Gas Cyclone Performance Prediction: A State-of-the-Art Review of Theoretical Modeling Approaches

Document Type : Review Article

Authors

1 Department of Mechanical Engineering, Semnan University, P. O. Box 35131-191, Semnan, Iran

2 Behbahan Khatam Alanbia University of Technology, Department of Mechanical Engineering, Faculty of Engineering, Behbahan, Iran

3 Energy Engineering Department, Faculty of Gas & Petroleum, Yasouj University, Gachsaran, Iran

Abstract

Existing investigations present numerous theoretical frameworks for analyzing conventional gas cyclones, focusing on key performance indicators (KPIs) such as inlet velocities, pressure drop, and collection efficiency. These KPIs are critical in industries where understanding the transport and behavior of solid particles is paramount. Traditionally, predicting the complex swirling gas flow within these cyclones has relied on empirical studies, which are both resource-intensive and time-consuming. While theoretical models offer a potentially more efficient and cost-effective approach, they have received comparatively less attention in previous investigations of overall gas cyclone performance. This research endeavors to rigorously evaluate the accuracy of established gas separator theories. The methodology involves comparing theoretical predictions with numerical simulations and experimental data obtained at a controlled solid loading rate of 1 g/m³, across velocities of 5 and 10 m/s. A notable consensus emerged, favoring Muschelknautz's approach for predicting collection efficiency. Similarly, the Lapple and Shepherd model demonstrated utility in estimating pressure drop under conditions of low solid loading. However, several scholars have highlighted discrepancies arising from the influence of wall friction within gas cyclones and a general insensitivity to the particle phase within these models. This section provides an overview of published CFD simulation studies on cyclones, specifically examining the effects of high particle loading, at room and at high temperatures. Furthermore, the Mothes and Löffler model was identified as capable of accurately predicting the natural vortex length, a critical parameter for the design and optimization of conventional gas cyclones.

Keywords

Main Subjects


  1. Gao, X., Chen, J., Feng, J. and Peng, X., 2013. Numerical and experimental investigations of the effects of the breakup of oil droplets on the performance of oil–gas cyclone separators in oil-injected compressor systems. International journal of refrigeration, 36(7), pp.1894-1904. https://doi.org/10.1016/j.ijrefrig.2013.06.004.
  2. Markt, D.P., Pathak, A. and Raessi, M., 2018. Advanced computational simulations of surface impingement of a train of ethanol drops: A pathway to developing spray-wall interaction submodels. Computing in Science & Engineering, 20(4), pp.56-65. DOI: 10.1109/MCSE.2018.042781326.
  3.  Park, D. and Go, J.S., 2020. Design of cyclone separator critical diameter model based on machine learning and cfd. Processes, 8(11), p.1521.https://doi.org/10.3390/pr8111521
  4.  Parvaz, F., Hosseini, S.H., Elsayed, K. and Ahmadi, G., 2018. Numerical investigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators. Separation and Purification Technology, 201, pp. 223-237. https://doi.org/10.1016/j.seppur.2018.03.001.
  5.  Dorfeshan. M, Moghaddam. S, Parvaz. F., 2025. The Impression of Roughness on Flow Pattern and Performance of Axial Gas Cyclone Along with Erosion Rate. Journal of Gas Technology, 9(2), pp. 70-87. https://doi.org/20.1001.1/jgt.2025.2057137.1054.
  6.   Izadi, M., Makvand, A.M., Assareh, E. and Parvaz, F., 2020. Optimizing the design and performance of solid–liquid separators. International Journal of Thermofluids, 5, p.100033. https://doi.org/10.1016/j.ijft.2020.100033.
  7.   Vahedi, S.M., Parvaz, F., Kamali, M. and Jafari Jebeli, H., 2018. Numerical investigation of the impact of inlet channel numbers on the flow pattern, performance, and erosion of gas-particle cyclone. Iranian Journal of Oil and Gas Science and Technology, 7(4), pp.59-78. https://ijogst.put.ac.ir/article_57757.html.
  8.   Parvaz, F., 2024. The effect of curves of tangential channel on gas cyclone performance. Computational Methods in Engineering Sciences, 1(4), pp.9-18. https://doi.org/10.22034/cmes.2024.2024131.1022.
