[1] S.K. Sahoo, M.K. Das, P. Rath, Application of TCE-PCM based heat sinks for cooling of electronic components: A review, Renewable and Sustainable Energy Reviews, 59, 550-582,(2016).
[2] H.-S. Huang, Y.-C. Weng, Y.-W. Chang, S.-L. Chen, M.-T. Ke, Thermoelectric water-cooling device applied to electronic equipment, International Communications in Heat and Mass Transfer, 3 (7), 140-146,(2010).
[3] N. Ahammed, L.G. Asirvatham, S. Wongwises, Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger, Experimental Thermal and Fluid Science, 74, 81-90,(2016).
[4] A. Bayomy, M. Saghir, T. Yousefi, Electronic cooling using water flow in aluminum metal foam heat sink: Experimental and numerical approach, International Journal of Thermal Sciences, 109, 182-200,(2016).
[5] K.P. Vamsi, M. Amrita, S.R. Rukmini, Nano Cutting Fluids, in: Metalworking Fluids, Third Edition, CRC Press, pp. 171-185, (2017).
[6] R.K. Singh, A.K. Sharma, A.R. Dixit, A.K. Tiwari, A. Pramanik, A. Mandal, Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning, Journal of cleaner production, 162, 830-845,(2017).
[7] W. Khalil, A. Mohamed, M. Bayoumi, T. Osman, Thermal and Rheological properties of industrial mineral gear oil and paraffinic oil/CNTs nanolubricants, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 1-7,(2017).
[8] M. Imran, A.H. Shaik, A.R. Ansari, A. Aziz, S. Hussain, A.F.F. Abouatiaa, A. Khan, M.R. Chandan, Synthesis of highly stable γ-Fe 2 O 3 ferrofluid dispersed in liquid paraffin, motor oil and sunflower oil for heat transfer applications, RSC Advances, 8(25), 13970-13975,(2018).
[9] A.E.-S.M. Hassan, A.I. EiD, M. El-Sheikh, W. Ali, Effect of Graphene Nanoplatelets and Paraffin Oil Addition on the Mechanical and Tribological Properties of Low-Density Polyethylene Nanocomposites, Arabian Journal for Science and Engineering, 43(3), 1435-1443,(2018).
[10] M. Vafaei, M. Afrand, N. Sina, R. Kalbasi, F. Sourani, H. Teimouri, Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks, Physica E: Low-dimensional Systems and Nanostructures, 85, 90-96,(2017).
[11] A. Shahsavar, M. Bahiraei, Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles, Powder Technology,318,441-450, (2017).
[12] R. Ranjbarzadeh, A. Karimipour, M. Afrand, A.H.M. Isfahani, A. Shirneshan, Empirical Analysis of Heat Transfer and Friction Factor of Water/Graphene oxide Nanofluid flow in Turbulent Regime through an Isothermal Pipe, Applied Thermal Engineering,126, 538-547 ,(2017).
[13] M. Nourani, N. Hamdami, J. Keramat, A. Moheb, M. Shahedi, Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity, Renewable Energy, 88, 474-482,(2016).
[14] Y. Wang, X. Gao, P. Chen, Z. Huang, T. Xu, Y. Fang, Z. Zhang, Preparation and thermal performance of paraffin/Nano-SiO2 nanocomposite for passive thermal protection of electronic devices, Applied Thermal Engineering, 96, 699-707,(2016).
[15] F. Wang, J. Liu, X. Fang, Z. Zhang, Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance, Solar energy materials and solar cells, 147, 101-107,(2016).
[16] M. Gupta, V. Singh, R. Kumar, Z. Said, A review on thermophysical properties of nanofluids and heat transfer applications, Renewable and Sustainable Energy Reviews, 74, 638-670,(2017).
[17] Y. Xie, D. Kocaefe, Y. Kocaefe, J. Cheng, W. Liu, The effect of novel synthetic methods and parameters control on morphology of nano-alumina particles, Nanoscale research letters, 11(1), 259,(2016).
[18] S.U. Ilyas, R. Pendyala, M. Narahari, L. Susin, Stability, rheology and thermal analysis of functionalized alumina-thermal oil-based nanofluids for advanced cooling systems, Energy conversion and management, 142, 215-229,(2017).
[19] M. Kole, T. Dey, Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant, Journal of Physics D: Applied Physics, 43(31), 315501,(2010).
[20] H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, Journal of Applied Physics, 91(7), 4568-4572,(2002).
