑟 = 0.2, 𝑠𝑖𝑛𝛼 = 0.1, 

 𝜇 = 0.5, 𝜀1 = 0.6, 𝛽=0.4, N=0.2, m=2, a=1, a1=0.4, Rd=1, Q=1, k=0.5  
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(a) 

  

(b) 

 

(c) 

Fig. 4. Variations of  a) Velocity;  b) Temprature ;  c) Microrotation velocity with 𝑠𝑖𝑛𝛼 for 𝐹𝑟 = 0.2, 𝐷𝑎 = 0.5, 𝑀 = 0.5, 

 𝜇 = 0.5, 𝜀1 = 0.6, 𝛽=0.4, N=0.2, m=2, a=1, a1=0.4, Rd=1, Q=1, k=0.5  
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The relationship between Newtonian and 
rotational viscosity is represented by the coupling 

parameter N . As rotational viscosity decreases, 

this coupling weakens, diminishing the fluid's 
micropolar characteristics. Thus, when N  

approaches zero, the flow resembles that of a 

viscous fluid. In contrast, as the coupling parameter 
increases, the viscosity associated with rotational 
motion rises, resulting in a significant reduction in 
the velocity profile, as shown in Figure 5(a). Figure 
5(b) illustrates that with an increase in the coupling 
number, micro-rotation also rises.  

  

(a) 

 

(b) 

Fig. 5. Variations of  a) Velocity;  b) Microrotation velocity with N for 𝐹𝑟 = 0.2, 𝐷𝑎 = 0.5, 𝑀 = 1, 𝜇 = 0.5, 

𝜀 = 0.5, 𝜀1 = 0.6, 𝛽=0.4, 𝑠𝑖𝑛𝛼 =0.2, m=2, a=1, a1=0.4, Rd=1, Q=1, k=0.5  

According to Figure 6(a), When fluid particles 
interact with material elements, drag is reduced, 
facilitating a decrease in momentum in core region, 
with the opposite effect in the peripheral region. 
Conversely, Figure 6(b) exhibits the reverse pattern.  

With a rise in the Froude number, inertial forces 
surpass gravitational forces, leading to a reduction 

in fluid velocity and a decrease in temperature 
distribution, as demonstrated in Figures 7(a) and 
7(b).  

Rising velocity slip enhances velocity in the 
peripheral region (Figure 8(a)) and also increases 
the temperature distribution (Figure 8(b)).  
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(a) 

 

(b) 

Fig. 6. Variations of a) Velocity; b) Microrotation velocity with m for 𝐹𝑟 = 0.2, 𝐷𝑎 = 0.5, 𝑀 = 1, 𝜇 = 0.5, 𝜀 = 0.5, 𝜀1 = 0.6, 

𝛽=0.4, 𝑠𝑖𝑛𝛼 =0.2, N=0.2, a=1, a1=0.4, Rd=1, Q=1, k=0.5  

  

(a) 
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(b) 

Fig. 7. Variations of  a) Velocity;  b) Temprature with FR for 𝑚 = 2, 𝐷𝑎 = 0.5, 𝑀 = 1, 𝜇 = 0.5, 𝜀 = 0.5, 𝜀1 = 0.6, 

𝛽=0.4, 𝑠𝑖𝑛𝛼 =0.2, N=0.2, a=1, a1=0.4, Rd=1, Q=1, k=0.5  

  

(a) 

  

(b) 

Fig. 8. Variations of a) Velocity; b) Temprature with 
2  for 𝑚 = 2, 𝐷𝑎 = 0.5, 𝑀 = 1, 𝜇 = 0.5, 𝜀 = 0.5, 𝜀1 = 0.6, 

 𝛽=0.4, 𝑠𝑖𝑛𝛼 =0.2, N=0.2, a=1, a1=0.4, Rd=1, Q=1, k=0.5  
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A higher value of   indicates a reduction in 

viscosity or yield stress, leading to an increase in 
fluid velocity, as depicted in Figure 9(a) and 
lowering the liquid temperature (9(b)). 

From Figure 10(a)  one can observe that the 
mean kinetic energy of the liquid particle rises with 
the temperature, enhancing the movement and 
speed of the molecules within the channel. This also 
leads to reduced spacing between liquid molecules.  
Physically, an increase in the distribution of the 
temperature field facilitates heat transfer from a 

region of heat absorption  (
1 2 0 =  =   ) to a 

region of heat generation ( 0  ).  Higher thermal 

conductivity ratios facilitate more efficient heat 
conduction throughout the fluid, which in turn 
reduces the temperature, as depicted in Figure 

10(b). From Figure 10(c), it is clear that a higher 
Brinkman number indicates slower conduction of 
the generated heat,  resulting in a notable 
temperature increase in the fluid.  

Figure 11(a) demonstrates the influence of mass 
diffusivity on the species concentration profile, 
indicating an enhancement in concentration with a 

rise in diffusivity, D .  Figure 11(b) illustrates that 
increasing the chemical reaction parameter reduces 
the species concentration profile. This decline is due 
to the thinner solute boundary layer and restricted 
mass transfer caused by the reaction.  

Figure 12(a) and Figure 12(b) shows that an 
increase in the Sc , and Sr  results in reduced mass 

diffusivity, thereby leading to a decline in 
concentration. 

  

(a) 

  

(b) 

Fig. 9. Variations of a) Velocity; b) Temprature with 𝛽 for 𝑚 = 2, 𝐷𝑎 = 0.5, 𝑀 = 1, 𝜇 = 0.5, 𝜀 = 0.5, 𝜀1 = 0.6, 

𝑠𝑖𝑛𝛼 =0.2, N=0.2, a=1, a1=0.4, Rd=1, Q=1, k=0.5  
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(a) 

  

(b) 

  

(c) 

Fig. 10. Variations of temprature with a)  ;  b) k;  c) Br for 𝐹𝑟 = 0.2, 𝐷𝑎 = 0.5, 𝑀 = 1, 𝜇 = 0.5, 𝜀 = 0.5, 𝜀1 = 0.6, 

 𝛽=0.4, N=0.2, m=2, a=1, a1=0.4, Rd=1  
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(a) 

  

(b) 

Fig. 11. Variations of concentration with a) D;  b)   for 𝐹𝑟 = 0.2, 𝐷𝑎 = 0.5, 𝑀 = 1, 𝜇 = 0.5, 𝑆𝑐 = 0.3, 𝑆𝑟 = 0.5, 

 𝜀 = 0.5, 𝜀1 = 0.6, 𝛽=0.4, N=0.2, m=2, a=1, a1=0.4, Rd=1  

  

(a) 
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(b) 

Fig. 12. Variations of concentration with a) Sc; b) Sr for 𝐹𝑟 = 0.2, 𝐷𝑎 = 0.5, 𝑀 = 1, 𝜇 = 0.5, 𝐷 = 0.5, 𝜉 = 1, 

 𝜀 = 0.5, 𝜀1 = 0.6, 𝛽=0.4, N=0.2, m=2, a=1, a1=0.4, Rd=1  

Figure 13 demonstrates the pressure gradient's 

variation over one wavelength,  0,1x . 