  9.   Parvaz, F., Rafee, R. and Talebi, F., 2018. Effects of the Outlet Pipe Diameter on the Performance of Aerocyclone in Gas Droplet Two-Phase Flow. Journal of Mechanical Engineering, 48, pp. 45–53. https://tumechj.tabrizu.ac.ir/article_7816.html.
  10. Vahedi, S.M., Parvaz, F., Rafee, R. and Khandan Bakavoli, M., 2018. Computational fluid dynamics simulation of the flow patterns and performance of conventional and dual-cone gas-particle cyclones. Journal of Heat and Mass Transfer Research, 5(1), pp. 27-38. https://doi.org/10.22075/jhmtr.2017.11918.1170.
  11. Parvaz, F., Vahedi, S.M. and Khandan, M., 2018. Numerical investigation of the effects of geometry variation on the flow pattern and performance of Gas-Particle cyclones. Iranian Journal of Mechanical Engineering Transactions of ISME, 19(4), pp.101-122.
  12. Dehdarinejad. E, Hossein. S, Parvaz. F, Dehdarinejad. M, Ahmadi. G, Olazar, M., 2026. Comprehensive study on the role of wall roughness in square cyclone performance : Flow field , erosion rate , and separation efficiency. Chemical Engineering Science, 321, Part B, p.122860. https://doi.org/10.1016/j.ces.2025.122860
  13. Parvaz, F., Hosseini, S.H., Bastan, A.R., Foroozesh, J., Babaoğlu, N.U., Elsayed, K. and Ahmadi, G., 2023. Influence of gas exhaust geometry on flow pattern, performance, and erosion rate of a gas cyclone. Korean Journal of Chemical Engineering, 40(7), pp. 1587-1597. https://doi.org/10.1007/s11814-023-1430-2.
  14. Elsayed, K., Parvaz, F., Hosseini, S.H. and Ahmadi, G., 2020. Influence of the dipleg and dustbin dimensions on performance of gas cyclones: An optimization study. Separation and Purification Technology, 239, p.116553. https://doi.org/10.1016/j.seppur.2020.116553.
  15. Parvaz, F., Hosseini, S.H., Elsayed, K. and Ahmadi, G., 2020. Influence of the dipleg shape on the performance of gas cyclones. Separation and Purification Technology, 233, p.116000. https://doi.org/10.1016/j.seppur.2019.116000.
  16. Vahedi, S.M., Parvaz, F., Khandan, B.M. and Kamali, M., 2020. Effect of Surface Roughness on Vortex Length and Efficiency of Gas-oil Cyclones through CFD Modelling. Iranian Journal of Oil and Gas Science and Technology, 9, pp. 68–84. https://doi.org/10.22050/ijogst.2018.102377.1417.
  17. Dehdarinejad, E., Bayareh, M., Parvaz, F., Hosseini, S.H. and Ahmadi, G., 2023. Performance analysis of a gas cyclone with a converging-diverging vortex finder. Chemical Engineering Research and Design, 193, pp.587-599. https://doi.org/10.1016/j.cherd.2023.04.012.
  18. Dehdarinejad, E., Parvaz, F., Hosseini, S.H., Ahmadi, G. and Elsayed, K., 2023. Performance analysis of a gas cyclone with a dustbin inverted hybrid solid cone. Aerosol Science and Technology, 57(9), pp.911-924. https://doi.org/10.1080/02786826.2023.2217873.
  19. Foroozesh, J., Parvaz, F., Hosseini, S.H., Ahmadi, G., Elsayed, K. and Babaoğlu, N.U., 2021. Computational fluid dynamics study of the impact of surface roughness on cyclone performance and erosion. Powder Technology, 389, pp.339-354. https://doi.org/10.1016/j.powtec.2021.05.041.
  20. Babaoğlu, N.U., Parvaz, F., Foroozesh, J., Hosseini, S.H., Ahmadi, G. and Elsayed, K., 2023. Geometry optimization of axial cyclone for high performance and low acoustic noise. Powder Technology, 427, p.118738. https://doi.org/10.1016/j.powtec.2023.118738.
  21. Babaoğlu, N.U., Parvaz, F., Hosseini, S.H., Elsayed, K. and Ahmadi, G., 2021. Influence of the inlet cross-sectional shape on the performance of a multi-inlet gas cyclone. Powder Technology, 384, pp.82-99. https://doi.org/10.1016/j.powtec.2021.02.008.
