[1]. L. J. Crane, Flow Past a Stretching Plate, Z. Angew Math. Phys., 21, 645-647 (1970).
[2]. S. Mukhopadhyay, Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux, Chin. Phys. B, 23(4), 044702pg1-044702pg5 (2014).
[3]. N. Casson, Rheology of disperse systems in flow equation for pigment Oil-suspensions of the printing ink type, Rheology of disperse systems. C. C. Mill, Ed.. Pergamon Press, UK, 84-102 (1959).
[4]. R. B. Bird, G. C. Dai, and B. J. Yarusso, The rheology and flow of Viscoplastic materials, Rev. Chem. Eng., 1,1-70 (1983).
[5]. J. Venkatesan, D. S. Sankar, K. Hemalatha, and Y. Yatim, Mathematical Analysis of Casson Fluid Model for Blood Rheology in Stenosed Narrow Arteries, Journal of Applied Mathematics, 2013, 583809 (2013).
[6]. Y. Tasaka, Y. Kudoh, Y. Takeda, and T. Yanagisawa, Experimental investigation of natural convection induced by internal heat generation, Journal of Physics IOP: Conference Series, 14,168–179 (2005).
[7]. J. C. Crepeau and R. Clarksean, Similarity solutions of natural convection with internal heat generation, Transactions of ASME – Journal of Heat Transfer, 119, 184-185 (1997).
[8]. A. M. Salem, and M. A. El-Aziz, MHD-mixed convection and mass transfer from a vertical stretching sheet with diffusion of chemically reactive species and space- or temperature-dependent heat source, Canadian Journal of Physics, 85, 359–373 (2007).
[9]. A. M. Salem, and M. A. El-Aziz, Effect of Hall currents and chemical reaction on hydromagnetic flow of a stretching vertical surface with internal heat generation/absorption, Applied Mathematical Modelling, 32, 1236–1254 (2008).
[10]. M. B. K. Moorthy and K. Senthilvadivu, Effect of variable viscosity on free flow of non-Newtonian power-law fluids along a vertical surface with thermal stratification, archives of thermodynamics, 33, 109–121 (2012). (DOI: 10.2478/v10173-012-0030-z)
[11]. P. V. S. N. Murthy, Ch. RamReddy, A. J. Chamkha, and A. M. Rashad, Magnetic effect on thermally stratified nanofluid saturated non-Darcy porous medium under convective boundary condition, International Communications in Heat and Mass transfer, 47,41 - 48 (2013).
[12]. S. Mukhopadhyay, MHD boundary layer flow and heat transfer over an exponentially stretching sheet embedded in a thermally stratified medium, Alexandria Engineering Journal, 52, 259–265 (2013).
[13]. Ch. RamReddy, P.V.S.N. Murthy, A. M. Rashad, and A. J. Chamkha, Numerical study of thermally stratified nanofluid flow in a saturated non-Darcy porous medium, The European Physical Journal Plus 129: 25 (2014). (DOI: 10.1140/epjp/i2014-14025-3).
[14]. S. Mukhopadhyay, Casson fluid flow and heat transfer over a nonlinearly stretching surface, Chin. Phys. B., 22, 074701pg1-074701pg5 (2013).
[15]. T. Hayat, S. A. Shehzadi, and A. Alsaedi, Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid, Appl. Math. Mech. Engl. Ed., 33, 1301-1312 (2012).
[16]. A. J. Chamkha, M. Mujtaba, A. Quadri, and C. Issa, Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source or sink, Heat and Mass Transfer of Springer-Verlag, 39, 305–312 (2003).
[17]. M. W. Anyakoha, New School Physics, 3rd Edition, Africana First Publisher Plc. (2010).
[18]. G. K., Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, London, (1987).
[19]. K. Vajravelu, K. V. Prasad, and N. Chiu-On, The effect of variable viscosity on the flow and heat transfer of a viscous Ag-water and Cu-water Nanofluids, Journal of Hydrodynamics, 25, 1-9, (2012).
[20]. A. M. Salem, and R. Fathy, Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation, Chin. Phys. B, 21, 054701pg1-054701pg11 (2012).
[21]. G. C. Layek, S. Mukhopadhyay, and Sk. A. Samad, Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity, International Journal of Heat and Mass Transfer, 48, 4460 - 4466 (2005).
[22]. S. Gill, A Process for the Step-by-Step Integration of Differential Equations in an Automatic Digital Computing Machine, Proceedings of the Cambridge Philosophical Society, 47, 96 - 108 (1951).
[23]. B. A. Finlayson, Nonlinear Analysis in Chemical Engineering, McGraw-Hill, New York (1980).
[24]. T.Y. Na, “Computational Methods in Engineering Boundary Value Problems,” Academic Press, New York, (1979).
[25]. J. D. Hoffman, Numerical Methods for Engineers and Scientists, McGraw-Hill, New York. (1992).
[26]. I. L. Animasaun, Dynamics of Unsteady MHD Convective Flow with Thermophoresis of Particles and Variable Thermo-Physical Properties past a Vertical Surface Moving through Binary Mixture, Open Journal of Fluid Dynamics, 5, 106-120 (2015).
[27]. B. Bidin, R. Nazar, Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation, European Journal of Scientific Research,33, 710–717 (2009).
[28]. S. Nadeem, S. Zaheer, T. Fang, Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface, Numerical Algorithms, 187-205 (2011).
[29]. S. Pramanik, Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation, Ain Shams Engineering Journal, 5,205-212 (2014).
[30]. I.L. Animasaun, Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction, Journal of the Nigerian Mathematical Society, 34, 11–31 (2015).