[1]. B.C. Pak, Y.I. Cho, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles,” Experimental Heat Transfer, 11 (2), 151-170 (1998).
[2]. S.K. Das, N. Putra, W. Roetzel, “Pool Boiling Characteristics of Nano- fluids,” International Journal of Heat and Mass Transfer, 46 (5), 851-862 (2003).
[3]. M. Mirzaei, M. Dehghan, “Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach”, Heat Mass Transfer, 49, 1803-1811 (2013).
[4]. S.Z. Heris, S.G. Etemad, M.N. Esfahany, “Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer,” Int. Comm. Heat Mass Trans., 33(4), 529-535 (2006).
[5]. D.P. Kulkarni, D.K. Das, G.A. Chukwu, “Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid),” J. Nanoscience Nanotechnology, 6(4), 1150-1154 (2006).
[6].
T. Phuoc,
M. Massoudi,
R. Chen., “Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan,” International Journal of Thermal Sciences, 50, 12-18 (2011).
[7]. A. Einstein, “Eine neue Bestimmung der Molekuldimension,” Annalen der Physik, 19, 289-306 (1906).
[8].
J. Yang,
F. Li,
W. Zhou,
Y. He,
B. Jiang , “Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids”, International Journal of Heat and Mass Transfer, 55, 3160-3166 (2012).
[9]. P. Ravi, S. David, W. Jinlin, “Measurement of nanofluid viscosity and its implications for thermal applications”. Applied Phys. Lett., 89 (13), 133108- 133108-3 (2006).
[10]. S. Lee, S. Park, S. Kang, I. Bang, J. Kim , “Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications,” International Journal of Heat and Mass Transfer, 54, 433-438 (2011).
[11]. A.Utomo, H. Poth, P. Robbins, A. Pacek , “Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids” ,International Journal of Heat and Mass Transfer, 55, 7772–7781 (2012).
[12]. H. Chen, Y. Ding, Y. He, C. Tan, “Rheological behavior of ethylene glycol based titania nanofluids”, Chem. Phys. Lett. 444, 333–337 (2007).
[13]. H. Chen, S. Witharana, Y. Jin, C. Kimd, Y. Ding, “Predicting thermal conductivity of liquid suspensions of nanoparticles based on rheology”, Particuology 7, 151–157 (2009).
[14]. M. Kole, T.K. Dey, “Viscosity of alumina nanoparticles dispersed in car engine coolant,” Experimental Thermal and Fluid Science, 34, 677–683 (2010).
[15]. M. Nabeel Rashin, J. Hemalatha, “Viscosity studies on novel copper oxide–coconut oil nanofluid,” Experimental Thermal and Fluid Science, 48, 67–72 (2013).
[16]. M. Hojjat, S.Gh. Etemad, R. Bagheri, J. Thibault, “Rheological characteristics of non-Newtonian nanofluids: Experimental investigation”, International Communications in Heat and Mass Transfer, 38, 144–148 (2011).
[17]. M. Kole, T.K. Dey, “Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluids”, International Journal of Thermal Sciences 62, 61-70 (2012).
[18]. M.T. Jamal-Abad, A. Zamzamian, M. Dehghan, Experimental studies on the heat transfer and pressure drop characteristics of Cu-water and Al-water nanofluids in a spiral coil, Experimental Thermal and Fluid Science, 47, 206–212 (2013).
[19]. F.M. White, “Viscous Fluid Flow”, third ed. McGraw-Hill, New York, 2006.
[20]. M. Dehghan, H. Basirat Tabrizi, On near-wall behavior of particles in a dilute turbulent gas–solid flow using kinetic theory of granular flows, Powder Technology, 224, 273–280 (2012).
[21]. M. Dehghan, H. Basirat Tabrizi, Turbulence effects on the granular model of particle motion in a boundary layer flow, Canadian Journal of Chemical Engineering, 92, 189–195 (2014).
[22]. M. Dehghan, H. B. Tabrizi, Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory, Journal of Heat and Mass Transfer Research, 1, 1-8 (2014).
[23]. M. Dehghan, M. Mirzaei, A. Mohammadzadeh, Numerical formulation and simulation of a non-Newtonian magnetic fluid flow in the boundary layer of a stretching sheet, Journal of Modeling in Engineering, 11 (34), 73-82 (2013).
[24]. G. Astarita and G. Marrucci, “Principles of Non-Newtonian Fluid Mechanics”, McGraw-Hill (UK), (1974).
[25]. D.C. Leigh, “Non-Newtonian fluids and the second law of thermodynamics”, Physics of Fluids, 5, 501–502 (1962).
[26]. B.D. Coleman, H. Markovitz, W. Noll, “Viscometric Flows of Non-Newtonian Fluids”, Springer-Verlag, (1966).
[27]. H.C. Brinkman, “The Viscosity of Concentrated Suspensions and Solution”, J. Chem. Phys. 20, 571-581(1952).
[28]. D.A. Drew, D.A. Passman, “Theory of Multicomponent Fluids”, Springer, Berlin, (1999).
[29]. H.I. Andersson, B.S. Dandapat, “Flows of a power law fluid over a stretching sheet”. Stability Appl Anal Continuous Media,1, 339–347 (1991).
[30]. M. Dehghan, M. Mirzaei, M.S. Valipour, S. Saedodin, Flow of a non-Newtonian fluid over a linearly moving sheet at a transient state; new similarity variable and numerical solution scheme, Journal of Modeling in Engineering, (2014) (accepted in press).