Observably, the pressure gradient is lower in the 
wider sections of the channel, specifically 

 0,0.2x  and  0.7,1x , whereas in the 

narrower region  0.2,0.7x , the pressure 

gradient increases significantly.  

The impact of the N  on the pressure gradient is 

shown in Figure 13(a). For 0N = , representing no 
coupling between the flow field and microrotation, 
the behavior aligns with that of a Newtonian fluid. 
As N increases, indicating stronger coupling 
between flow velocity and micro-rotation, the axial 
variation in the pressure gradient becomes more 
pronounced. For micropolar fluids, higher values of 
N necessitate a larger pressure gradient to maintain 
a consistent flux rate, with microrotation 
introducing a resistance effect to the flow. For a 
Newtonian liquid, the required pressure gradient is 
minimal.  In contrast, the effect of the m on 

pressure gradient, illustrated in Figure 13(b), shows 
an opposite trend to that of N. As m rises, the 
pressure gradient across the wavelength also 
enhances.  This finding is consistent with the fact 
that a given rate of volume flow is maintained more 
easily in the wider channel sections without 
requiring a higher pressure gradient.  A similar 
behavior is observed in Figure 13(c) with an 

increase in sin , where the pressure gradient also 

increases from a horizontal to a vertical channel 
configuration. Additionally, Figure 13(d) indicates 
that as the magnetic parameter M enhances, the 
pressure gradient rises. This suggests that stronger 
magnetic fields applied to the flow increase the 
required pressure gradient to sustain flow within 
the channel, a useful effect for surgical procedures 
where controlled fluid pressure can help manage 
blood flow during critical operations.  As shown in 

Figure 13(e), one can witness that a increase in the 
  makes the liquid more resistant to flow due to 

higher yield stress and viscosity, which leads to an 
increase in the pressure gradient required to 
maintain the flow.  Conversely, in Figure 13(f), as 

the Froude number Fr  increases, the pressure 
gradient trend is the opposite of that observed with 

M , indicating distinct effects on flow resistance and 
pressure gradient dynamics for these parameters. 

Three sections are identified based on pressure 

difference: the pumping region ( )0 p , the co-

pumping region ( )0 p , and the free pumping 

region ( )0 =p . For varying values of the coupling 

number N , Figure 14(a) shows that the pumping 
effect for a micropolar liquid exceeds that of a 

Newtonian liquid. As N  increases, the pumping 

efficiency improves, indicating that a higher 
coupling number enhances peristaltic pumping by 
counteracting pressure resistance and driving flow 
more effectively. In Figure 14(b), changes in the 
micropolar parameter m position the pumping 
curves of the micropolar liquid above those of the 
Newtonian fluid, reinforcing the enhanced pumping 
effect in fluid. However, as shown in Figure 14(c), 
the pumping effect diminishes with an increase in 

the angle of inclination sin . Additionally, Figures 

14(d), 14(e), and 14(f) illustrate that with increases 
in the magnetic parameter M, Casson parameter, 
and Froude number Fr, the pressure rise intensifies, 
indicating a higher pressure required to maintain 
flow under these conditions.  

Figure 15(a) to Figure 15(f) depict how frictional 
forces vary with changes in the volume flow rate for 
different parameters. Notably, the frictional forces 
follow a reverse pattern in comparison to the 
pressure rise.  
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Figure 16 illustrates about the Mechanical 
efficiency of the Casson-micropolar fluid. 
Mechanical  efficiency  rises  with  the  rise  of  micro- 

rotation, micropolar liquid parameter, Fr , and M  
parameters, whereas mechanical efficiency falls 
with the rise of sin ,  . 

 

 

 

(a) Variable N  for  

 𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 
 𝑫𝒂 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4 

 (b) Variable m for 
 𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 

 𝑭𝒓 = 𝟎. 𝟐, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4 

 

 

 

(c) Variable 𝒔𝒊𝒏𝜶  for 
𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟎. 𝟓, 𝑭𝒓 = 𝟎. 𝟐, 𝝁 = 𝟎. 𝟓, 
𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

 (d) Variable M for 
𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟏, 𝑫𝒂 = 𝟎. 𝟓, 𝝁 = 𝟎. 𝟓, 

 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

 

 

 

(e) Variable β for 
𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟎. 𝟓, 𝝁 = 𝟎. 𝟓, 

𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

 (f) Variable Fr for 
𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 
 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

Fig. 13. Pressure gradient profiles for different parameters 



Srinivas and Anasuya / Journal of Heat and Mass Transfer Research 12 (2025) 345-376 

364 

 

 

 

(a) Variable N for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 
𝑫 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4 

 

(b) Variable m for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 
𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4 

 

 

 

(c) Variable 𝒔𝒊𝒏𝜶 for 
𝑫𝒂 = 𝟎. 𝟓,   𝑭𝒓 = 𝟎. 𝟐,   𝝁 = 𝟎. 𝟓, 

 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 
 

(d) Variable M for 
𝒔𝒊𝒏𝜶 = 𝟎. 𝟐,   𝒎 = 𝟐,   𝑫𝒂 = 𝟎. 𝟓,   𝝁 = 𝟎. 𝟓, 

𝜺 = 𝟎. 𝟓,   𝜺𝟏 = 𝟎. 𝟔,   𝑵=0.2,  a=1,  a1=0.4 

 

 

 

(e) Variable β for 
𝑴 = 𝟏, 𝒎 = 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟎. 𝟓, 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 
 

(f) Variable Fr for 
𝒔𝒊𝒏𝜶 = 𝟎. 𝟓, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 

 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

Fig. 14. Pressure rises for different parameters 
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(a) Variable N for 
𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 

𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4 

(b) Variable m for 
𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝑭𝒓 = 𝟎. 𝟐, 

𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4 

  

(c) Variable 𝒔𝒊𝒏𝜶 for 
𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟎. 𝟓, 𝑭𝒓 = 𝟎. 𝟐, 𝝁 = 𝟎. 𝟓, 
 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

