Entropy generation calculation for laminar fully developed forced flow and heat transfer of nanofluids inside annuli

Document Type : Full Lenght Research Article


Faculty of mechanical engineering, Semnan University, Semnan, Iran


In this paper, second law analysis for calculations of the entropy generation due to the flow and
heat transfer of water-Al2O3 and ethylene glycol-Al2O3 nanofluids inside annuli is presented. The
physical properties of the nanofluids are calculated using empirical correlations. Constant heat
fluxes at inner surface of the annuli are considered and fully developed condition for fluid flow
and heat transfer is assumed. The control volume approach is selected for calculation of the
entropy generation. Total entropy generation for different values of the nanoparticles volume
fractions at different geometrical ratios is obtained and compared with those of the base fluid.
Also, the geometrical ratios at which the minimum entropy generation is achieved are presented.
The results show that when the ratio of the annuli length to its hydraulic diameter (L/Dh) exceeds
some critical values, adding of the nanoparticles is not efficient. For each value of the
nanoparticles concentration, there is a length ratio (L/Dh) at which the entropy generation is


[1].     Y.M. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58–64 (2000).
[2].    B.X. Wang, L.P. Zhou, X.F. Peng. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transfer, 46, 2665–2672 (2003).
[3].    H. Xie, M. Fujii, X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transfer, 48, 2926–2932 (2005).
[4].    N. Masoumi, N. Sohrabi, A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids. J. Phys. D: Appl. Phys, 42, 055501 (2009).
[5].    C.T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, H. Angue Mintsa, Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int. J. Thermal Sci., 47, 103–111 (2008).
[6].    E. Abu-Nada, Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection, Int. J.  Heat Fluid Flow, 30, 679–690 (2009).
[7].    M. Izadi, A. Behzadmehr, D. Jalali-Vahida, Numerical study of developing laminar forced convection of a nanofluid in an annulus, Int. J. Thermal Sci., 48, 2119–2129 (2009).
[8].    E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, Int. Comm. Heat Mass Transfer, 35, 657–665 (2008).
[9].    J.H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, Effective vis­cosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of AI2O3 nanoparticles, Int. J. Heat Mass Transfer, 51(11-12), 2651-2656 (2008).  
[10]. W. Yu, D.M. France, S.U.S. Choi, J.L. Routbort, Review and assessment of nanofluid technology for transportation and other applications, Energy Systems Divi­sion, Argonne National Laboratory, (2007).  
[11]. V. Vasu, K. Rama Krishna, A.C.S. Kumar, Heat transfer with nanofluids for elec­tronic cooling, Int. J. Mater. Prod. Technol., 34(1J2), 158-171 (2009).  
[12]. M.N. Pantzali, A.A. Mouza, S.V. Paras, Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE), Chem. Eng. Sci., 64, 3290- 300 (2009).  
[13].  P.K. Singh, K.B. Anoop, T. Sundarajan, S.K. Das, Entropy generation due to flow and heat transfer in nanofluids, Int. J. Heat Mass Transfer, 53, 4757–4767 (2010).
[14]. M. Moghaddami, A. Mohammadzade, S. Alem Varzane Esfehani, Second law analysis of nanofluid flow, Energ. Convers. Manage., 52, 1397–1405 (2011).
[15]. A. Ijam, R. Saidur, Nanofluid as a coolant for electronic devices (cooling of electronic devices), Appl. Therm. Eng., 32, 76-82 (2012).
[16].  A. Bejan, Entropy generation minimization, CRC Press, Boca Raton, (1996).
[17]. T.H. Ko, K. Ting, Entropy generation and thermodynamic optimization of fully developed laminar convection in a helical coil, Int. Commun. Heat Mass Transfer, 32, 214-223 (2005).  
[18]. T.H. Ko, Thermodynamic analysis of optimal mass flow rate for fully developed laminar forced convection in a helical coiled tube based on minimal entropy generation principle. Energ. Convers. Manag., 47, 3094-3104 (2006).
[19]. P.K. Nag, K. Naresh, Second law optimization of convection heat transfer through a duct with constant heat flux, Int. J. Energy Res., 13, 537-543 (1989).  
[20]. M. Rafati, A.A. Hamidi, M. Shariati Niaser, Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids), Appl. Therm. Eng., 45, 9-14 (2012).
[21]. O. Mahian, A. Kianifar, C. Kleinstreuer, M. A. Al-Nimr, I. Pop, A. Z. Sahin, S. Wongwises, A review of entropy generation in nanofluid flow, Int. J. Heat Mass Transfer, 65, 514-532 (2013).
[22]. O. Mahian, H. Oztop, I. Pop, Sh. Mahmud, S. Wongwises, Entropy generation between two vertical cylinders in the presence of MHD flow subjected to constant wall temperature, Int. Commun. Heat Mass Transfer, 44, 87–92 (2013).
[23]. M. Torabi, A. Aziz, Entropy generation in a hollow cylinder with temperature dependent thermal conductivity and internal heat generation with convective–radiative surface cooling. Int. Commun. Heat Mass Transfer, 39, 1487-1495 (2012).
[24]. O. Mahian, Sh. Mahmud, S. Zeinali Heris, Analysis of entropy generation between co-rotating cylinders using nanofluids. Energy, 44, 438-446 (2012).
[25]. E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, Int. Commun. Heat Mass Transfer, 35, 657–665 (2008).
[26]. R. Mokhtari Moghari, A. Akbarinia, M. Shariat, F. Talebi, R. Laur, Two phase mixed convection Al2O3–water nanofluid flow   n an annulus, Int. J. Multiphase Flow, 37(6), 585-595 (2011).
[27]. C. Yang, W. Li, A. Nakayama, Convective heat transfer of nanofluids in a concentric annulus. Int. J. Thermal Sci., 71, 249-257 (2013).
[28]. J. Buongiomo, Convective transport in nanofluids. J. Heat Transfer, 128, 240-250 (2006).  
[29]. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, 11, 151-170 (1998).  
[30]. Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43, 3701-3707 (2000).
[31]. X. Wang, X. Xu and S.U.S. Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Thermo physics Heat Transfer, 13, 474-480 (1999).
[32]. M.A. Ebadian and Z.F. Dong, Forced convection internal flow in ducts, in W.M. Rohsenow, J.P. Hartnet and  Y.I. Cho (Eds), Handbook of Heat Transfer, McGraw-Hill, New York, 1371-5 (1998).
[33]. I.H. Shames, Mechanics of Fluids, 4th ed., McGraw Hill, (2003).