References
[1]. A. Bejan, S. Lorente, “Thermodynamic optimization of flow geometry in mechanical and civil engineering”, Journal of Non-Equilibrium Thermodynamics, 26, 305-354, (2001).
[2]. Z. Li, S.C. Mantel, J.H. Davidson, “Mechanical analysis of streamlined tubes with non-uniform wall thickness for heat exchangers”, The Journal of Strain Analysis for Engineering Design, 40, 275-285, (2005).
[3]. H. Najafi, B. Najafi, “Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm”, Heat Mass Transfer, 46, 639-647, (2000).
[4]. K.V. Liu, S.U.S. Choi, K.E. Kasza, “Measurement of pressure drop and heat transfer in turbulent pipe flows of particulate slurries”, Argonne National Laboratory Report, ANL-88-15, (1998).
[5]. C.W. Sohn, M.M. Chen, “Microconvective thermal conductivity in dispersed two-phase mixture as observed in low velocity Couette flow experiment’’, ASME Journal of Heat Transfer, 103, 47-51, (1981).
[6]. M.C. Roco, C.A. Shook, “Modelling of slurry flow: the effect of particle size’’, The Canadian Journal of Chemical Engineering, 61, 494-503, (1983).
[7]. A.S. Ahuja, “Augmentation of heat transfer in laminar flow of polystyrene suspension”, Journal of Applied Physics, 46, 3408-3425, (1975).
[8]. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lookwood, E.A. Grulke, “Anomalously thermal conductivity enhancement in nanotube suspension”, Applied Physics Letters, 79, 2252-2254, (2001).
[9]. Y. Xuan, Q. Li, ‘‘Heat transfer enhancement with nanofluids”, International Journal of Heat and Fluid Flow, 21, 58-64, (2000).
[10]. X. Wang, A.S. Mujumdar, “Heat transfer characteristics of nanofluids: a review”, International Journal of Thermal Sciences, 46, 1-19, (2007).
[11]. S. Kakaç, A. Pramuanjaroenkij, ‘‘Review of convective heat transfer enhancement with nanofluids”, International Journal of Heat and Mass Transfer, 52, 3187-3196, (2009).
[12]. S.Z. Heris, M.N. Esfahany, S.G. Etemad, ‘‘Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube”, International Journal of Heat and Mass Transfer, 28, 203-210, (2007).
[13]. S.Z. Heris, S. G. Etemad, S. G., M.N. Esfahany, ‘‘Experimental investigation of oxide nanofluids laminar flow convective heat transfer’’, International Communication of Heat and Mass Transfer, 33, 529-535, (2006).
[14]. K.B. Anoop, T. Sunderrajan, S.K. Das, “Effect of particle size on convective heat transfer in nanofluids in developing region”, International Journal of Heat and Mass Transfer, 52, 2189-2195, (2009).
[15]. C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, “Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system”, Applied Thermal Engineering, 27, 1501-1506, (2007).
[16]. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, ‘‘Temperature dependence of thermal conductivity enhancement for nanofluids”, ASME Journal of Heat Transfer,125, 567-574, (2003).
[17]. J.C. Maxwell, ‘‘A Treatise on Electricity and Magnetism.’’ vol. 1, Second ed., Clarendon Press, Oxford, UK, (1881).
[18]. R.L. Hamilton, O.K. Crosser, “Thermal conductivity of heterogeneous two component systems”, Industrial Engineering Chemistry Fundamentals,1, 187-191, (1962).
[19]. K.Y. Leong, R.T. Saidur, M.I. Mahlia, Y.H. Yau, “Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature”, International Communications in Heat and Mass Transfer, 39, 1169-1175, (2012).
[20]. A. Tabrizi, H.R. Seyf, “Analysis of entropy generation and convective heat transfer of Al2O3 nanofluid flow in a tangential micro heat sink”, International Journal of Heat and Mass Transfer, 55, 4366-4375, (2012).
[21]. H.R. Seyf, M. Feizbakhshi, “Computation analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks”, International Journal of Thermal Sciences,58, 168-179, (2012).
[22]. M. Nazififard, M. Nematollahi, K. Jafarpur, K.Y. Suh, “Numerical simulation of water-based Alumina nanofluid in sub-channel geometry’’, Science and Technology of Nuclear Installations, doi:10.1155/2012/928406, (2012).
[23]. V. Bianco, F. Chiacchio, O. Manca, S. Nardini, “Numerical investigation of nanofluids forced convection in circular tubes”, Applied Thermal Engineering, 29, 3632-3642, (2009).
[24]. R. Vajjha, D.K. Das, P.K. Namburu, “Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator”, International Journal of Heat and Fluid Flow, 31, 613-621, (2013).
[25]. A. Akbarinia, A. Behzadmehr, “Numerical study of laminar mixed convection of nanofluid in horizontal curved tubes”, Applied Thermal Engineering, 27, 1327-1337 (2007).
