Fluid flow and heat transfer characteristics in a curved rectangular duct using Al2O3-water nanofluid

Document Type : Full Lenght Research Article


College of Engineering and Technology, Bhubaneswar, India


In the present research, the laminar forced convective heat transfer and fluid flow characteristics for Al2O3-water nanofluid flowing in different bend (i.e., 180o and 90o) pipes have been investigated numerically in a three-dimensional computational domain using the finite volume technique. The effects of different pertinent parameters, such as the Reynolds number of the duct, volume fraction of the nanoparticle, the diameter of the nanoparticle, aspect ratio of the duct and the duct bend angle on the hydrodynamic and thermal characteristics of the flow has been presented. It is observed that the heat transfer is augmented by replacing conventional fluid by Al2O3-water nanofluid. The nanoparticle volume fraction is found to be an important parameter to increase the heat transfer in the bend pipe. It is also observed that the thermo-hydraulic characteristics of the flow changes with the duct aspect ratio, and the heat transfer rate is improved with aspect ratio. The heat transfer with a 180o bend pipe is obtained to be higher than a 90o bend pipe at a particular value of volume fraction and Reynolds number. Moreover, the present computed Nusselt number for 180o bend pipe of rectangular cross-section has been validated with the existing literature. validated with the existing literature.


Main Subjects

[1].  A. Bejan, S. Lorente, “Thermodynamic optimization of flow geometry in mechanical and civil engineering”, Journal of Non-Equilibrium Thermodynamics,  26,  305-354, (2001).
[2].  Z. Li, S.C. Mantel, J.H. Davidson, “Mechanical analysis of streamlined tubes with non-uniform wall thickness for heat exchangers”, The Journal of Strain Analysis for Engineering Design, 40, 275-285, (2005).
[3].  H. Najafi, B. Najafi, “Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm”, Heat Mass Transfer, 46, 639-647, (2000).
[4].  K.V. Liu, S.U.S. Choi, K.E. Kasza, “Measurement of pressure drop and heat transfer in turbulent pipe flows of particulate slurries”, Argonne National Laboratory Report, ANL-88-15, (1998).
[5].  C.W. Sohn, M.M. Chen, “Microconvective thermal conductivity in dispersed two-phase mixture as observed in low velocity Couette flow experiment’’, ASME Journal of Heat Transfer, 103,  47-51, (1981).
[6].  M.C. Roco, C.A. Shook, “Modelling of slurry flow: the effect of particle size’’, The Canadian Journal of Chemical Engineering, 61, 494-503, (1983).
[7].  A.S. Ahuja, “Augmentation of heat transfer in laminar flow of polystyrene suspension”, Journal of Applied Physics, 46, 3408-3425, (1975).
[8].  S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lookwood, E.A. Grulke, “Anomalously thermal conductivity enhancement in nanotube suspension”, Applied Physics Letters, 79, 2252-2254, (2001).
[9].  Y. Xuan, Q. Li, ‘‘Heat transfer enhancement with nanofluids”, International Journal of Heat and Fluid Flow, 21, 58-64, (2000).
[10].           X. Wang, A.S. Mujumdar, “Heat transfer characteristics of nanofluids: a review”, International Journal of Thermal Sciences, 46, 1-19, (2007).
[11].          S. Kakaç, A. Pramuanjaroenkij, ‘‘Review of convective heat transfer enhancement with nanofluids”, International Journal of Heat and Mass Transfer, 52, 3187-3196, (2009).
[12].           S.Z. Heris, M.N. Esfahany, S.G. Etemad, ‘‘Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube”, International Journal of Heat and Mass Transfer, 28, 203-210, (2007).
[13].           S.Z. Heris, S. G. Etemad, S. G., M.N. Esfahany, ‘‘Experimental investigation of oxide nanofluids laminar flow convective heat transfer’’, International Communication of Heat and Mass Transfer, 33, 529-535, (2006).
[14].           K.B. Anoop, T. Sunderrajan, S.K. Das, “Effect of particle size on convective heat transfer in nanofluids in developing region”, International Journal of Heat and Mass Transfer, 52, 2189-2195, (2009).
[15].           C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis,  “Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system”, Applied Thermal Engineering, 27, 1501-1506, (2007).
[16].           S.K. Das, N. Putra, P. Thiesen, W. Roetzel, ‘‘Temperature dependence of thermal conductivity enhancement for nanofluids”, ASME Journal of Heat Transfer,125, 567-574, (2003).
[17].           J.C. Maxwell, ‘‘A Treatise on Electricity and Magnetism.’’ vol. 1, Second ed., Clarendon Press, Oxford, UK, (1881).
[18].           R.L. Hamilton, O.K. Crosser, “Thermal conductivity of heterogeneous two component systems”, Industrial Engineering Chemistry Fundamentals,1, 187-191, (1962).
[19].           K.Y. Leong, R.T. Saidur, M.I. Mahlia, Y.H. Yau, “Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature”, International Communications in Heat and Mass Transfer, 39, 1169-1175, (2012).
[20].           A. Tabrizi, H.R.  Seyf, “Analysis of entropy generation and convective heat transfer of Al2O3 nanofluid flow in a tangential micro heat sink”, International Journal of Heat and Mass Transfer, 55, 4366-4375, (2012).
[21].           H.R. Seyf, M. Feizbakhshi, “Computation analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks”, International Journal of Thermal Sciences,58, 168-179, (2012).