  22. Dehdarinejad, E., Bayareh, M. and Ashrafizaadeh, M., 2021. A numerical study on combined baffles quick-separation device. International Journal of Chemical Reactor Engineering, 19(5), pp.515-526. https://doi.org/10.1515/ijcre-2021-0007.
  23. Dehdarinejad, E., Bayareh, M. and Ashrafizaadeh, M., 2022. Impact of cone wall roughness on turbulence swirling flow in a cyclone separator. Chemical Papers, 76(9), pp. 5579-5599. https://doi.org/10.1007/s11696-022-02261-6.
  24. Bayareh, M. and Dehdarinejad, E., 2022. Impact of Baffle and Cone Roughness on the Performance of a Solid-gas Separator Cyclone. In 41st ISTANBUL International Conference on Advances in Science, Engineering & Technology (IASET-22), pp. 94–100. https://doi.org/10.17758/dirpub11.dir0522123.
  25. Kumar, M., Prakash, O. and Brar, L.S., 2025. Analyzing the impact of inclined single and multi-inlet configurations on the turbulent flow field in cyclone separators using large-eddy simulation. Separation and Purification Technology, p.134111. https://doi.org/10.1016/j.seppur.2025.134111.
  26. Vivek, R., Venkatesh, S. and Babu, K.S., 2025. Investigation on flow pattern and performance of square and cylindrical cyclone by experimental and numerical approach. Powder Technology, p.121427. https://doi.org/10.1016/j.powtec.2025.121427.
  27.  Dehdarinejad, E. and Bayareh, M., 2022. Performance improvement of a cyclone separator using spiral guide vanes with variable pitch length. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(11), p.516. https://doi.org/10.1007/s40430-022-03788-1.
  28. Dehdarinejad, E. and Bayareh, M., 2023. Analysis of the vortical flow in a cyclone using four vortex identification methods. Powder Technology, 428, p.118897. https://doi.org/10.1016/j.powtec.2023.118897.
  29. Dehdarinejad, E. and Bayareh, M., 2023. Experimental and numerical investigation on the performance of a gas-solid cyclone with twisted baffles and roughened cone surface. Powder Technology, 420, p.118401. https://doi.org/10.1016/j.powtec.2023.118401.
  30. Dehdarinejad, E. and Bayareh, M., 2021. An overview of numerical simulations on gas‐solid cyclone separators with tangential inlet. ChemBioEng Reviews, 8(4), pp.375-391. https://doi.org/10.1002/cben.202000034.
  31. Dehdarinejad, E. and Bayareh, M., 2023. Performance analysis of a novel cyclone separator using RBFNN and MOPSO algorithms. Powder Technology, 426,118663. https://doi.org/10.1016/j.powtec.2023.118663.
  32. Dehdarinejad, E. and Bayareh, M., 2023. Effect of a new pattern of surface roughness on flow field and erosion rate of a cyclone. International Journal of Chemical Reactor Engineering, 21(2),153-167. https://doi.org/10.1515/ijcre-2022-0064.
  33. Dehdarinejad, E. and Bayareh, M., 2022. Impact of non-uniform surface roughness on the erosion rate and performance of a cyclone separator. Chemical Engineering Science, 249,117351. https://doi.org/10.1016/j.ces.2021.117351.
  34. Dehdarinejad, E., Bayareh, M. and Ashrafizaadeh, M., 2022. Impact of cone wall roughness on turbulence swirling flow in a cyclone separator. Chemical Papers, 76(9), pp.5579-5599. https://doi.org/10.1007/s11696-022-02261-6.
  35. Fu, S., Tao, L., Shen, Z., Xu, M., Yang, D., Hu, Y. and Zhou, F., 2025. Effects of helical guide vanes on droplet behavior and separation performance in cyclone separators. Chemical Engineering and Processing-Process Intensification, 209,110197. https://doi.org/10.1016/j.cep.2025.110197.
  36. Dai, R., Fu, S. and Yuan, H., 2024. Study on the wall film behavior and droplet catching performance of a micro cyclone in hydrogen fuel cells. International Journal of Hydrogen Energy, 61,125-136. https://doi.org/10.1016/j.ijhydene.2024.02.183.
  37. Cao, G., Sun, G., Yuan, S. and Wu, Y., 2025. Study on the influence of spiral guide vanes on gas/particle flow characteristics in FCC cyclone separator. Separation and Purification Technology, 353,128352. https://doi.org/10.1016/j.seppur.2024.128352.
