[1]. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and Applications of Nonnewtonian Flows (D. A. Singer and H. P. Wang, Eds.), American Society of Mechanical Engineers, New York, NY, USA, 231, 99-105 (1995).
[2]. S.U.S Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252-2254 (2001).
[3]. S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology, Wiley, New Jersey, (2007).
[4]. D.A. Nield, A. Bejan, Convection in Porous Media (4th edition), Springer, New York, (2013).
[5]. J.Buongiorno, Convective transport in nanofluids., ASME J. Heat Transfer, 128, 240-250 (2006).
[6]. M. J. Maghrebi · M. Nazari · T. Armaghani, Forced Convection Heat Transfer of Nanofluids in a Porous Channel, Transp Porous Med, 93, 401–413 (2012).
[7]. T. Armaghani, M.J. Maghrebi, A.J. Chamkha, M, Nazari, Effects of Particle Migration on Nanofluid Forced Convection Heat Transfer in a Local Thermal Non-Equilibrium Porous Channel, 3, 51-59 (2014).
[8]. S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transfer, 52, 3187-3196 (2009).
[9]. K.V. Wong, O.D. Leon, Applications of nanofluids: current and future, Adv. Mech. Eng., Article ID 519659, 1-11 (2010).
[10]. R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, 15, 1646-1668 (2011).
[11]. D. Wen, G. Lin, S. Vafai, K. Zhang, Review of nanofluids for heat transfer applications, Particuology, 7, 141-150 (2011).
[12]. O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer, 57, 582–594 (2013).
[13]. T. Fang, S. Yao, J. Zhang, A. Aziz, Viscous flow over a shrinking sheet with a second order slip flow model, Commun. Nonlinear Sci. Numer. Simulat, 15, 1831–1842 (2010).
[14]. E.M. Sparrow, J.P. Abraham, Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid, Int. J. Heat Mass Transfer, 48, 3047- 3056 (2005).
[15]. S.J. Liao, I. Pop, A new branch of solutions of boundary-layer flows over a stretching flat plate, Int. J. Heat Mass Transfer, 49, 2529–2539 (2005).
[16]. C.Y. Wang, Exact solutions of the steady state Navier–Stokes equations, Ann. Rev. Fluid Mech., 23, 159–177 (1991).
[17]. K. Zaimi, A. Ishak, I. Pop, Boundary layer flow and heat transfer past a permeable shrinking sheet in a nanofluid with radiation effect, Adv. Mech. Eng., Article ID 340354, 1-7 (2012).
[18]. N. Bachok, A. Ishak, I. Pop, The boundary layers of an unsteady stagnation-point flow in a nanofluid, Int. J. Heat Mass Transfer, 55, 6499–6505 (2012).
[19]. N. Bachok, A. Ishak, I. Pop, Boundary layer stagnation-point flow toward a stretching/shrinking sheet in a nanofluid, ASME J. Heat Transfer, 135 (Article ID 05450), 1-5 (2013).
[20]. W. Ibrahim, B. Shankar, M.M. Nandeppanavar, MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet, Int. J. Heat and Mass Transfer, 56, 1–9 (2013).
[21]. A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Thermal Sci., 49, 243–247 (2010).
[22]. R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer , 50, 2002-2018 (2007).
[23]. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46, 3639–3653 (2003).
[24]. H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 1326–1336 (2008).
[25]. H.C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571-581 (1952).
[26]. P.D. Weidman, D.G. Kubitschek, A.M.J. Davis, The effect of transpiration on self-similar boundary layer flow over moving surfaces, Int. J. Eng. Sci., 44, 730-737 (2006).
[27]. S. Seddighi Chaharborja, S.M. Sadat Kiai, M.R. Abu Bakar, I. Ziaeian, I. Fudziah, A new impulsional potential for a Paul ion trap, Int. J. Mass Spectrom, 309, 63– 69 (2012).
[28]. A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Thermal Sci., 49, 243–247 (2010).
[29]. R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer , 50, 2002-2018 (2007).
[30]. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46, 3639–3653 (2003).
[31]. H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 1326–1336 (2008).
[32]. H.C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571-581 (1952).
[33]. P.D. Weidman, D.G. Kubitschek, A.M.J. Davis, The effect of transpiration on self-similar boundary layer flow over moving surfaces, Int. J. Eng. Sci., 44, 730-737 (2006).
[34]. S. Seddighi Chaharborja, S.M. Sadat Kiai, M.R. Abu Bakar, I. Ziaeian, I. Fudziah, A new impulsional potential for a Paul ion trap, Int. J. Mass Spectrom, 309, 63– 69 (2012).