[1] N. Bozorgan, M. Mafi, N. Bozorgan, Performance Evaluation of Al2O3/water Nanofluid as Coolant in a Double-tube Heat Exchanger Flowing under a Turbulent Flow Regime,Advances in Mechanical Engineering (2012) Article ID 891382 8 pages.
[2] N. Bozorgan, K. Krishnakumar, N. Bozorgan, Numerical Study on Application of CuO-water Nanofluid in Automotive Diesel Engine Radiator, Modern Mechanical Engineering 2 (2012) 130-136.
[3] N. Bozorgan and M. Shafahi, Performance Evaluation of Nanofluids in Solar Energy: A Re-view of the Recent Literature, Micro and Nano Systems Letters (2015) 3:5.
[4] E. Ollivier, J. Bellettre, M. Tazerout and G. C. Roy, Detection of Knock Occurrence in a Gas SI Engine from a Heat Transfer Analysis, Energy Conversion and Management 47 (2006) 879-893.
[5] M.A. Khairul, M.A. Alim, I.M. Mahbubul, R. Saidur, A. Hepbasli, A. Hossain, Heat transfer performance and exergy analyses of a corrugated plate heat, International Communications in Heat and Mass Transfer 50 (2014) 8-14.
[6] A. Zamzamian, S. Nasseri Oskouie, A. Doosthoseini, A. Joneidi and M. Pazouki, Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow,Experimental Thermal Fluid Science 35 (2011) 495-502.
[7] S.D. Pandey, V. Nema, Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger, Exp. Thermal Fluid Sci. 38 (2012) 248-256.
[8] M.N. Pantzali, A.A. Mouza and S.V. Paras, Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE), Chemical Engineering Science 64 (2009) 3290-3300.
[9] Y. H. Kwon, D. Kim, C. G. Li, J. K. Lee, D. S. Hong, Heat Transfer and Pressure Drop Characteristics of Nanofluids in a Plate Heat Exchanger, Journal of Nanoscience and Nanotechnology11 (2011) 5769–5774.
[10] M. Haghshenasfard, M. R. Talaie, S. nasr, Numerical and experimental investigation of heat transfer of ZnO/water nanofluid in the concentric tube and plate heat exchangers, Thermal Science 15 (2011) 183-194.
[11] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat transfer 11 (1998) 151-170.
[12] Y. Xuan, W. Roetzel, Conceptions of heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701-3707.
[13] M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conversion Management 52 (2011) 789-793.
[14] Hongtan Liu S. K., “Heat Exchangers Selection, Rating, and Thermal Design”, Boca Raton London New York Washington, D. C. (2002).
[15] Q. Li, Y. Xuan, Convective heat transfer and flow characteristics of Cu–water nanofluid, Science in China Series E: Technological Sciences, 45 (2002) 408-416.
[16] R. S. Vajjha, D. K. Das, D. P. Kulkarni, Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids, International Journal of Heat and Mass Transfer 53 (2010) 4607-4618.
[17] E. Cao, Heat transfer in process engineering, New York: McGraw-Hill, 2010.
[18] M.H. Esfe, S. Saedodin, M. Mahmoodi, Experimental studies on the convective heat transfer performance and thermophysical properties of MgO-water nanofluid under turbulent flow, Experimental Thermal and Fluid Science 52 (2014) 68-78.
[19] C.S. Jwo, L.Y. Jeng, T.P. Teng, C.C. Chen, Performance of overall heat transfer in multi-channel heat exchanger by alumina nanofluid, Journal of Alloys and Compounds 504 (2010) S385-S388.
[20] D. Lelea, The performance evaluation of Al2O3/water nanofluid flow and heat transfer in microchannel heat sink, International Journal of Heat and Mass Transfer 54 (2011) 3891-3899.
[21] C.S. Jwo, L.Y. Jeng, T.P. Teng, C.C. Chen, Performance of overall heat transfer in multi-channel heat exchanger by alumina nanofluid, Journal of Alloys and Compounds 504 (2010) S385-S388.
[22] A.K. Tiwari, P. Ghosh, J. Sarkar, Performance comparison of the plate heat exchanger using different nanofluids, Experimental Thermal and Fluid Science 49 (2013) 141-151.
[23] A.K. Tiwari, P. Ghosh, J. Sarkar, Particle concentration levels of various nanofluids in plate heat exchanger for best performance, International Journal of Heat and Mass Transfer 89 (2015) 1110-1118.