  38. Sun, Z., Yang, H., Zhang, K., Wang, Z., Hong, Z. and Yang, G., 2024. Self-cleaning effect and secondary swirling clean gas for suppressing particle deposition on vortex finder of gas cyclones. Particuology, 90,72-87. https://doi.org/10.1016/j.partic.2023.11.021.
  39. Barua, S., Batcha, M.F.M., Mohammed, A.N., Saif, Y., Al-Alimi, S., Al-fakih, M.A. and Zhou, W., 2024. Numerical Investigation of Inlet Height and Width Variations on Separation Performance and Pressure Drop of Multi-Inlet Cyclone Separators. Processes, 12(9),1820. https://doi.org/10.3390/pr12091820.
  40. Madaliev, M., Abdulkhaev, Z., Khusanov, Y., Mirzababayeva, S. and Abobakirova, Z., 2024. Numerical study of highly efficient centrifugal cyclones. Acta hydrotechnica, 37(67), pp.137-151. https://doi.org/10.15292/acta.hydro.2024.08.
  41. Samadi, M., Mesbah, M. and Majidi, S., 2024. A novel approach to designing compact cyclones for efficient natural gas filtration. Powder Technology, 448, p.120259. https://doi.org/10.1016/j.powtec.2024.120259.
  42. Tang, Y., Xie, N., He, Y., Zhou, Y., Li, Z. and Wang, G., 2024. Study on the performance of downhole spiral-cyclone coupling separator for natural gas hydrate. Advanced Powder Technology, 35(10),104638. https://doi.org/10.1016/j.apt.2024.104638.
  43. Sun, Z., Yang, H., Zhang, K., Yan, Z., Su, N., Li, K. and Yang, G., 2024. 3D-printed elliptical cyclone separator with additional self-excited force field for enhancing the gas-solid separation. Advanced Powder Technology, 35(7),104496. https://doi.org/10.1016/j.apt.2024.104496.
  44. Zhao, J., Hao, X., Guo, X., Gao, F., Fan, J., Zhang, P. and Chen, G., 2025. Effect of local erosion on flow pattern and particle self-rotation in a cyclone separator. Advanced Powder Technology, 36(7),104949. https://doi.org/10.1016/j.apt.2025.104949.
  45. Liang, Y., Cheng, T., Li, Q., Liu, J., Li, Q., Li, J., Ma, S., Jiang, X., Wang, H. and Fu, P., 2024. CFD-DEM simulation of cyclone self-rotation drying: Particle high-speed self-rotation and heat transfer. Energy, 290,130277. https://doi.org/10.1016/j.energy.2024.130277.
  46. Hoffmann, A.C., Stein, L.E., 2008. Gas cyclones and swirl tubes: Principles, Des. Oper. 2nd Ed. Springer. https://doi.org/10.1007/978-3-540-74696-6.
  47. Griffiths, W.D. and Boysan, F., 1996. Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers. Journal of Aerosol Science, 27(2),281-304. https://doi.org/10.1016/0021-8502(95)00549-8.
  48. Bogodage, S.G. and Leung, A.Y.T., 2016. Improvements of the cyclone separator performance by down-comer tubes. Journal of Hazardous Materials, 311, pp.100-114. https://doi.org/10.1016/j.jhazmat.2016.02.072.
  49. Bogodage, S.G. and Leung, A.Y., 2015. CFD simulation of cyclone separators to reduce air pollution. Powder Technology, 286,488-506. https://doi.org/10.1016/j.powtec.2015.08.023.
  50. Cortes, C. and Gil, A., 2007. Modeling the gas and particle flow inside cyclone separators. Progress in energy and combustion Science, 33(5),409-452. https://doi.org/10.1016/j.pecs.2007.02.001.
  51. Zhao, B., 2005. Development of a new method for evaluating cyclone efficiency. Chemical Engineering and Processing: Process Intensification, 44(4),447-451. https://doi.org/10.1016/j.cep.2004.06.007.
  52. Theodore, L. and Paola, V.D., 1980. Predicting cyclone efficiency. Journal of the Air Pollution Control Association, 30(10),1132-1133. https://doi.org/10.1080/00022470.1980.10465160.
  53. Lapple, C.E., 1950. Gravity and centrifugal separation. American Industrial Hygiene Association Quarterly, 11(1),40-48. https://doi.org/10.1080/00968205009344283.