(d) Variable M for 
𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟏, 𝑫𝒂 = 𝟎. 𝟓, 𝝁 = 𝟎. 𝟓, 

 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

  

(e) Variable β for 
𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝒎 = 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 

𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

(f) Variable Fr for 
𝒔𝒊𝒏𝜶 = 𝟎. 𝟓, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 
𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

Fig. 15. Friction forces for different parameters 
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(a) Variable N for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4 

 
 

(b) Variable m for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝑭𝒓 = 𝟎. 𝟐, 𝑵 = 𝟎. 𝟐, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4 

 
 

(c) Variable Fr for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 𝒎 = 𝟐, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 
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(d) Variable β for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝒎 = 𝟐, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

 
 

(e) Variable 𝒔𝒊𝒏𝜶  for 

𝑭𝒓 = 𝟎. 𝟐, 𝒎 = 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝜷 = 𝟎. 𝟒, 𝑭𝒓 = 𝟎. 𝟐, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

 
 

(f) Variable M for  

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝒎 = 𝟐, 𝜷 = 𝟎. 𝟒, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, a=1, a1=0.4 

Fig. 16. Mechanical efficiencies for different parameters 
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Figures 17 and 18 illustrate the variations in 
entropy generation and the Bejan number as the 
parameters are varied.   

In Figure 17(a), it is observed that, with 
increasing N, entropy generation remains relatively 
unchanged at the channel centre but declines 
sharply toward the channel walls.  In contrast, the 
Bejan number exhibits an upward trend, as 
illustrated in Figure 18(a).  

Figure 17(b) indicates that a rise in the magnetic 
field parameter enhances entropy generation, as the 
higher magnetic field induces a resistive Lorentz 
force, resulting in greater friction during fluid flow 
and, consequently, an increased total entropy 
generation rate near the channel walls. The Bejan 
number in Figure 18(b) displays both ascending and 
descending trends, reflecting the strong influence of 
fluid friction irreversibility over heat transfer 
irreversibility. 

As fluid temperature rises with increasing 
inclination angle, Figure 17(c) shows that entropy 
generation also rises, while Figure 18(c) shows a 

decrease in the Bejan number with increasing 

sin .  
Figure 17(d) reveals that, an increase in 

Brinkman number Br  leads to a fall in thermal 
conductivity and enhancement in entropy 
generation.  As observed in Figure 18(d), the Bejan 
number behaves oppositely to the rate of entropy 
generation.  

Figure 19 illustrates the variation in the Nusselt 

number with changes in M ,Br , and  .  
As depicted in Figure 19(a), the heat transfer 

rate strengthens across both regions as M  rises.  
Figure 19(b) indicates that the core region shows 
negligible change, while the peripheral region 

displays a reduction in the Nusselt number as Br  
varies.  Figure 19(c) reveals that the heat generation 
parameter causes the core region to rise, but the 
peripheral region shows a downward trend.  

In Figure 20, the impact of parameters Sc , Sr ,

D  and   on the Sherwood number is displayed. 

 

 

 

(a) Variable N for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 𝒎 = 𝟐, 
 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4, Rd=1, Q=1, k=0.5, 

Br=0.2 

 (b) Variable M for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝝁 = 𝟎. 𝟓, 𝒎 = 𝟐, 
𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4, Rd=1, Q=1, k=0.5,  

Br=0.2 

 

 

 

(c) Variable 𝒔𝒊𝒏𝜶  for  

𝑵 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, Rd=1, Q=1,  
k=0.5, Br=0.2, Sr=0.5 

 (d) Variable Br for 

𝑵 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, Rd=1, Q=1,  
k=0.5, Sc=0.3, Sr=0.5, 𝒔𝒊𝒏𝜶 = 𝟎. 𝟐 

Fig. 17. Entropy profiles for different parameters 
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(a) Variable N for 

𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝒎 = 𝟐,   𝑺𝒓=0.5, Sc=0.3,  
Rd=1, Q=1, k=0.5, Br=0.2 

(b) Variable M for 

𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑵 = 𝟎. 𝟐, 𝒎 = 𝟐, 𝑺𝒓=0.5, Sc=0.3, 
 Rd=1, Q=1, k=0.5, Br=0.2, 𝒔𝒊𝒏𝜶 = 𝟎. 𝟐 

  

(c) Variable 𝒔𝒊𝒏𝜶 for 

𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑵 = 𝟎. 𝟐, 𝑴 = 𝟏, 𝑺𝒓=0.5,  
Sc=0.3, Rd=1, Q=1, k=0.5, Br=0.2 

(d) Variable Br for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑵 = 𝟎. 𝟐, 𝑴 = 𝟏, 
𝑺𝒓=0.5, Sc=0.3, Rd=1, Q=1, k=0.5 

Fig. 18. Bejan numbers for different parameters 

  

(a) Variable M for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝒎 = 𝟐, 𝜷 = 𝟎. 𝟒, 
  𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, Rd=1, a1=0.4, γ=1 

(b) Variable Br for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝒎 = 𝟐, 𝜷 = 𝟎. 𝟒, 
𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, Rd=1, a1=0.4, γ=1 
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(c) Variable 𝜸 for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝒎 = 𝟐, 𝜷 = 𝟎. 𝟒, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝑵=0.2, Rd=1, a1=0.4, M=0.5 

Fig. 19. Nusselt number profiles for different parameters 

  

(a) Variable Sc for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 

𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4, m=2, Rd=1, Q=1, k=0.5,  

Sr=0.5, D=1.2, ζ=0.5 

(b) Variable Sh for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 

 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4, m=2, Rd=1, Q=1, k=0.5,  

Sr=0.5, Sc=0.5, D=1.2, ζ=0.5 

  

(c) Variable ζ for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 𝑫 = 𝟎. 𝟓, 
 𝜺 = 𝟎. 𝟓, 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4, m=2, Rd=1,  

Q=1, k=0.5, Sr=0.5, Sc=0.5, D=1.2 

(d) Variable D for 

𝒔𝒊𝒏𝜶 = 𝟎. 𝟐, 𝑭𝒓 = 𝟎. 𝟐, 𝑫𝒂 = 𝟎. 𝟓, 𝑴 = 𝟏, 𝝁 = 𝟎. 𝟓, 𝜺 = 𝟎. 𝟓, 
 𝜺𝟏 = 𝟎. 𝟔, 𝜷=0.4, a=1, a1=0.4, m=2, Rd=1,  

Q=1, k=0.5, Sr=0.5, Sc=0.5, ζ=0.5 

Fig. 20. Sherwood numbers for different parameters 
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(c) Velocity profiles for 