[26]. J. Choi, Y. Zhang, “Numerical simulation of laminar forced convection heat transfer of Al2O3-water nanofluid in a pipe with return bend”, International Journal of Thermal Sciences, 55, 90-102, (2009).
[27]. A.A. Minea, “Numerical simulation of nanoparticle concentration effect on forced convection in a tube with nanofluids”, Heat Transfer Engineering, 36, 1144-1153, (2015).
[28]. L. Zhang, M. Bai, D. Guo, “Effect of vibration on forced convection heat transfer for SiO2-water nanofluids” Heat transfer Engineering, 36, 452-461, (2015).
[29]. S.K. Das, S.U.S Choi, H.E. Patel, “Heat Transfer in Nanofluids- A Review”, Heat Transfer Engineering, 27, 3-19, (2006).
[30]. S.Z. Haris, Z. Edalati, S.H. Noie, O. Mahian, “Experimental investigation of Al2O3/water nanofluid through equilateral triangular duct with constant wall heat flux in laminar flow”, Heat Transfer Engineering,35, 1173-1182, (2014).
[31]. S.E.B Maiga, S.J. Palm, C.T. Nguyen, C.T.G. Roy, N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows”, International Journal of Heat and Fluid Flow, 26, 530-546, (2005).
[32]. M. Mahmoodi, “Numerical simulation of free convection of a nanofluid in L-shaped cavities”, International Journal of Thermal Sciences, 50, 1731-1740, (2011).
[33]. Z.U.A. Waris, ‘‘Fluid Dynamics Theoretical and Computational Approaches’’, Second ed. CRC Press, Boca Raton, Florida, USA, (1999).
[34]. S.V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing Corporation, New York, (1980).
[35]. B.C. Pak, Y.I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Experimental Heat Transfer, 11, 151-170, (1998).
[36]. S.J. Palm, G. Roy, C.T. Nguyen, ‘‘Heat transfer enhancement with use of nanofluids in radial flow cooling systems considering temperature dependent properties”, Applied Thermal Engineering, 26, 2209-2218, (2006).
[37]. S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices Microstructures,vol. 35, (2004) pp. 543–557.
[38]. X. Wang, X. Xu, S.U.S., Choi, “Thermal conductivity of nanoparticle–fluid mixture”, Journal of Thermophysics and Heat Transfer, 13, 474–480, (1999).
[39]. S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles”, Journal of Heat Transfer, 121, 280–289, (1999).
[40]. T.T. Chandratilleke, Nursubyakto, “Numerical prediction of secondary flow and convective heat transfer in externally heated curved rectangular ducts”, International Journal of Thermal Sciences, 42, 187–198, (2003).
[41]. E. N. Sieder, G. E. Tate, “Heat Transfer and pressure drop of liquid in tubes”, Ind. Eng. Chem.,28, 1429-1435, (1936).
[42]. S.Z. Heris, T.H. Nassan, S.H. Noie, H. Sardarabadi, M. Sardarabadi, “Laminar convective heat transfer of Al2O3/water nanofluid through square cross-sectional duct”, International Journal of Heat and Fluid Flow, 44, 375-382, (2013).
[43]. B. Farajollaha, S.G. Etemad, M. Hojjat, “Heat transfer of nanofluids in a shell and tube heat exchanger”, International Journal of Heat and Mass Transfer, 53, 12-17, (2010).
[44]. P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vijjha, “Numerical study of fluid flow and heat transfer characteristics of nanofluids considering variable properties”, International Journal of Thermal Sciences, 48, 293-302, (2009).
[45]. G. Chakraborty, “A note on methods for analysis of flow through microchannels”, International Journal of Heat and Mass Transfer, 51, 4583-4588, (2008).
[46]. K. Muralidhar G. Biswas, ‘‘Advanced engineering fluid mechanics’’, Norosa Publishing House, New Delhi, (2005).
[47]. N.T.R. Kumar, P. Bharamara, M.M. Addis, L. S. Sundar, M.K. Singh, A.C.M. Sousa, “Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend”, International Communications in Heat and Mass Transfer, 81, 155-163, (2017).
[48]. L. Colla, L. Fedele, M.H. Buschmann, “Laminar mixed convection of TiO2-water nanofluid in a horizontal uniformly heated pipe flow”, International Journal of Thermal Sciences, 97, 26-40, (2015).
[49]. K. Khanafer, K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids”, International Journal of Heat and Mass Transfer, 54, 4410-4428, (2011).
B.B. Nayak, D. Chatterjee, A.N. Mullick, “ Numerical prediction of flow and heat transfer characteristics of water –fly ash slurry a 180° return bend pipe”, International Journal of Thermal Sciences, 113 110-115, (2017)