  54. Dirgo, J. and Leith, D., 1985. Cyclone collection efficiency: comparison of experimental results with theoretical predictions. Aerosol science and technology, 4(4),401-415. https://doi.org/10.1080/02786828508959066.
  55. Gimbun, J., Chuah, T.G., Choong, T.S. and FakhrúL-Razi, A., 2006. Evaluation on empirical models for the prediction of cyclone efficiency. Journal-The institution of Engineers, Malaysia, 67(3),54-58. https://www.academia.edu/19574858/Evaluation_on_empirical_models_for_the_prediction_of_cyclone_efficiency.
  56. Xiang, R., Park, S.H. and Lee, K.W., 2001. Effects of cone dimension on cyclone performance. Journal of Aerosol Science, 32(4),549-561. https://doi.org/10.1016/S0021-8502(00)00094-X.
  57. Leith, D. and Mehta, D., 1973. Cyclone performance and design. Atmospheric Environment (1967), 7(5),527-549. https://doi.org/10.1016/0004-6981(73)90006-1.
  58. Wan, G., Sun, G., Xue, X. and Shi, M., 2008. Solids concentration simulation of different size particles in a cyclone separator. Powder technology, 183(1),94-104. https://doi.org/10.1016/j.powtec.2007.11.019.
  59. Xue, X., Sun, G., Wan, G. and Shi, M., 2007. Numerical simulation of particle concentration in a gas cyclone separator. Petroleum Science, 4(3),76-83. https://doi.org/10.1007/s12182-007-0013-x.
  60. Mothe, H. and Loffler, F., 1988. Prediction of Particle Removal in Cyclone Separator. International Journal of Chemical Engineering, 28,231-240.
  61. Danckwerts, P.V., 1995. Continuous flow systems. Distribution of residence times. Chemical engineering science, 50(24),3857-3866. https://doi.org/10.1016/0009-2509(96)81811-2.
  62. Iozia, D.L. and Leith, D., 1990. The logistic function and cyclone fractional efficiency. Aerosol Science and Technology, 12(3),598-606. https://doi.org/10.1080/02786829008959373.
  63. Kim, J.C. and Lee, K.W., 1990. Experimental study of particle collection by small cyclones. Aerosol Science and Technology, 12(4),1003-1015. https://doi.org/10.1080/02786829008959410.
  64. Clift, R., Ghadiri, M. and Hoffman, A.C., 1991. A critique of two models for cyclone performance. AIChE Journal, 37(2),285-289. https://doi.org/10.1002/aic.690370217.
  65. Muschelknautz, U. and Muschelknautz, E., 1999. Separation efficiency of recirculating cyclones in circulating fluidized bed combustions. VGB PowerTech, 4,99. https://www.mkengineering.de/english/pdf/VGBZWSEN.PDF.
  66. Muschelknautz, U. and Muschelknautz, E., 1999. Improvements of cyclones in CFB power plants and quantitative estimations of their effects on the boilers solids inventory. https://www.osti.gov/etdeweb/biblio/20054162.
  67. Hoffmann, A.C. and Stein, L.E., 2008. How cyclones work. In Gas Cyclones and Swirl Tubes: Principles, Design and Operation (pp. 37-48). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74696-6.
  68. Hoffmannc, A.C., Van Santen, A., Allen, R.W.K. and Clift, R., 1992. Effects of geometry and solid loading on the performance of gas cyclones. Powder Technology, 70(1),83-91. https://doi.org/10.1016/0032-5910(92)85058-4.
  69. Dietz, P.W., 1981. Collection efficiency of cyclone separators. AIChE Journal, 27(6),888-892. https://doi.org/10.1002/aic.690270603.
  70. Patterson, P.A. and Munz, R.J., 1996. Gas and particle flow patterns in cyclones at room and elevated temperatures. The Canadian Journal of Chemical Engineering, 74(2),213-221. https://doi.org/10.1002/cjce.5450740206.
  71. Stairmand, C.J., 1951. The design and performance of cyclone separators. Transactions of the Institution of Chemical Engineers, 29,356-362. https://cir.nii.ac.jp/crid/1571698599847452416.
  72. Salcedo, R.L. and Coelho, M.A., 1999. Turbulent dispersion coefficients in cyclone flow: An empirical approach. The Canadian Journal of Chemical Engineering, 77(4),609-617. https://doi.org/10.1002/cjce.5450770401.
