[1] Bergman TL, Lavine AS, Incropera FP, DeWitt DP. Introduction to Heat Transfer. 6th ed. John Wiley and Sons, Inc.; 2011.
[2] Torabi M, Zhang K. Multi-dimensional dual-phase-lag heat conduction in cylindrical coordinates: Analytical and numerical solutions. Int J Heat Mass Transf 2014;78:960–6.
[3] Tzou DY. Macro- to Microscale Heat Transfer: The Lagging Behavior. Washington, DC: Taylor and Francis; 1997.
[4] Shirmohammadi R, Moosaie A. Non-Fourier heat conduction in a hollow sphere with periodic surface heat flux. Int Commun Heat Mass Transf 2009;36:827–33.
[5] C. Cattaneo. Sur une forme de l’equation de la chaleur eliminant le paradoxe d’une propagation instantanée (in French). Comptes Rendus l’Académie Des Sci 1958;247:431–3.
[6] P. Vernotte. Les paradoxes de la théorie continue de l’equation de la chaleur (in French). Comptes Rendus l’Académie Des Sci 1958;246:3154–5.
[7] Liu H, Bussmann M, Mostaghimi J. A comparison of hyperbolic and parabolic models of phase change of a pure metal. Int J Heat Mass Transf 2009;52:1177–84.
[8] Mitra K, Kumar S, Vedavarz A, Moallemi MK. Experimental evidence of hyperbolic heat conduction in processed meat. J Heat Transfer 1995;117:568–73.
[9] Kaminski W. Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J Heat Transfer 1995;112:555–60.
[10] Yilbas BS, Al-Dweik AY, Bin Mansour S. Analytical solution of hyperbolic heat conduction equation in relation to laser short-pulse heating. Phys B Condens Matter 2011;406:1550–5.
[11] Lam TT, Fong E. Application of solution structure theorems to Cattaneo–Vernotte heat conduction equation with non-homogeneous boundary conditions. Heat Mass Transf 2012;49:509–19.
[12] Lee H-L, Chang W-J, Wu S-C, Yang Y-C. An inverse problem in estimating the base heat flux of an annular fin based on the hyperbolic model of heat conduction. Int Commun Heat Mass Transf 2013;44:31–7.
[13] Kundu B, Lee K-S. A non-Fourier analysis for transmitting heat in fins with internal heat generation. Int J Heat Mass Transf 2013;64:1153–62.
[14] Torabi M, Saedodin S. Analytical and numerical solutions of hyperbolic heat conduction in cylindrical coordinates. J Thermophys Heat Transf 2011;25:239–53.
[15] Quintanilla R. Some solutions for a family of exact phase-lag heat conduction problems. Mech Res Commun 2011;38:355–60.
[16] Saedodin S, Yaghoobi H, Torabi M. Application of the variational iteration method to nonlinear non-Fourier conduction heat transfer equation with variable coefficient. Heat Transf - Asian Res 2011;40:513–23.
[17] Torabi M, Yaghoobi H, Saedodin S. Assessment of homotopy perturbation method in nonlinear convective-radiative non-Fourier conduction heat transfer equation with variable coefficient. Therm Sci 2011;15:263–74.
[18] Saleh A, Al-Nimr MA. Variational formulation of hyperbolic heat conduction problems applying Laplace transform technique. Int Commun Heat Mass Transf 2008;35:204–14.
[19] He J-H. Variational approach for nonlinear oscillators. Chaos, Solitons & Fractals 2007;34:1430–9.
[20] Arpaci VS, Vest CM. Variational formulation of transformed diffusion problems. ASME-AIChE Transf. Conf. Exhib., Seattle, Washington: 1967.
[21] Hahn DW, Özişik MN. Heat Conduction. 3rd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2012.
[22] Kreyszig E. Advanced Engineering Mathematics. 10th editi. Wiley; 2011.