[1] C.B. Shephered, C.E. Lapple, Flow pattern and pressure drop in cyclone dust collectors, Industrial & Engineering Chemistry, 31(8), 972-984, (1939).
[2] W. Barth, L. Leineweber, Evaluation of design of cyclone separators, Staub Reinhalt. Luft, 24, 41-55, (1964).
[3] H. Mothes, F. Löffler, Prediction of particle removal in cyclone separators, International Journal of Chemical Engineering, 28(2), 231-240, (1988).
[4] D.L. Iozia, D. Leith, The logistic function and cyclone fractional efficiency, Aerosol Science and Technology, 12(3), 598-606, (1990).
[5] A. Avci, I. Karagoz, Effects of flow and geometrical parameters on the collection efficiency in cyclone separators, Journal of Aerosol Science, 34(7), 937-955, (2003).
[6] W. Barth, Berechnung und auslegung von zyklonabscheidern auf grund neuerer untersuchungen, Brennstoff-Wärme-Kraft, 8(1), 1-9, (1956).
[7] E. Muschelknautz, W. Krambrock, Aerodynamische Beiwerte des Zyklonabscheiders aufgrund neuer und verbesserter Messungen, Chemie Ingenieur Technik, 42(5), 247-255, (1970).
[8] P. Meißner, F. Löffler, Zur berechnung des strömungsfeldes im zyklonabscheider, Chemie Ingenieur Technik, 50(6), 451-471, (1978).
[9] I. Karagoz, A. Avci, Modelling of the pressure drop in tangential inlet cyclone separators. Aerosol Science and Technology, 39(9), 857-865, (2005).
[10] A.C. Hoffmann, M. De Groot, W. Peng, H.W.A. Dries, J. Kater, Advantages and risks in increasing cyclone separator length, AIChE journal, 47(11), 2452-2460, (2001).
[11] Y. Zhu, K.W. Lee, Experimental study on small cyclones operating at high flowrates. Journal of Aerosol Science, 30(10), 1303-1315, (1999).
[12] F. Kaya, I. Karagoz, A. Avci, Effects of surface roughness on the performance of tangential inlet cyclone separators. Aerosol science and technology, 45(8), 988-995, (2011).
[13] B. Wang, D.L. Xu, K.W. Chu, A.B. Yu, Numerical study of gas–solid flow in a cyclone separator. Applied Mathematical Modelling, 30(11), 1326-1342, (2006).
[14] L. Shi, D.J. Bayless, Comparison of boundary conditions for predicting the collection efficiency of cyclones. Powder Technology, 173(1), 29-37, (2007).
[15] A. Raoufi, M. Shams, M. Farzaneh, R. Ebrahimi, Numerical simulation and optimization of fluid flow in cyclone vortex finder. Chemical Engineering and Processing: Process Intensification, 47(1), 128-137, (2008).
[16] A. Kępa, Division of outlet flow in a cyclone vortex finder—The CFD calculations. Separation and Purification Technology, 75(2), 127-131, (2010).
[17] K. Elsayed, C. Lacor, The effect of cyclone inlet dimensions on the flow pattern and performance, Applied Mathematical Modelling, 35(4), 1952–1968, (2011).
[18] B. Zhao, Y. Su, J. Zhang, Simulation of Gas Flow Pattern and Separation Efficiency in Cyclone with Conventional Single and Spiral Double Inlet Configuration, Chemical Engineering Research and Design, 84(12), 1158–1165, (2006).
[19] T. G. Chuah, J. Gimbun, T. S. Y. Choong, A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics, Powder Technology, 162, 126–132, (2006).
[20] R. Xiang, S. H. Park, K. W. Lee, Effects of cone dimension on cyclone performance, Journal of Aerosol Science, 32(4), 549–561, (2001).
[21] F. Kaya, I. Karagoz, Numerical investigation of performance characteristics of a cyclone prolonged with a dipleg, Chemical Engineering Journal, 151(1), 39–45, (2009).
[22] F. Qian, J. Zhang, M. Zhang, Effects of the prolonged vertical tube on the separation performance of a cyclone, Journal of hazardous materials, 136, 822–829, (2006).
[23] H. Yoshida, Y. Nishimura, K. Fukui, T. Yamamoto, Effect of apex cone shape on fine particle classification of gas-cyclone, Powder Technology, 204(1), 54–62, (2010).
[24] A.J. Hoekstra, Gas flow field and collection efficiency of cyclone separators, Ph.D. thesis, Technical University Delft, Netherland, (2000).
[25] F. Parvaz, S.H. Hosseini, G. Ahmadi, Kh. Elsayed, Impacts of the Vortex Finder Eccentricity on the Flow Pattern and Performance of a Gas Cyclone, Separation and Purification Technology, 187, 1-13, (2017).
[26] B. Zhao, Development of a new method for evaluating cyclone efficiency, Chemical Engineering and Processing: Process Intensification, 44, 447–451 (2005).
[27] J. Gimbun, CFD simulation of aerocyclone hydrodynamics and performance at extreme temperature, Engineering Applications of Computational Fluid Mechanics, 2(1), 22-29 (2008).
[28] Y. Su, A.Zheng, B. Zhao, Numerical simulation of effect of inlet configuration on square cyclone separator performance, Powder technology, 210(3), 293-303 (2011).
[29] N. Fathizadeh, A. Mohebbi, S. Soltaninejad, M. Iranmanesh, Design and simulation of high pressure cyclones for a gas city gate station using semi-empirical models, genetic algorithm and computational fluid dynamics. Journal of Natural Gas Science and Engineering, 26, 313-329 (2015).
[30] L.S. Brar, R.P. Sharma, K. Elsayed, The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone, Powder Technology, 286, 668-677 (2015).
[31] X. Gao, J. Chen, J. Feng, X. Peng, Numerical investigation of the effects of the central channel on the flow field in an oil–gas cyclone separator, Computers & Fluids, 92, 45-55 (2014).
[32] Ansys FLUENT 16 user guide. , Fluent Inc., 2006.
[33] A. C. Hoffmann and L. E. Stein. Gas cyclones and swirl tubes: Principle, Design and Operation. Springer, 2nd edition, 2008.