  73. Zhao, B., Wang, D., Su, Y. and Wang, H.L., 2020. Gas-particle cyclonic separation dynamics: modeling and characterization. Separation & Purification Reviews, 49(2),112-142. https://doi.org/10.1080/15422119.2018.1528278.
  74. Barth, W., 1956. Design and layout of the cyclone separator on the basis of new investigations. Warme Kraft, 8(1), p.9.
  75. Enliang, L. and Yingmin, W., 1989. A new collection theory of cyclone separators. AIChE Journal, 35(4),666-669. https://doi.org/10.1002/aic.690350419.
  76. Ray, M.B., Hoffmann, A.C. and Postma, R.S., 2000. Performance of different analytical methods in evaluating grade efficiency of centrifugal separators. Journal of aerosol science, 31(5), 563-581. https://doi.org/10.1016/S0021-8502(99)00543-1.
  77. Gil, A., Romeo, L.M. and Cortés, C., 2001. Cold flow model of a PFBC cyclone. Powder technology, 117(3),207-220. https://doi.org/10.1016/S0032-5910(00)00371-5.
  78. Zhao, B.I.N.G.T.A.O., 2004. A theoretical approach to pressure drop across cyclone separators. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 27(10),1105-1108. https://doi.org/10.1002/ceat.200402089.
  79. McK, R., 1949. Fundamentals of cyclone design and operation. Proceedings of the Australian Institute of Mining and Metallurgy, 152,203. https://cir.nii.ac.jp/crid/1573668924879693312.
  80. Shephered, C.B. and Lapple, C.E., 1939. Flow pattern and pressure drop in cyclone dust collectors. Industrial & Engineering Chemistry, 31(8),972-984. https://doi.org/10.1021/ie50356a012.
  81. Stairmand, C.J., 1949. Pressure drop in cyclone separators. 168, p.409.
  82. Basu, P., 2006. Gas–Solid Separators. In Combustion and Gasification in Fluidized Beds (pp. 381-416). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781420005158-12/gas%E2%80%93solid-separators-prabir-basu.
  83. Ji, Z., Xiong, Z., Wu, X., Chen, H. and Wu, H., 2009. Experimental investigations on a cyclone separator performance at an extremely low particle concentration. Powder Technology, 191(3),254-259. https://doi.org/10.1016/j.powtec.2008.10.015.
  84. Casal, J. and JM, M.B., 1983. A better way to calculate cyclone pressure drop. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL83X0128572.
  85. McK, R., 1949. Fundamentals of cyclone design and operation. Aust. Inst. Mining Met., 152, p. 203. https://cir.nii.ac.jp/crid/1573668924879693312.
  86. Belkner, J., Leineweber, J., Hein, G., Stauffenberg, J., Barth, A., Kissinger, T., Manske, E. and Fröhlich, T., 2025. An integrated exposure and measurement tool for 5-DOF direct laser writing based on chromatic differential confocal sensing. Journal of the European Optical Society-Rapid Publications, 21(1),27. https://doi.org/10.1051/jeos/2025017.
  87. Kuo, K.Y. and Tsai, C.J., 2001. On the theory of particle cutoff diameter and collection efficiency of cyclones. Aerosol and air quality research, 1(1),47-56. https://doi.org/10.4209/aaqr.2001.06.0005.
  88. MOORE, M.E. and McFARLAND, A.R., 1990. Design of Stairmand-type sampling cyclones. American Industrial Hygiene Association Journal, 51(3),151-159. https://doi.org/10.1080/15298669091369475.
  89. Trefz, M. and Muschelknautz, E., 1993. Extended cyclone theory for gas flows with high solids concentrations. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 16(3),153-160. https://doi.org/10.1002/ceat.270160303.
  90. Gil, A., Romeo, L.M. and Cortes, C., 2002. Effect of the solid loading on a PFBC cyclone with pneumatic extraction of solids. Chemical engineering & technology, 25(4), 407-415. https://doi.org/10.1002/1521-4125(200204)25:4%3C407::AID-CEAT407%3E3.0.CO;2-4.
  91. Fassani, F.L. and Goldstein Jr, L., 2000. A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency. Powder Technology, 107(1-2),60-65. https://doi.org/10.1016/S0032-5910(99)00091-1.
  92. Kang, S.K., Kwon, T.W. and Kim, S.D., 1989. Hydrodynamic characteristics of cyclone reactors. Powder technology, 58(3), pp. 211-220. https://doi.org/10.1016/0032-5910(89)80116-0.