𝑫𝒂 = 𝟎. 𝟓, 𝒎 = 𝟐, 𝑴 = 𝟏, 𝒔𝒊𝒏𝜶 = 𝟎, 𝑹𝒅 = 𝟏, 
 𝝁 = 𝟎. 𝟓, 𝑸=1, k=0.5, a=1, a1=0.4 

(d) Temprature profiles for 

𝑫𝒂 = 𝟎. 𝟓, 𝒎 = 𝟐, 𝑴 = 𝟏, 𝒔𝒊𝒏𝜶 = 𝟎, 𝑹𝒅 = 𝟏, 
 𝝁 = 𝟎. 𝟓, 𝑸=1, k=0.5, a=1, a1=0.4 

Fig. 21. Comparative study 

For the Casson micropolar fluid, the Sherwood 
number diminishes as Sc , Sr , and   intensify, while 

for Newtonian fluid, it exhibits the opposite 
response, as shown in Figures 20(a), 20(b), and 
20(c).  Figure 20(d) reveals that as D  intensifies, 
the Sherwood number shows a corresponding 
upward shift in both regions.   The work from 
[27] can be derived from the current study by 

setting 
2 1

sin 0, 0, 0, 0   = = = = , and 
1

0=n . 

Figure 21(a)  presents a comparison to validate 
the findings, while Figure 21(b) displays a 
comparative study of the temperature distribution 
between the analytical and numerical results, 
obtained using the fourth-order Runge–Kutta 
method combined with the shooting technique.  One 
can observe that the results are in good agreement. 

5.  Conclusions 

The investigation deals with the combined 
effects of velocity slip, Hall and ion slip on the heat 
and mass characteristics of MHD two liquid 
peristaltic motion through an inclined channel with 
a porous medium.  The core and peripheral regions 
are respectively filled with Casson-micropolar and 
Newtonian liquids.   The governing flow equations 
have been linearised under the assumption of long-
wavelength approximation and small Reynolds 
number.  The impact of pertinent parameters on 
resultant equations has been graphically presented 
and discussed.  The main conclusions from the 
investigation are:  

• Raising the porous parameter, inclination 
parameter, and velocity slip increases the 
liquid's velocity and temperature. In contrast, 
an increase in the magnetic field strength and 
Froude number reduces velocity and 
temperature. 

• A higher diffusivity ratio enhances the 

concentration distribution, while the rise in the 

chemical reaction rate, Schmidt, and Soret 

numbers leads to a decline in the concentration 

distribution. 

• The pressure gradient per wavelength grows 

with the rise in microrotation, magnetic field 

strength, micropolar fluid, Casson fluid 

parameter and inclination.  Further, the 

pressure gradient reduces as the Froude 

number increase. 

• As the values of the coupling number, Hartmann 

number, Casson fluid parameter, and 

micropolar fluid grow, the pressure rise per 

wavelength also rises.  On the other hand, when 

the Froude number  increase, the pressure rise 

per wavelength reduces. 

• As the coupling, Froude, and Hartmann 

parameters escalate, mechanical efficiency 

improves, whereas inclination and Casson 

parameter parameters reduce it. 

• The increase in the Hartmann number, the 

inclination parameter, and the Brinkman 

number contribute to a rise in the entropy 

generation.  Enhancing the microrotation 

parameter drops the entropy generation. 

• A rise in the inclination parameter causes the 

Bejan number to fall, whereas the 

microrotation parameter causes it to rise. 

• The heat transfer rate shows an upward trend 

with the rise in the Hartmann number, while it 

declines with the Brinkman number and heat 

generation parameter. 
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• In the core region, the Sherwood number is 

reduced with a rise in Schmidt number, Soret 

number, or first-order chemical reaction rate, 

while a higher diffusivity ratio elevates the 

Sherwood number in both regions. 

• The hydrodynamic situation may be 

established by assigning 0M = , for the 

corresponding problem.   Moreover, one can 

obtain a non-porous case by Da→ . 

Furthermore, in the absence of inclination, Hall 

and Ion slip, velocity slip parameter, and Casson 

fluid (i.e.  → ) parameters the results of this 

study correspond to those obtained by [27]. 

Funding Statement 

This research did not receive any specific grant 
from funding agencies in the public, commercial, or 
not-for-profit sectors. 

Conflicts of Interest 

The author declares that there is no conflict of 
interest regarding the publication of this article. 

Authors Contribution Statement 

Surippedi Srinivas: Formal Analysis; Methodology; 
Supervision; Validation; Writing – Review & Editing, 

J. Bala Anasuya: Investigation; Methodology;  
Software;   Roles/Writing – Original Draft;  etc. 

Appendixes 

2 2

3 5 3 5

5 5

3 3

1 2

8 8

,
2 2

− + − +
− − − +

= =

N N N N
N N

N N
a a  

( ) ( )

( ) ( )( )

3 2

2 3 6 2 3 3 6 3

5 2

3 3 3 2 3

cosh sinh

cosh sinh

H M a c a h a c a h
c

a a h a a h





− + − +
=

− +

, 21 22 23 24
4

20

N N N N
c

N

+ + −
= ,  

  ( ) ( )( )  2 9 26 2 1 3 29 25 1 1 1 1 28

3

20

cosh cosh cosh cosha N N a h a h N N a h a h N
c

N

+ − +
=

, ( ) ( ) ( )1 10 34 3 1 3 2 3 35 3 36

2

20

cosh sinh cosM N N a h a a h N a h N
c

N

− + +
=

 

( )   ( )( )2 9 36 2 1 1 1 39 3 43

1

20

cosh cosh cosha N N a h a h N a h N
c

N

+ +
=  

( )
( )

( )

( ) ( )

( ) ( )

32

3 1 1 10 2 9

3 2 3

20

9 2 1 1 1

10 1 1 2 1

cosh

sinh

cosh sinh

cosh sinh

a h
a M a N a N

a a h
N

N a h a h

N a h a h



−
−

+
=

−

+

  
  

  
  
  
  

,  

( ) ( )( )
( )

( )
( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( )

1 1 12

21 1 9 3 1 2 3 6 3 3 2 3 1 9 1 1

2 2 1

2 2 2

1 2 3 1 6 3 6 1 3 1 3 1 6 1 10 2 9 2 1 1 1

sinh
cosh sinh sinh ( sinh

sinh

sinh sinh cosh


 

= − − + − 
 − 

− + + − + + − −

a a h
N M N a h H M a c a h a a h a N a h

a a h

M H M a H M N a c M a h a H M N a N a N a h a h

 

