[1]. Cheng, L. “Nanofluid heat transfer technologies,” Recent Pat. Eng. 3 (2009) 1-7.
[2]. Duangthongsuk, W., Wongwises, S. “An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime,” International Journal of Heat and Mass Transfer, 53 (2010) 334–344.
[3]. Webb, R.L., Robertson, G.F., “Shell-side evaporators and condensers used in the refrigeration industry,” in: R.K. Shah, E.C. Subbarao, R.A. Mashelkar (Eds.), Heat Equipment Design, (Hemisphere Pub. Corp., Washington), pp. 559-570 (1988).
[4]. Dalle Donne, M., Meyer, L. “Turbulent convective heat transfer from rough surfaces with two-dimensional rectangular ribs,” International Journal Heat and Mass Transfer 20 (1977) 583–620.
[5]. Naphon, P., Nuchjapo, M., Kurujareon, J., “Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib,” Energy Conversion and Management 47 (2006) 3031–3044.
[6]. San, J.Y., Huang, W.C. “Heat transfer enhancement of transverse ribs in circular tubes with consideration of entrance effect,” International Journal of Heat and Mass Transfer 49 (17, 18) (2006) 2965–2971.
[7]. Bilen, K., Cetin, M., Gul, H., Balta, T. “The investigation of groove geometry effect on heat transfer for internally grooved tubes,” Applied Thermal Engineering 29 (2009) 753–761.
[8]. Pingan, L., Ye, G., Hairong, M., Liu, H. “Numerical simulation of heat transfer and resistance pattern in channels with different ribs,” in: 2010 International Conference on Computer Design and Applications (ICCDA 2010) p. V3-507-V3-11.
[9]. Choi, S.U.S. "Enhancing thermal conductivity of fluids with nanoparticles," ASME Publications FED-Vol. 231/MD-Vol. 66, (1995)99- 105,
[10]. Keblinski, P., Phillpot, S.R., Choi, S.U.S., Eastman, J.A. “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluid).” International Journal of Heat and Mass Transfer, 45 (2002) 855-863.
[11]. Das, S., Putra, N., Thiesen, P., Roetzel, W. Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer 125 (2003) 567–574.
[12]. Pak, B.C., Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer 11 (1998) 151–170.
[13]. Xuan, Y.M., Li, Q. Investigation on convective heat transfer and flow features of nanofluids, Journal of Heat Transfer 125 (2003) 151–155.
[14]. Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., Mare, T., Coqueux, M. “Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension,” International Journal of Numerical Methods for Heat and Fluid Flow 16 (2006) 275–292.
[15]. Fotukian, S.M.,Nasr Esfahany, M. Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube, International Journal of Heat and Fluid Flow, 31 (2010) 606–612.
[16]. Wongcharee, K., Eiamsa-ard, S. Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape, International Communication of Heat and Mass Transfer 39 (2) (2012) 251–257.
[17]. Manca, O., Nardini, S., Ricci, D. A numerical study of nanofluid forced convection in ribbed channels, Applied Thermal Engineering 37 (2012) 280–292.
[18]. Vatani, A., Mohammed, H.A. Turbulent nanofluid flow over periodic rib-grooved channels, Engineering Applications of Computational Fluid Mechanics 7(3) (2013) 369-381.
[19]. Haghighi, E.B., Utomo, A.T., Ghanbarpour, M., Zavareh, A.I.T., Poth, H., khodabandeh, R., Pacek, A., Palm, B.E. Experimental study on convective heat transfer of nanofluids in turbulent flow: Methods of comparison and their performance, Experimental thermal and Fluid Sciences, 57 (2014) 378-387.
[20]. Al-Shamani, A.N., Sopian, K., Mohammed, H.A., Mat, S., Ruslan, M.H., Abed, A.M. “Enhancement heat transfer characteristics in the channel with trapezoidal rib-groove using nanofluids, Case Studies in Thermal Engineering, 5, (2015) 48-58.
[21]. Bejan, A. Entropy Generation Minimization, CRC Press, Boca Taron (1996).
[22]. Maxwell, J.C. A treatise on Electricity and Magnetism, Carendon Press, Oxford UK (1873).
[23]. Xuan, Y.M., Roetzel, W. “Conceptions for heat transfer correlation of nanofluids,” International Journal of Heat and Mass Transfer 43 (2000) 3701–3707.
[24]. Corcione, M. “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids,” Energy Conversion Management. 52 (2011) 789-793.
[25]. Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.S. “Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement,” Appl. Phys. Lett., 87 (2005) 153107.
[26]. White, F.M. “Fluid Mechanics”, 7th ed. McGraw-Hill, New York (2011).
[28]. White, F.M. “Viscous fluid Flow,” 3rd ed., McGraw-Hill, New York (2003).
[29]. Versteeg, H., Malalasekera, W. An introduction to computational fluid dynamics: the finite volume method, 2nd ed. Pearson Education Limited (2007).
[30]. Eckert, E.R.G., Drake, R.M. Heat and Mass Transfer, McGraw-Hill, New York (1959).
[31]. Petukhov, B.S. “Heat transfer and friction in turbulent pipe flow with variable physical properties,” Adv. Heat Transfer 6 (1970) 503–564.
[32]. Gnielinski, V. “New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow,” International Chemical Engineering 16 (1976) 359–368.