  93. Yuu, S., Jotaki, T., Tomita, Y. and Yoshida, K., 1978. The reduction of pressure drop due to dust loading in a conventional cyclone. Chemical Engineering Science, 33(12), 1573-1580. https://doi.org/10.1016/0009-2509(78)85132-X.
  94. KIMURA, N., HASEGAWA, Z. and AKAMATSU, T., 1972. Dust collection characteristics of collectron. Journal of the Research Association of Powder Technology, Japan, 9(6),392-398. https://doi.org/10.4164/sptj1964.9.392.
  95. Ter Linden, A.J., 1949. Investigations into cyclone dust collectors. Proceedings of the Institution of Mechanical Engineers, 160(1),233-251. https://doi.org/10.1243/PIME_PROC_1949_160_025_02.
  96. Alexander, R.M., 1988. Elastic mechanisms in animal movement. The Cambridge University. https://www.cambridge.org/tf/universitypress/subjects/life-sciences/zoology/elastic-mechanisms-animal-movement.
  97. Häfner, H., Riecher-Rössler, A., Hambrecht, M., Maurer, K., Meissner, S., Schmidtke, A., Fätkenheuer, B., Löffler, W. and van der Heiden, W., 1992. IRAOS: an instrument for the assessment of onset and early course of schizophrenia. Schizophrenia research, 6(3),209-223. https://doi.org/10.1016/0920-9964(92)90004-O.
  98. Derksen, J.J., Sundaresan, S. and Van den Akker, H.E.A., 2006. Simulation of mass-loading effects in gas–solid cyclone separators. Powder technology, 163(1-2),59-68. https://doi.org/10.1016/j.powtec.2006.01.006.
  99. Qian, F., Huang, Z., Chen, G. and Zhang, M., 2007. Numerical study of the separation characteristics in a cyclone of different inlet particle concentrations. Computers & chemical engineering, 31(9),1111-1122. https://doi.org/10.1016/j.compchemeng.2006.09.012.
  100. Hugi, E. and Reh, L., 2000. Focus on solids strand formation improves separation performance of highly loaded circulating fluidized bed recycle cyclones. Chemical Engineering and Processing: Process Intensification, 39(3),263-273. https://doi.org/10.1016/S0255-2701(99)00072-0.
  101. Hoffmann, A.C., De Jonge, R., Arends, H. and Hanrats, C., 1995. Evidence of the ‘natural vortex length’and its effect on the separation efficiency of gas cyclones. Filtration & Separation, 32(8),799-804. https://doi.org/10.1016/S0015-1882(97)84131-6.
  102. Comas, M., Comas, J., Chetrit, C. and Casal, J., 1991. Cyclone pressure drop and efficiency with and without an inlet vane. Powder technology, 66(2), 143-148. https://doi.org/10.1016/0032-5910(91)80095-Z.
  103. Hoffmann, A.C., Arends, H. and Sie, H., 1991. An experimental investigation elucidating the nature of the effect of solids loading on cyclone performance. Filtration & separation, 28(3), 188-193. https://doi.org/10.1016/0015-1882(91)80074-F.
  104. Mothes, H. and Löffler, F., 1985. Motion and deposition of particles in cyclones. German chemical engineering, 8(4),223-233. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9230220.
  105. Baskakov, A.P., Dolgov, V.N. and Goldobin, Y.M., 1990. Aerodynamics and heat transfer in cyclones with particle-laden gas flow. Experimental Thermal and Fluid Science, 3(6),597-602. https://doi.org/10.1016/0894-1777(90)90076-J.
  106. Huang, Y., Mo, X., Yang, H., Zhang, M. and Lv, J., 2016, July. Effects of Cyclone Structures on the Pressure Drop Across Different Sections in Cyclone Under Gas–Solid Flow. In Clean Coal Technology and Sustainable Development: Proceedings of the 8th International Symposium on Coal Combustion (pp. 301-307). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-2023-0_40.
  107. El Ashry, Y., Abdelrazek, A.M. and Elshorbagy, K.A., 2018. Numerical and experimental study on the effect of solid particle sphericity on cyclone pressure drop. Separation Science and Technology, 53(15),2500-2516. https://doi.org/10.1080/01496395.2018.1458878.
  108. Hwang, I.S., Jeong, H.J. and Hwang, J., 2019. Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model. Powder Technology, 356,129-138. https://doi.org/10.1016/j.powtec.2019.08.008.