( ) ( ) ( ) ( )

( ) ( )

2

1 2 2 1 3 1 6 2 1

22 2 9 2

3 6 1 2 1 3 1

sinh sinh

sinh sinh

M H M a h a H M N a h
N a N

a c M a h a h

 − + + −
=  

 + 

, 
( ) ( ) ( )

( )

2 2

3 1 1 2 3 1 6

3

23 3 1 9 1 1 3 6 1 2 3 1

2

3 6 1 3 1

cosh ( sinh cosh

sinh

a H HM M M a M N

N a h a N a h a c M a h

a c M a h



− + −

= +

+

 
 
 
 
 

 

( ) ( )( ) ( )
( ) ( )

2 2

3 1 1 2 3 1 62

24 2 1 3 1 6 1 10 2 9 1 1 2 9 3 2

3 6 1 2 3 1 3 6 1 3 1

sinh ( cosh
cosh sinh

 − + −
= − − +  

 + + 

a H HM M M a M N
N a h a H M N a N a N a h a N

a c M a h a c M a h

 

( ) ( )( ) ( )
( ) ( )

( )

2

1 2 3 1 62

26 1 3 1 2 3 6 3 3 2 3 2

3 6 1 3 1

cosh sinh sinh
sinh


− + + −

= − − −
+

 
 
 

M H M a H M N
N M a h H M a c a h a a h

a c M a h

 

( )( ) ( ) ( )

( ) ( )

2 2

25 3 1 6 1 10 2 9 2 1 1 10 3 1 1 2

2 3 2

1 10 3 1 6 1 10 3 6 1 2 3 1 1 10 3 6 1 3 1

cosh

cosh sinh

= − − − + − +

− + +

N a H M N a N a N a h a N a H HM M M

a N a M N a N a c M a h a N a c M a h

 

( )( ) ( ) ( ) ( ) ( )( )2 2 2

27 3 1 6 1 10 2 9 2 1 1 10 1 2 3 1 6 3 6 1 3 1cosh sinh= − − − + − + + − +N a H M N a N a N a h a N M H M a H M N a c M a h  

( ) ( )( ) ( )2

28 1 1 10 3 1 2 3 6 3 3 2 3 27
cosh sinh sinh= − − − +N a M N a h H M a c a h a a h N  



Srinivas and Anasuya / Journal of Heat and Mass Transfer Research 12 (2025) 345-376 

373 

( )
( ) ( )

2 2

3 1 1 2 3 1 6

29 2 9 2 1 3 2

3 6 1 2 3 1 3 6 1 3 1

cosh
cosh sinh

a H HM M M a M N
N a N a h

a c M a h a c M a h

 − + − +
=  

 + 

 

( )( ) ( )
( ) ( )

2 2

3 1 1 2 3 1 62

30 3 1 6 1 10 2 9 2 1 1 10 3 2

3 6 1 2 3 1 3 6 1 3 1

cosh
cosh sinh

− + − +
= − − − +

+

 
 
 

a H HM M M a M N
N a H M N a N a N a h a N

a c M a h a c M a h

 

 
  ( )

2 2

3 1 1 2 3 1 6

31 2 10 2 1 3 2

3 6 1 2 3 1 3 6 1 3 1

sinh
cosh sinh

a H HM M M a M N
N a N a h

a c M a h a c M a h

 − + −
=  

 + + 

, ( )( ) ( )

( ) ( ) ( )( )

2

3 1 6 1 10 2 9 2 1

32 2 2

1 10 1 2 3 1 6 3 6 1 3 1

cosh

sinh

a H M N a N a N a h
N

a N M H M a H M N a c M a h

 − − −
 =
 + − + + − +
 

 

  ( ) ( )  ( )2 2

33 2 10 2 1 1 2 3 1 6 3 6 1 3 1sinh sinhN a N a h M H M a H M N a c M a h= − − + + − + , ( )( ) ( )  ( )2

34 2 3 6 3 1 1 1 2 2 1sinh sinh sinhN H M a c a h a a h a a h= − − −  

( )( )  ( )35 33 32 1 1 36 31 30 1 1sinh , sinhN N N a h N N N a h= + = − , 
( ) ( )( )

( )
( ) ( )

( )

2

1 3 1 2 3 6 3

2

36 1 2 3 1 6

3 2 3 2

3 6 1 3 1

cosh sinh

sinh
sinh

M a h H M a c a h

N M H M a H M N
a a h

a c M a h


− + +

= − + + −
+

+

 
 

  
  

  

 

( ) ( )( )2

37 1 1 10 3 1 2 3 6 3cosh sinhN a M N a h H M a c a h= − − , 

( )( ) ( )

( ) ( )

( )

2

3 1 6 1 10 2 9 2 1

2

38 1 2 3 1 6

1 10 2

3 6 1 3 1

cosh

sinh

a H M N a N a N a h

N M H M a H M N
a N

a c M a h

− −

= − + + −
−

+

 
 

  
  

  

 

( )( )
39 37 3 2 38 3

sinhN N a N a h= + , 
( ) ( )

2 2

3 1 1 2 3 1 6

40 3 2

3 6 1 2 3 1 3 6 1 3 1cosh sinh

a H HM M M a M N
N

a c M a h a c M a h

 − + −
=  
 + + 

 

( )( ) ( )( )2

41 3 1 6 1 10 2 9 2 1 1 10 42coshN a H M N a N a N a h a N N= − − − + , 
( ) ( )

2 2

3 1 1 2 3 1 6

42 3 2

3 6 1 2 3 1 3 6 1 3 1
cosh sinh

a H HM M M a M N
N

a c M a h a c M a h

− + −
=

+ +

 
 
 

 

( ) ( )( )43 2 9 2 1 40 1 1 41cosh coshN a N a h N a h N= − +  

2 2 3 2 3 2 2

14 3 5 3 6 3 5 3 6 3 1 3 3
2 2= − + + − +  +A a Brc a Brc a Brc J a Brc J a J a BrG  

( )( )2 2 2

5 6 3 5 6
15 16 17 3 5 6

3 3

6 3 5 3
18 19

3 3

1
, , ,

2

8 8
,

Br c c a J Brc c
A A A a Brc c J

a a

Brc G Brc G
A A

a a

+ +
= = =

= =

 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 3 10 2 3 10 4 10 2 4 10 1 9 1 1 9

