2D Numerical Simulation of a Micro Scale Ranque-Hilsch Vortex Tube

Document Type : Full Lenght Research Article

Authors

1 Islamic Azad University, Semnan Branch

2 Semnan Branch, Islamic Azad University

3 Semnan University

Abstract

In this study, fluid flow and energy separation in a micro-scale Ranque-Hilsch Vortex Tube are numerically investigated. The flow is assumed as 2D, steady, compressible ideal gas, and shear-stress-transport  is found to be a best choice for modeling of turbulence phenomena.  The results are in a good agreement with the experimental results reported in the literature. The results show that fluid flow and energy separation inside the micro-scale vortex tube is quite similar to those of traditional ones. Moreover, it is found that non-dimensional forms of cold-temperature difference and refrigerating capacity are only dependent on cold mass fraction. In addition, two correlations have been proposed to estimate non-dimensional forms of cold temperature difference and refrigeration capacity in the micro-scale vortex tube.

Keywords


[1].    Ranque G. Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air. Le Journal de Physique et le Radium (Paris). 1933;4:112-4.
[2].    Ranque G. Method and apparatus for obtaining from a fluid under pressure two outputs of fluid at different temperatures. US1934.
[3].    Hilsch R. The use of the expansion of gases in a centrifugal field as cooling process. Review of Scientific Instruments. 1947;18(2):108-13.
[4].    Fröhlingsdorf W, Unger H. Numerical investigations of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube. International Journal of Heat and Mass Transfer. 1999;42(3):415-22.
[5].    Behera U, Paul PJ, Kasthurirengan S, Karunanithi R, Ram SN, Dinesh K, et al. CFD analysis and experimental investigations towards optimizing the parameters of Ranque-Hilsch vortex tube. International Journal of Heat and Mass Transfer. 2005;48(10):1961-73.
[6].    Aljuwayhel NF, Nellis GF, Klein SA. Parametric and internal study of the vortex tube using a CFD model. International Journal of Refrigeration. 2005;28(3):442-50.
[7].    Skye HM, Nellis GF, Klein SA. Comparison of CFD analysis to empirical data in a commercial vortex tube. International Journal of Refrigeration. 2006;29(1):71-80.
[8].    Eiamsa-ard S, Promvonge P. Numerical investigation of the thermal separation in a Ranque-Hilsch vortex tube. International Journal of Heat and Mass Transfer. 2007;50(5-6):821-32.
[9].    Farouk T, Farouk B. Large eddy simulations of the flow field and temperature separation in the Ranque-Hilsch vortex tube. International Journal of Heat and Mass Transfer. 2007;50(23-24):4724-35.
[10]. Behera U, Paul PJ, Dinesh K, Jacob S. Numerical investigations on flow behaviour and energy separation in Ranque-Hilsch vortex tube. International Journal of Heat and Mass Transfer. 2008;51(25-26):6077-89.
[11]. Farouk T, Farouk B, Gutsol A. Simulation of gas species and temperature separation in the counter-flow Ranque-Hilsch vortex tube using the large eddy simulation technique. International Journal of Heat and Mass Transfer. 2009;52(13-14):3320-33.
[12]. Ameri M, Behnia B. The study of key design parameters effects on the vortex tube performance. Journal of Thermal Science. 2009;18(4):370-6.
[13]. Dutta T, Sinhamahapatra KP, Bandyopdhyay SS. Comparison of different turbulence models in predicting the temperature separation in a Ranque-Hilsch vortex tube. International Journal of Refrigeration. 2010;33(4):783-92.
[14]. Nezhad AH, Shamsoddini R. Numerical three-dimensional analysis of the mechanism of flow and heat transfer in a vortex tube. Thermal Science. 2009;13(4):183-96.
[15]. Shamsoddini R, Nezhad AH. Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube. International Journal of Refrigeration. 2010;33(4):774-82.
[16]. Dutta T, Sinhamahapatra K, Bandyopadhyay S. Numerical investigation of gas species and energy separation in the Ranque-Hilsch vortex tube using real gas model. International Journal of Refrigeration. 2011.
[17]. Baghdad M, Ouadha A, Imine O, Addad Y. Numerical study of energy separation in a vortex tube with different RANS models. International Journal of Thermal Sciences. 2011;50(12):2377-85.
 
 
 
 
 
 
 
 
 
[18]. Khazaei H, Teymourtash A, Jafarian M. Effects of gas properties and geometrical parameters on performance of a vortex tube. Scientia Iranica B. 2012;19(3):454-62.
[19]. Dyskin L, Kramarenko P. Energy characteristics of vortex microtubes. Journal of Engineering Physics and Thermophysics. 1984;47(6):1394-5.
[20]. Hamoudi A, Fartaj A, Rankin G. Performance Characteristics of a Microscale Ranque–Hilsch Vortex Tube. Journal of Fluids Engineering. 2008;130:101206.
[21]. Rahbar N, taherian M, Shateri M, valipour MS. Numerical investigation on flow behavior and energy separation in a micro-scale vortex tube. Thermal Science. 2012.
[22]. Hamoudi AF. An Investigation of a Micro-Scale Ranque-Hilsch Vortex Tube: University of Windsor,Windsor, ON, Canada, 2006.
[23]. Zhang Z. Nano/microscale heat transfer. 1st ed: McGraw-Hill Professional, 2007.
[24]. Cebeci T. Turbulence models and their application: efficient numerical methods with computer programs: Horizons Pub. and Springer, 2004.
[25]. Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal. 1994;32(8):1598-605.
[26]. Cebeci T. Analysis of turbulent flows. 2nd ed: Elsevier, 2004.
[27]. Patankar SV. Numerical heat transfer and fluid flow: Hemisphere Pub, 1980.
[28]. Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method: Prentice Hall, 2007.
[29]. Valipour MS, Niazi N. Experimental Modeling of a Curved Ranque-Hilsch Vortex Tube Refrigerator. International Journal of Refrigeration. 2011;34(4):1109–16.