  109. Li, S., Yang, H., Wu, Y.U.X.I.N. and Zhang, H., 2011. An Improved Cyclone Pressure Drop Model at High Inlet Solid Concentrations. Chemical engineering & technology, 34(9),1507-1513. https://doi.org/10.1002/ceat.201100087.
  110. Wu, X., Liu, J., Xu, X. and Xiao, Y., 2011. Modeling and experimental validation on pressure drop in a reverse-flow cyclone separator at high inlet solid loading. Journal of Thermal Science, 20(4),343-348. https://doi.org/10.1007/s11630-011-0479-0.
  111. Nakhaei, M., Lu, B., Tian, Y., Wang, W., Dam-Johansen, K. and Wu, H., 2020. CFD modeling of gas–solid cyclone separators at ambient and elevated temperatures. Processes, 8(2),228. https://doi.org/10.3390/pr8020228.
  112. Dewil, R., Baeyens, J. and Caerts, B., 2008. CFB cyclones at high temperature: Operational results and design assessment. Particuology, 6(3),149-156. https://doi.org/10.1016/j.partic.2008.01.002.
  113. Bohnet, M., 1995. Influence of the gas temperature on the separation efficiency of aerocyclones. Chemical Engineering and Processing: Process Intensification, 34(3),151-156. https://doi.org/10.1016/0255-2701(94)04001-X.
  114. Patterson, P.A. and Munz, R.J., 1989. Cyclone collection efficiencies at very high temperatures. The Canadian Journal of Chemical Engineering, 67(2),321-328. https://doi.org/10.1002/cjce.5450670219.
  115. Gimbun, J., 2008. CFD simulation of aerocyclone hydrodynamics and performance at extreme temperature. Engineering Applications of Computational Fluid Mechanics, 2(1),22-29. https://doi.org/10.1080/19942060.2008.11015208.
  116. Rajan, K.S., Dhasandhan, K., Srivastava, S.N. and Pitchumani, B., 2008. Studies on gas–solid heat transfer during pneumatic conveying. International Journal of Heat and Mass Transfer, 51(11-12), pp. 2801-2813. https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.042.
  117. Szekely, J. and Carr, R., 1966. Heat transfer in a cyclone. Chemical Engineering Science, 21(12), 1119-1132. https://doi.org/10.1016/0009-2509(66)85033-9.
  118. Danyluk, S., Shack, W.J., Park, J.Y. and Mamoun, M.M., 1980. The erosion of a type 310 stainless steel cyclone from a coal gasification pilot plant. Wear, 63(1),95-104. https://doi.org/10.1016/0043-1648(80)90076-9.
  119. McK, R., 1949. Fundamentals of cyclone design and operation. Proceedings of the Australian Institute of Mining and Metallurgy, 152,203. https://cir.nii.ac.jp/crid/1573668924879693312.
  120. Bryant, H.S., Silverman, R.W. and Zenz, F.A., 1983. How dust in gas affects cyclone pressure drop. Hydrocarbon Process.; (United States), 62(6).
  121. Mothes, H., 1988. Prediction removal in cyclone separators. International Journal of Chemical Engineering, 28, pp. 231–240.
  122. Ji, Z., Wu, X. and Shi, M., 1993. Experimental research on the natural turning length in the cyclone. Acta Petrolei Sinica (Petroleum Processing Section), 9,86-86.
  123. Hoffmann, A.C., De Groot, M., Peng, W., Dries, H.W.A. and Kater, J., 2001. Advantages and risks in increasing cyclone separator length. AIChE journal, 47(11),2452-2460. https://doi.org/10.1002/aic.690471109.
  124. Qian, F. and Zhang, M., 2005. Study of the natural vortex length of a cyclone with response surface methodology. Computers & chemical engineering, 29(10), pp. 2155-2162. https://doi.org/10.1016/j.compchemeng.2005.07.011.
  125. Maclean, P., Brown, J.D., Hoy, H.D., Cantwell, J.E., 1978. UK patent application GB 2011285A, United Kingdom.
  126. Li, X., Song, J., Sun, G., Jia, M., Yan, C., Yang, Z. and Wei, Y., 2016. Experimental study on natural vortex length in a cyclone separator. The Canadian Journal of Chemical Engineering, 94(12),2373-2379. https://doi.org/10.1002/cjce.22598.