2 2 2 2 2 2

2 9 1 2 9 1 2

2 2 2 2 2 2

2 2 4 4

= − − + + −

− + +  +

A Brc N a Brc N Brc N a Brc N Brc N a Brc N

Brc N a Brc N BrG
 

( ) ( )2 2 2 2

1 1 2 9

22

1

1
A

a Br c c N

a
=

+ +
, 

( ) ( ) ( ) ( )
1 3 10 9 1 2 1 3 10 9 2 4 10 9 1 2 2 4 10 9

3 2 2 2 2

1 2 1 2 1 2 1 2

8 8 8 8
= − − +

− − − −

Brc c N N a a Brc c N N Brc c N N a a Brc c N N
A

a a a a a a a a
 

2 2 2 2

2 2 2 23 10 4 10

4 3 10 4 102 2

2 2

Brc N Brc N
A Brc N Brc N

a a
= + + + ,  

( ) ( ) ( ) ( )
1 3 10 9 1 2 1 3 10 9 2 4 10 9 1 2 2 4 10 9

5 2 2 2 2

1 2 1 2 1 2 1 2

8 8 8 8
= + + +

+ + + +

Brc c N N a a Brc c N N Brc c N N a a Brc c N N
A

a a a a a a a a
, 

2

2 1 2 9

6 1 2 9 2

1

2
2

Brc c N
A Brc c N

a
= + , 

( ) ( ) ( ) ( )
2 3 10 9 1 2 2 3 10 9 1 4 10 9 1 2 1 4 10 9

7 2 2 2 2

1 2 1 2 1 2 1 2

8 8 8 8
= − − +

− − − −

Brc c N N a a Brc c N N Brc c N N a a Brc c N N
A

a a a a a a a a

 

2
2 3 4 10

8 3 4 10 2

2

2
2

Brc c N
A Brc c N

a
= + ,  

( ) ( ) ( ) ( )
2 3 10 9 1 2 2 3 10 9 1 4 10 9 1 2 1 4 10 9

9 2 2 2 2

1 2 1 2 1 2 1 2

8 8 8 8
= + + +

+ + + +

Brc c N N a a Brc c N N Brc c N N a a Brc c N N
A

a a a a a a a a
 



Srinivas and Anasuya / Journal of Heat and Mass Transfer Research 12 (2025) 345-376 

374 

1 9 2 3 10 2 2 9 2 4 10 2

10 11 12 132 2 2 2

1 2 1 2

16 16 16 16
, , ,= = = =

Brc N G Brc N G Brc N G Brc N G
A A A A

a a a a
 

( )
2 3 4 5 10 11

1
,

8 1

A A A A A A
d

Rd

+ + + + +
=

+
 1 2

20 212 2 2

1 1

2 2 1
,

4 1

SryA a SrA
A A

f a f
= =

−
, ( )( )

1 3 2 3 2 4
22 23 2 2

1 2 1 1 2 1 2 1

2
, ,

4

a SrA a SrA a SrA
A A

a a f a a f a f

− +
= =

− − − + −
 

( ) ( )( )
( )( )

( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

3 3 3 3 3 3 3 1 1 1 3 3 3

3 1

3 3 1 1 1 1 1 1 3 1 1 2 3 3 1 2 1 3 3 1 3 1 2 1 3

3 2 3 1 2 1 3 3 1 3 1 1 2 1 3 2

1
,8 8 2 2

8 1 1

2 sinh 2 cosh sinh cosh sinh

sinh sinh

   


 

= + + + − + −
+ + − +

+ − + + − + −

− − − − +

f a J f f a JRd f a h J h h A a f J A
a J Rd h h

f a J a h a h h a h f a h A a f J a a h A f a a hJ a a h A

f a a hJ a a h A f a a h J a a h A a ( )( ) ( )

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )

3 1 3 1 2 1 3 3 3 4 3 3 2 1 4

3 2 3 2 1 4 3 2 3 1 2 1 4 3 3 5 3 3 1 2 1 5 1 3 3 1 2 1 5

2 3 3 1 2 1 5 1 3 3 1 1 2 1 5 2 3 1 3

sinh cosh 2

2 sinh 2 2 sinh 2 cosh sinh

sinh sinh sinh

 

 

− − +

+ − − + + + +

+ + − + −

a h f J a a h A a Jf A a Jf a h A

f a a hJ a h A f a a h J a h A a f J A a f J a a h A a f a hJ a a h A

a f a hJ a a h A a f a h J a a h A a a h Jf ( ) ( )

( ) ( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 2 1 5 3 1 3 1 1 6

3 1 3 1 1 1 6 3 3 1 1 6 1 3 3 1 2 1 7 2 3 3 1 2 1 7

1 3 1 3 1 2 1 7 2 3 1 3 1 2 1 7 3 3 1 2 1 7 3 2 3

2 cosh 2

2 cosh 2 sinh 2 cosh cosh

cosh cosh sinh 2 cosh 2





 + + 

− + + − − −

− − + − + − +

a a h A f a a hJ a h A

f a a h J a h A a f J a h A a a hf J a a h A a a hJf a a h A

a a h Jf a a h A a a h Jf a a h A a J f a a h A f a a hJ a( )

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )

2 1 8

2 3 1 3 2 1 8 3 3 2 1 8 1 3 3 1 2 1 9 2 3 3 1 2 1 9

1 3 1 3 1 2 1 9 2 3 1 3 1 2 1 9

2 cosh 2 sinh 2 cosh cosh

cosh cosh

− + + + + +

− + − +

h A

a a h Jf a h A a J f a h A a a hJf a a h A a a hJf a a h A

a a h Jf a a h A a a h f J a a h A

 

( )
1 5 2 5 1 6

24 25 2 2

1 112

22

1

2
, ,

4

a SrA a SrA a SrA
A A

a ffa a

− −
= =

−−+ ( )
1 7 2 7

26

11

22

2

,
a SrA a SrA

A
fa a

− +
=

−−

1 10

29 2 2

1 1

,
a SrA

A
a f

=
−

2 8

27 2 2

2 1

2

4

a SrA
A

a f
=

− ( )
1 9 2 9

28

1

22

1 2

a SrA a SrA
A

fa a

− −
=

−+
  

2 11 1 12

30 312 2 2 2

2 1 1 1

,
a SrA a SrA

A A
a f a f

= =
− −

, 2 13 2

32 332 2 2

2 1 1

, ,
a SrA d Sr

A A
a f f

= =
−

 
( )

14

34 2

3 2
2 1

Sr A
A

a J Rd f


=

+
, 

( )( )
15

35 2 2

3 22 1 4

Sr A
A

J Rd a f


=

+ − +

,  

( )( )
18

38 2 2

3 2

,
4 1


=

+ − +

Sr A
A

J Rd a f

 

( )( ) ( )( )
16 17

36 2 2 2 2

2 2

,
2 1 4 3 2 1 4 3

 
= +

+ − + + − +

Sr A Sr A
A

J Rd a f J Rd a f

  

( )( )
19 4

39 402 2 2

3 2 2

,
4 1

Sr A d Sr
A A

J Rd a f f


= =

+ − +

 

References 

[1] Latham, T.W., 1966. Fluid motions in a 
peristaltic pump., Ph.D. thesis, 
Massachusetts Institute of Technology. 