[21] L.-W. Fan, X. Fang, X. Wang, Y. Zeng, Y.-Q. Xiao, Z.-T. Yu, et al. , Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials, Applied Energy, 110, 163-172,(2013).
[22] M. LEVIN, M. MILLER, Maxwell a treatise on electricity and magnetism, Uspekhi Fizicheskikh Nauk, 135(3), 425-440,(1981).
[23] R. Hamilton, O. Crosser, Thermal conductivity of heterogeneous two-component systems, Industrial & Engineering chemistry fundamentals, 1(3), 187-191,(1962).
[24] D.J. Jeffrey, Conduction through a random suspension of spheres, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society335(1602), 355-367, (1973).
[25] R. Davis, The effective thermal conductivity of a composite material with spherical inclusions, International Journal of Thermophysics, 7(3), 609-620,(1986).
[26] S.Y. Lu, H.C. Lin, Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity, Journal of Applied Physics, 79(9), 6761-6769,(1996).
[27] Z. Zheng, B. Wang, A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles, Acta Mechanica Sinica, 34 (3), 507-14, (2018).
[28] M. Pryazhnikov, A. Minakov, V.Y. Rudyak, D. Guzei, Thermal conductivity measurements of nanofluids, International Journal of Heat and Mass Transfer, 104, 1275-1282,(2017).
[29] N.N. Esfahani, D. Toghraie, M. Afrand, A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: An experimental study, Powder Technology, 323, 367-373,(2018).
[30] G. Mózes, Paraffin Products, Elsevier, (1983).
[31] Z. Haddad, C. Abid, H.F. Oztop, A. Mataoui, A review on how the researchers prepare their nanofluids, International Journal of Thermal Sciences, 76, 168-189,(2014).
[32] Y. Wang, W. Eli, L. Zhang, H. Gao, Y. Liu, P. Li, A new method for surface modification of nano-CaCO 3 and nano-Al 2 O 3 at room temperature, Advanced Powder Technology, 21(2), 203-205,(2010).
[33] Y. Wada, Y. Nagasaka, A. Nagashima, Measurements and correlation of the thermal conductivity of liquid n-paraffin hydrocarbons and their binary and ternary mixtures, International journal of thermophysics, 6(3), 251-265,(1985).
[34] W.R. Humphries, E.I. Griggs, A design handbook for phase change thermal control and energy storage devices, in, National Aeronautics and Space Administration, Huntsville, AL (USA). George C. Marshall Space Flight Center, 30-36,1977.
[35] W. Yu, H. Xie, X. Wang, Enhanced thermal conductivity of liquid Paraffin based nanofluids containing copper nanoparticles, Journal of Dispersion Science and Technology, 32(7), 948-951,(2011).
[36] S.P. Jang, S.U. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Applied physics letters, 84(21), 4316-4318,(2004).
[37] L. Xue, P. Keblinski, S. Phillpot, S.-S. Choi, J. Eastman, Effect of liquid layering at the liquid–solid interface on thermal transport, International Journal of Heat and Mass Transfer, 47, 4277-4284,(2004).
[38] S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes, Physical review letters, 84(20), 4613,(2000).
[39] P. Keblinski, S. Phillpot, S. Choi, J. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), International journal of heat and mass transfer, 45(4), 855-863,(2002).
[40] D. Wen, Y. Ding, Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), Journal of Thermophysics and Heat Transfer, 18(4), 481-485,(2004).
[41] A. Shahsavar, M. Salimpour, M. Saghafian, M. Shafii, An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes, Thermochimica Acta, 617, 102-110,(2015).
[42] O.A. Alawi, N.A.C. Sidik, H.W. Xian, T.H. Kean, S. Kazi, Thermal conductivity and viscosity models of metallic oxides nanofluids, International Journal of Heat and Mass Transfer, 116, 1314-1325,(2018).
[43] A. Shahsavar, M. Salimpour, M. Saghafian, M. Shafii, Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes, Journal of Mechanical Science & Technology, 30(2),(2016).
[44] J.C. Maxwell, A treatise on electricity and magnetism, Clarendon press, (1881).
[45] M. Shaker, E. Birgersson, A. Mujumdar, Extended Maxwell model for the thermal conductivity of nanofluids that accounts for nonlocal heat transfer, International Journal of Thermal Sciences, 84, 260-266,(2014).
[46] C. Kleinstreuer, Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Nanoscale research letters, 6(1), 229,(2011).