[1] Naphon P, Wongwises S. An experimental study the in-tube convective heat transfer coefficients in aspiral-coil heat exchanger. IntCommun Heat Mass Transfer 29, (2002) 797–809.
[2] J.C. Ho, N.E. Wijeysundera, S. Rajasekar, T.T. Chandratilleke,Performance of a compact spiral coil heat exchange, Heat RecoverySystem nas CHP 15, (1995) 457–468.
[3] S. Rahul, S.K Gupta, P.M.V Subbarao, An experimental study for estimating heat transfer coefficient from coiled tube surfaces in cross-flow of air, Proceeding of the third ISHMT-ASME heat and mass transfer conference and Fourth National heat and mass transfer conference, India, December (1997) 381-385.
[4] M.K. Khan, R. Kumar, P.K. Sahoo, An experimental studyof the flow of R-134a inside an adiabatic spirally coiledcapillary tube, International Journal of Refrigeration (2008); doi:10.1016/j.ijrefrig. 2008.01.008
[5] C.E Kalbe and J.D. Seader, Fully developed viscous-flow heat transfer in curved circular tubes with uniform wall temperature, AIChe Journal, 20, (1974) 340-346.
[6] M.K. Mittal, R. Kumar, A. Gupta, Numerical analysis of adiabatic flow of refrigerantthrough a spiral capillary tube, International Journal of Thermal Sciences 48, (2009) 1348-1354
[7] M. Mirzaei, M. Dehghan, Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach, Heat Mass Transfer 49 (2013) 1803-1811.
[8] M. T. Jamal-Abad, A. H. Zamzamian, M. Dehghan, Experimental studies on the heat transfer and pressure drop characteristics of Cu-water and Al-water nanofluids in a spiral coil, Experimental Thermal and Fluid Science 47 (2013) 206-212.
[9] M.T. Jamal-Abad, M. Dehghan, S. Saedodin, M.S. Valipour, A. Zamzamian, An Experimental investigation of rheological characteristics of non-Newtonian nanofluids, J. Heat Mass Trans. Res. 1 (2014) 17-23.
[10] Yu, W., France, D. M., Routbort, J. L., Choi, S. U. S., Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements. Heat Transfer Engineering. 29(5) (2008) 432-460.
[11] M. Dehghan, M. Daneshipour, M.S. Valipour, R. Rafee, S. Saedodin, Enhancing heat transfer in microchannel heat sinks using converging flow passages, Energy Conversion and Management 92 (2015) 244-250.
[12] Milad Tajik Jamal-Abad,A. Zamzamian,E. Imani, M. Mansour, Experimental Study of the Performance of a Flat-Plate Collector Using Cu–Water Nanofluid, Journal of Thermophysics and Heat Transfer 27(4) (2013) 756-760.
[13] A. Zamzamiana, M.T Jamal-Abad, Factor Effect Estimation in the Convective Heat Transfer Coefficient Enhancement of Al2O3 /EG Nanofluid in a Double-pipe Heat Exchanger, IJE TRANSACTIONS B: Application Vol. 26 (8), (2013) 837-844.
[14] V. Kubair and N. R. Kuloor, Heat transfer to Newtonian fluids in spiral coils at constant tube walltemperature in laminar flow, Indian J. Technol., Vol. 3, (1965) 144 -146.
[15] Das, S.K., N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer- Transactions of the Asme, 125(4), (2003) 567-574.
[16] Xie, H.Q., J.C. Wang, T.G. Xi, Y. Liu, F. Ai, and Q.R. Wu, Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91(7), (2002) 4568-4572.
[17] Eastman, J.A., U.S. Choi, S. Li, L.J. Thompson, and S. Lee, Enhanced thermal conductivity through the development of nanofluids. Materials Research Society Symposium Proceedings, 457(Nanophase and Nanocomposite Materials II), (1997) 3-11.
[18] Lee, S., S.U.S. Choi, S. Li, and J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer-Transactions of the Asme, 121(2), (1999) 280-289.