[2] Shapiro, A.H.,  Jaffrin, M.Y.,  and Weinberg, 
S. L.,  1969. Peristaltic pumping with long 
wavelengths at low reynolds number. 
Journal of fluid mechanics, 37(4), pp. 799–
825 

[3] Srivastava, L, Srivastava, V., and Sinha, S., 
1983. Peristaltic transport of a 
physiological fluid. Biorheology, 20(2), pp. 
153–166. 

[4] Hayat, T.,  Wang, Y.,  Siddiqui,  A.,  Hutter, K.,  
and Asghar, S.,  2002. Peristaltic transport 
of a third-order fluid in a circular 
cylindrical tube. Mathematical Models and 
Methods in Applied Sciences, 12 (12), pp. 
1691–1706. 

[5] Mishra, M.,  and Ramachandra Rao, A.,  
2003. Peristaltic transport of a newtonian 
fluid in an asymmetric channel. Zeitschrift 
für angewandte Mathematik und Physik 
ZAMP, 54, pp. 532–55 

[6] Radhakrishnamacharya, G., and  
Srinivasulu, C., 2007. Influence of wall 
properties on peristaltic transport with 
heat transfer. Comptes Rendus Mecanique, 
335(7), 36. 

[7] Srinivas, S.,  and Kothandapani, M., 2008. 
Peristaltic transport in an asymmetric 
channel with heat transfer—a note. 
International Communications in Heat and 
Mass Transfer, 35 (4), pp. 514–522. 

[8] Pandey, S., and Chaube, M.K., 2010. 
Peristaltic transport of a visco-elastic fluid 
in a tube of non-uniform cross section. 
Mathematical and Computer Modelling, 
52(3-4), pp. 501–514. 



Srinivas and Anasuya / Journal of Heat and Mass Transfer Research 12 (2025) 345-376 

375 

[9] Srinivas, S.,  and Muthuraj, R.,  2010. 
Peristaltic transport of a jeffrey fluid under 
the effect of slip in an inclined asymmetric 
channel. International Journal of Applied 
Mechanics, 2(02), pp. 437–455. 

[10] Srinivas, S.,  and Muthuraj, R.,  2011. Effects 
of chemical reaction and space porosity on 
mhd mixed convective flow in a vertical 
asymmetric channel with peristalsis. 
Mathematical and Computer Modelling, 
54(5-6), pp. 1213–1227.  

[11] Magesh, A.,  Pushparaj, V.,  Srinivas, S.,   and 
Tamizharasi, P., 2023. Numerical 
investigations of activation energy on the 
peristaltic transport of carreau nanofluid 
through a curved asymmetric channel. 
Physics of Fluids, 35(10). 

[12] Abbasi, A., Danish, S.,  Farooq, W.,  Khan, 
M.I., Akermi, M., and  Hejazi, H.A.,  2024. 
Peristaltic transport of viscoelastic fluid in 
curved ducts with ciliated walls. Physics of 
Fluids, 36(3). 

[13] Anasuya, J.B., and Srinivas, S., 2024. 
Pulsatile flow and peristaltic motion 
interaction of Walter’s B liquid. 
Proceedings of the Institution of 
Mechanical Engineers. Part E: Journal of 
Process Mechanical Engineering, 2024 Apr 
12:09544089241242601. 

[14] Das, S., Barman, B., Jana, R.N., and Makinde, 
O.D., 2021. Hall and ion slip currents’ 
impact on electromagnetic blood flow 
conveying hybrid nanoparticles through an 
endoscope with peristaltic waves. 
BioNanoScience, 11(3), pp. 770-792. 

[15] Das, S., and Barman, B., 2022. Ramification 
of hall and ion-slip currents on electro-
osmosis of ionic hybrid nanofluid in a 
peristaltic microchannel. 
BioNanoScience, 12(3), pp. 957-978. 

[16] Srinivas, S., Anasuya, J.B., and Merugu, V., 
2025. Interaction of pulsatile and 
peristaltic flow of a particle-fluid 
suspension with thermal effects. 
International Communications in Heat and 
Mass Transfer, 163, 108728. 

[17] Shukla, J.B.,  Parihar, R.S.,  Rao, B.R.P., and 
Gupta, S.P.,  1980. Effects of peripheral-
layer viscosity on peristaltic transport of a 
bio-fluid.  Journal of Fluid Mechanics, 97(2), 
pp. 225–237. 

[18] Srivastava, V.,  and Saxena, M., 1995.  A two-
fluid model of non-newtonian blood flow 
induced by peristaltic waves. Rheologica 
Acta, 34, pp. 406–414. 

[19] Rao, A. R., and Usha, S.,  1995. Peristaltic 
transport of two immiscible viscous fluids 
in a circular tube. Journal of Fluid 
Mechanics, 298, pp. 271–285. 

[20] Misra, J.,  and Pandey, S., 2001. Peristaltic 
flow of a multilayered power-law fluid 
through a cylindrical tube. International 
Journal of Engineering Science, 39(4), pp. 
387–402. 

[21] Kavitha, A.,  Reddy, R.H., Saravana, R., and   
Sreenadh, S., 2017. Peristaltic transport of a 
jeffrey fluid in contact with a newtonian 
fluid in an inclined channel. Ain Shams 
Engineering Journal, 8(4) pp. 683–687. 

[22] Vajravelu, K.,  Sreenadh, S.,  and Saravana, 
R.,  2017. Influence of velocity slip and 
temperature jump conditions on the 
peristaltic flow of a jeffrey fluid in contact 
with a newtonian fluid. Applied 
Mathematics and Nonlinear Sciences, 2 (2), 
pp. 429–442. 

[23] Hussain, S.,  Ali, N., and  Ullah, K.,  2019. 
Peristaltic flow of phan-thien-tanner fluid: 
effects of peripheral layer and electro-
osmotic force. Rheologica Acta, 58, pp. 603–
618.  

