Boundary layer flow beneath a uniform free stream permeable continuous moving surface in a nanofluid

Document Type : Full Length Research Article

Authors

1 Department of Mathematics, Babes-Bolyai University, 400048 Cluj-Napoca, Romania

2 Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Abstract

The main purpose of this paper is to introduce a boundary layer analysis for the fluid flow and
heat transfer characteristics of an incompressible nanofluid flowing over a permeable isothermal
surface moving continuously. The resulting system of non-linear ordinary differential equations is
solved numerically using the fifth–order Runge–Kutta method with shooting techniques using
Matlab and Maple softwares. Numerical results are obtained for the velocity, temperature, and
concentration distributions, as well as the friction factor, local Nusselt number, and local
Sherwood number for several values of the parameters, namely the velocity ratio parameter,
suction/injection parameter, and nanofluid parameters. The obtained results are presented
graphically in tabular forms and the physical aspects of the problem are discussed.

Keywords


[1].    S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and Applications of Nonnewtonian Flows (D. A. Singer and H. P. Wang, Eds.), American Society of Mechanical Engineers, New York, NY, USA, 231, 99-105 (1995).
[2].    S.U.S Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalously thermal  conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252-2254 (2001).
[3].    S.K. Das, S.U.S.  Choi, W. Yu, T.  Pradeep, Nanofluids: Science and Technology, Wiley, New Jersey, (2007).
[4].    D.A. Nield, A. Bejan, Convection in Porous Media (4th edition), Springer, New York, (2013).
[5].    J.Buongiorno, Convective transport in nanofluids., ASME J. Heat Transfer, 128, 240-250 (2006).
[6].    M. J. Maghrebi · M. Nazari · T. Armaghani, Forced Convection Heat Transfer of Nanofluids in a Porous Channel, Transp Porous Med, 93, 401–413 (2012).
[7].    T. Armaghani, M.J. Maghrebi, A.J. Chamkha, M,  Nazari, Effects of Particle Migration on Nanofluid Forced Convection Heat Transfer in a Local Thermal Non-Equilibrium Porous Channel, 3, 51-59 (2014).
[8].    S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transfer, 52, 3187-3196 (2009).
[9].    K.V. Wong, O.D. Leon, Applications of nanofluids: current and future, Adv. Mech. Eng., Article ID 519659, 1-11 (2010).
[10]. R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, 15, 1646-1668 (2011).
[11]. D. Wen, G. Lin, S. Vafai, K. Zhang, Review of nanofluids for heat transfer applications, Particuology, 7, 141-150 (2011).
[12]. O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer, 57, 582–594 (2013).
[13]. T. Fang, S. Yao, J. Zhang, A. Aziz, Viscous flow over a shrinking sheet with a second order slip flow model, Commun. Nonlinear Sci. Numer. Simulat, 15, 1831–1842 (2010).
[14]. E.M. Sparrow, J.P. Abraham, Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid,  Int. J. Heat Mass Transfer, 48, 3047- 3056 (2005).
[15]. S.J. Liao, I. Pop, A new branch of solutions of boundary-layer flows over a stretching flat plate, Int. J. Heat Mass Transfer, 49, 2529–2539 (2005).
[16]. C.Y. Wang, Exact solutions of the steady state Navier–Stokes equations, Ann. Rev. Fluid Mech., 23, 159–177 (1991).
[17]. K. Zaimi, A. Ishak, I. Pop, Boundary layer flow and heat transfer past a permeable shrinking sheet in a nanofluid with radiation effect, Adv. Mech. Eng., Article ID 340354, 1-7 (2012).
[18]. N. Bachok, A. Ishak, I. Pop, The boundary layers of an unsteady stagnation-point flow in a nanofluid, Int. J. Heat Mass Transfer, 55, 6499–6505 (2012).
[19]. N. Bachok, A. Ishak, I. Pop, Boundary layer stagnation-point flow toward a stretching/shrinking sheet in a nanofluid, ASME J. Heat Transfer, 135 (Article ID 05450), 1-5 (2013).
[20]. W. Ibrahim, B. Shankar, M.M. Nandeppanavar, MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet, Int. J. Heat and Mass Transfer, 56, 1–9 (2013).
[21]. A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Thermal Sci., 49, 243–247 (2010).
[22]. R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially  heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer , 50, 2002-2018 (2007).
[23]. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a  two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46, 3639–3653 (2003).
[24]. H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 1326–1336 (2008).
[25]. H.C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571-581 (1952).
[26]. P.D. Weidman, D.G.  Kubitschek, A.M.J. Davis, The effect of transpiration on self-similar boundary layer flow over moving surfaces, Int. J. Eng. Sci., 44, 730-737 (2006).
[27]. S. Seddighi Chaharborja, S.M. Sadat Kiai, M.R. Abu Bakar, I. Ziaeian, I. Fudziah,  A new impulsional potential for a Paul ion trap, Int. J. Mass Spectrom, 309, 63– 69 (2012).
[28]. A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Thermal Sci., 49, 243–247 (2010).
[29]. R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially  heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer , 50, 2002-2018 (2007).
[30]. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a  two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46, 3639–3653 (2003).
[31]. H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 1326–1336 (2008).
[32]. H.C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571-581 (1952).
[33]. P.D. Weidman, D.G.  Kubitschek, A.M.J. Davis, The effect of transpiration on self-similar boundary layer flow over moving surfaces, Int. J. Eng. Sci., 44, 730-737 (2006).
[34]. S. Seddighi Chaharborja, S.M. Sadat Kiai, M.R. Abu Bakar, I. Ziaeian, I. Fudziah,  A new impulsional potential for a Paul ion trap, Int. J. Mass Spectrom, 309, 63– 69 (2012).