[22].           M. Nazififard, M. Nematollahi, K. Jafarpur, K.Y. Suh, “Numerical simulation of water-based Alumina nanofluid in sub-channel geometry’’, Science and Technology of Nuclear Installations, doi:10.1155/2012/928406, (2012).
[23].           V. Bianco, F. Chiacchio, O. Manca, S. Nardini, “Numerical investigation of nanofluids forced convection in circular tubes”, Applied Thermal Engineering, 29, 3632-3642, (2009).
[24].           R. Vajjha, D.K. Das, P.K. Namburu, “Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator”, International Journal of Heat and Fluid Flow, 31, 613-621, (2013).
[25].           A. Akbarinia, A. Behzadmehr, “Numerical study of laminar mixed convection of nanofluid in horizontal curved tubes”, Applied Thermal Engineering, 27, 1327-1337 (2007).
[26].           J. Choi, Y. Zhang, “Numerical simulation of laminar forced convection heat transfer of Al2O3-water nanofluid in a pipe with return bend”, International Journal of Thermal Sciences, 55, 90-102, (2009).
[27].           A.A. Minea, “Numerical simulation of nanoparticle concentration effect on forced convection in a tube with nanofluids”, Heat Transfer Engineering, 36, 1144-1153, (2015).
[28].           L. Zhang, M. Bai, D. Guo, “Effect of vibration on forced convection heat transfer for SiO2-water nanofluids” Heat transfer Engineering, 36, 452-461, (2015).
[29].           S.K. Das, S.U.S Choi, H.E. Patel, “Heat Transfer in Nanofluids- A Review”, Heat Transfer Engineering, 27, 3-19, (2006).
[30].           S.Z. Haris, Z. Edalati, S.H. Noie, O. Mahian, “Experimental investigation of Al2O3/water nanofluid through equilateral triangular duct with constant wall heat flux in laminar flow”, Heat Transfer Engineering,35, 1173-1182, (2014).
[31].          S.E.B Maiga, S.J. Palm, C.T. Nguyen, C.T.G. Roy, N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows”, International Journal of Heat and Fluid Flow, 26, 530-546, (2005).
[32].           M. Mahmoodi, “Numerical simulation of free convection of a nanofluid in L-shaped cavities”, International Journal of Thermal Sciences, 50, 1731-1740, (2011).
[33].          Z.U.A. Waris, ‘‘Fluid Dynamics Theoretical and Computational Approaches’’, Second  ed. CRC Press, Boca Raton, Florida, USA, (1999).
[34].           S.V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing Corporation, New York, (1980).
[35].           B.C. Pak, Y.I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Experimental Heat Transfer, 11, 151-170, (1998).
[36].           S.J. Palm, G. Roy, C.T. Nguyen, ‘‘Heat transfer enhancement with use of nanofluids in radial flow cooling systems considering temperature dependent properties”, Applied Thermal Engineering, 26, 2209-2218, (2006).
[37].           S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices Microstructures,vol. 35, (2004) pp. 543–557.
[38].           X. Wang, X. Xu, S.U.S., Choi, “Thermal conductivity of nanoparticle–fluid mixture”, Journal of Thermophysics and Heat Transfer, 13, 474–480, (1999).
[39].           S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles”, Journal of Heat Transfer, 121, 280–289, (1999).
[40].           T.T. Chandratilleke, Nursubyakto, “Numerical prediction of secondary flow and convective heat transfer in externally heated curved rectangular ducts”, International Journal of Thermal Sciences, 42, 187–198, (2003).
[41].           E. N. Sieder, G. E.  Tate, “Heat Transfer and pressure drop of liquid in tubes”, Ind. Eng. Chem.,28, 1429-1435, (1936).
[42].           S.Z. Heris, T.H. Nassan, S.H. Noie, H. Sardarabadi, M. Sardarabadi, “Laminar convective heat transfer of Al2O3/water nanofluid through square cross-sectional duct”, International Journal of Heat and Fluid Flow, 44, 375-382, (2013).
[43].           B. Farajollaha, S.G. Etemad, M. Hojjat, “Heat transfer of nanofluids in a shell and tube heat exchanger”, International Journal of Heat and Mass Transfer, 53, 12-17, (2010).
[44].          P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vijjha, “Numerical study of fluid flow and heat transfer characteristics of nanofluids considering variable properties”, International Journal of Thermal Sciences, 48, 293-302, (2009).
[45].           G. Chakraborty, “A note on methods for analysis of flow through microchannels”, International Journal of Heat and Mass Transfer, 51, 4583-4588, (2008). 
[46].           K. Muralidhar G. Biswas, ‘‘Advanced engineering fluid mechanics’’, Norosa Publishing House, New Delhi, (2005).
[47].           N.T.R. Kumar, P. Bharamara, M.M. Addis, L. S. Sundar, M.K. Singh, A.C.M. Sousa, “Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend”, International Communications in Heat and Mass Transfer, 81, 155-163, (2017).
[48].           L. Colla, L. Fedele, M.H. Buschmann, “Laminar mixed convection of TiO2-water nanofluid in a horizontal uniformly heated pipe flow”, International Journal of Thermal Sciences, 97, 26-40, (2015).
[49].           K. Khanafer, K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids”, International Journal of Heat and Mass Transfer, 54, 4410-4428, (2011).
 B.B. Nayak, D. Chatterjee, A.N. Mullick, “ Numerical prediction of flow and heat transfer characteristics of water –fly ash slurry a 180° return bend pipe”, International Journal of Thermal Sciences, 113 110-115, (2017)