[24] Ali, N.,  Hussain, S.,  Ullah, K., and   Bég, O.A., 
2019. Mathematical modelling of two-fluid 
electroosmotic peristaltic pumping of an 
ellis fluid in an axisymmetric tube. The 
European Physical Journal Plus, 134(4), 141. 

[25] Sankranthi, V.K.,  and Akkiraju Naga Satya, 
S., 2021.  Influence of peristalsis on the 
convective flow of two immiscible fluids in 
a vertical channel. Heat Transfer, 50(5), pp. 
4757–4774. 

[26] Rushi Kesava, A., and Srinivas, A., 2022. 
Exploration of peristaltic pumping of 
casson fluid flow through a porous 
peripheral layer in a channel. Nonlinear 
Engineering, 11(1), pp. 558– 567. 

[27] Sreenadh, S.,  Arunachalam, P., Sumalatha, 
B., 2021. Peristaltic flow of two-layered 
fluids in an elastic tube. Proceedings of the 
National Academy of Sciences, India Section 
A: Physical Sciences, pp. 1–12. 

[28] Kumar, A., and  Yadav, P.K.,  2023. Heat and 
mass transfer in peristaltic flow of mhd 
non-miscible micropolar and newtonian 
fluid through a porous saturated 
asymmetric channel. Waves in Random and 
Complex Media, pp. 1–45. 

[29] Jubair, S., Yang, J., Ali, B., Bin-Mohsin, B., and 
Abd El-Wahed Khalifa, H., 2025. Analyzing 
the impact of non-Newtonian nanofluid 



Srinivas and Anasuya / Journal of Heat and Mass Transfer Research 12 (2025) 345-376 

376 

flow on pollutant discharge concentration 
in wastewater management using an 
artificial computing approach. Applied 
Water Science, 15, pp. 1-13. 

[30] Jubair, S., Ali, B., Rafique, K., Ahmad Ansari, 
M., Mahmood, Z., Kumar, A., Mukalazi, H., 
and Alqahtani, H., 2024. Couple-stress 
nanofluid flow comprised of titanium alloy 
subject to Hall current and Joule heating 
effects: Numerical investigation. AIP 
Advances, 14(11), 115101. 

[31] Mehmood, Z., Mehmood,  R., and Iqbal Z., 
2017. Numerical investigation of 
micropolar casson fluid over a stretching 
sheet with internal heating. 
Communications in Theoretical Physics, 
67(4), 443. 

[32] Iqbal, Z., Mehmood, R., and Azhar, E.,  
Mehmood, Z., 2017. Impact of inclined 
magnetic field on micropolar casson fluid 
using keller box algorithm. The European 
Physical Journal Plus, 132, pp. 1–13. 

[33] Chun, O., Raja, M.A.Z., Naz, S., Ahmad, I.,   
Akhtar, R.,  Ali, Y.,  and Shoaib, M.,  2020. 
Dynamics of inclined magnetic field effects 
on micropolar casson fluid with lobatto iiia 
numerical solver. AIP Advances, 10(6). 

[34] Hazarika, S.,  and Ahmed, S.,  2020. Steady 
magnetohydrodynamic micropolar casson 
fluid of brownian motion over a solid 
sphere with thermophoretic and buoyancy 
forces: numerical analysis. Journal of 
Nanofluids, 9(4), pp. 336–345. 

[35] El-Dabe, N.T., Moatimid, G.M., Elshekhipy, 
A.-E. A., and Aballah, N.F., 2020. Numerical 
simulation of the motion of a micropolar 
casson fluid through a porous medium over 
a stretching surface. Thermal Science, 24(2 
Part B), pp. 1285–1297.  

[36] Abbas, Z.,  and Rafiq, M., 2022. Numerical 
simulation of thermal transportation with 
viscous dissipation for a peristaltic 
mechanism of micropolar-casson fluid. 
Arabian Journal for Science and 
Engineering, 47(7), pp. 8709–8720. 

[37] Upadhya, S.M., Raju, S.V.S.R., Raju, C.S.K.,  
Shah, N.A., and Chung, J.D., 2022. 
Importance of entropy generation on 
casson, micropolar and hybrid magneto-
nanofluids in a suspension of cross 

diffusion. Chinese Journal of Physics, 77, pp. 
1080–1101. 

[38] Abbas, N., Shatanawi, W., and Shatnawi, T.A. 
2024. Thermodynamic properties of 
casson-sutterbymicropolar fluid flow over 
exponential stretching curved sheet with 
impact of mhd and heat generation. Case 
Studies in Thermal Engineering, 55, 104123. 

[39] Sharma, V., Chandrawat, R.K., and Kumar D., 
2024.  Numerical investigation of unsteady 
mhd immiscible casson micropolar and 
jeffery fluid in a horizontal channel with 
heat transfer using mcb-dqm approach. 
Numerical Heat Transfer, Part B: 
Fundamentals, pp. 1–35.  

[40] Vaidehi, P., and Sasikumar,  J., 2024. 
Significance of micro-rotation on buoyancy 
driven oscillatory flow of micropolar-
casson fluid through tapered wavy 
channels: A numerical approach. 
International Journal of Applied and 
Computational Mathematics, 10(3) pp. 1–
26. 

[41] Imran, N., Javed, M., Sohail, M., Thounthong, 
P., Nabwey, H.A., and Tlili, I., 2020. 
Utilization of hall current and ions slip 
effects for the dynamic simulation of 
peristalsis in a compliant channel. 
Alexandria Engineering Journal, 59(5), pp. 
3609-3622.   

[42] Das, S., Barman, and Jana, R., 2021. Hall and 
ion-slip currents’ role in transportation 
dynamics of ionic Casson hybrid nano-
liquid in a microchannel via electroosmosis 
and peristalsis. Korea-Australia Rheology 
Journal, 33, pp. 367-391. 

[43] Krishna, M.V., and Chamkha, A.J., 2019. Hall 
and ion slip effects on MHD rotating 
boundary layer flow of nanofluid past an 
infinite vertical plate embedded in a porous 
medium. Results in Physics, 15. 102652. 

[44] Das, S., Barman, B., and Jana R.,  2021. 
Influence of hall and ion-slip currents on 
peristaltic transport of magneto-nanofluid 
in an asymmetric channel. BioNanoScience, 
11, pp. 720–738 

[45] Bejan, A., 1996. Entropy generation 
minimization: The new thermodynamics of 
finite-size devices and finite-time 
processes. Journal of Applied Physics, 79(3), 
pp. 1191–1218. 

 

 


