[1] F. Barbir, PEM fuel cells : theory and practice, Elsevier, 1-80, (2013).
[2] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Applied Energy, vol. 88, no. 4. pp. 981–1007, (2011).
[3]H. Wu, “Mathematical Modeling of Transient Transport Phenomena in PEM Fuel Cells,” (2009).
[4] M. M. Mench, Fuel Cell Engines, Wiley, 10-22, (2008).
[5] W. Yuan, Y. Tang, X. Yang, and Z. Wan, “Porous metal materials for polymer electrolyte membrane fuel cells - A review,” Appl. Energy, vol. 94, pp. 309–329, (2012).
[6]J. Giner and C. Hunter, “The Mechanism of Operation of the Teflon-Bonded Gas Diffusion Electrode: A Mathematical Model,” J. Electrochem. Soc., vol. 116, no. 8, p. 1124, (1969).
[7]H. S. Chu, C. Yeh, and F. Chen, “Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell,” J. Power Sources, vol. 123, no. 1, pp. 1–9, (2003).
[8] S. Dutta, S. Shimpalee, and J. W. Van Zee, “Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell,” Int. J. Heat Mass Transf., vol. 44, no. 11, pp. 2029–2042, (2001).
[9] G.-P. Ren, L.-J. Yu, X.-M. Jiang, and J.-Q. Yuan, “Numerical analysis of the influencing factors on performance of proton exchange membrane fuel cell,” Shanghai Jiaotong Daxue Xuebao/Journal Shanghai Jiaotong Univ., vol. 40, no. 8, (2006).
[10]Y. Zhang, A. Mawardi, and R. Pitchumani, “Analysis and design of proton exchange membrane fuel cells for maximum power density and uniform current density distribution,” in Proceedings of the 1st European Fuel Cell Technology and Applications Conference 2005 - Book of Abstracts, 2005, vol. (2005).
[11]K. D. Baik, S. Il Kim, B. K. Hong, K. Han, and M. S. Kim, “Effects of gas diffusion layer structure on the open circuit voltage and hydrogen crossover of polymer electrolyte membrane fuel cells,” Int. J. Hydrogen Energy, vol. 36, no. 16, pp. 9916–9925, (2011).
[12]J. P. James, H.-W. Choi, and J. G. Pharoah, “Xray computed tomography reconstruction and analysis of polymer electrolyte membrane fuel cell porous transport layers,” Int. J. Hydrogen Energy, vol. 37, no. 23, pp. 18216–18230, (2012).
[13]G. Falcucci, S. Ubertini, E. Galloni, and E. Jannelli, “Modeling fuel cells through Lattice Boltzmann methods,” in EFC 2009 - Piero Lunghi Conference, Proceedings of the 3rd European Fuel Cell Technology and Applications Conference, (2009).
[14]J. Park and X. Li, “Multi-phase micro-scale flow simulation in the electrodes of a PEM fuel cell by lattice Boltzmann method,” J. Power Sources, vol. 178, no. 1, pp. 248–257, (2008).
[15]J. Yablecki, J. Hinebaugh, and A. Bazylak, “Effect of Liquid Water Presence on PEMFC GDL Effective Thermal Conductivity,” J. Electrochem. Soc., vol. 159, no. 12, pp. F805– F809, (2012).
[16]B. S. Yasser, Y. Tabe, and T. Chikahisa, “Liquid water and gas flow simulation in a channel of PEM fuel cels using the Lattice Boltzmann method,” in ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2010, vol. 1, (2010).
[17]V. P. Zhdanov, “Simulations of processes related to H2-O2 PEM fuel cells,” J. Electroanal. Chem., vol. 607, pp. 17–24, (2007). [18]Y. Gao, “Using MRT lattice Boltzmann method to simulate gas flow in simplified catalyst layer for different inlet-outlet pressure ratio,” Int. J. Heat Mass Transf., vol. 88, pp. 122–132, (2015).
[19]C. Hartnig, L. Jörissen, J. Scholta, and W. Lehnert, “4 - Gas diffusion media, flowfields and system aspects in low temperature fuel cells BT - Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology,” in Woodhead Publishing Series in Energy, vol. 1, pp. 81–116, (2012). R. Bahoosh / JHMTR 6 (2019) 105-116 115
[20]C. Spiegel, “Modeling the Gas Diffusion Layers,” PEM Fuel Cell Model. Simul. Using Matlab, pp. 197–241, (2008).
[21]R. Wu, X. Zhu, Q. Liao, H. Wang, and Y. D. Ding, “Pore network modeling of oxygen diffusion in gas diffusion layer of proton exchange membrane fuel cells,” in Proceedings of the ASME Micro/Nanoscale Heat and Mass Transfer International Conference 2009, MNHMT2009, vol. 2, pp. 307–312, (2010).
[22]Z. Shi and X. Wang, “Pore structure modeling of flow in gas diffusion layers of proton exchange membrane fuel cells,” ASME 2010 8th Int. Conf. Fuel Cell Sci. Eng. Technol. FUELCELL 2010, vol. 1, pp. 525–531, 2010.
[23]L. Chen, H. B. Luan, and W. Q. Tao, “Liquid water dynamic behaviors in the GDL and GC of PEMFCS using Lattice Boltzmann method,” Front. Heat Mass Transf., vol. 1, no. 2, (2010).
[24]L. Hao and P. Cheng, “Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell,” J. Power Sources, vol. 195, no. 12, pp. 3870–3881,( 2010).
[25]L. Chen, H. B. Luan, Y. L. He, and W. Q. Tao, “Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields,” Int. J. Therm. Sci., vol. 51, no. 1, pp. 132–144, (2012).
[26]J. P. Feser, A. K. Prasad, and S. G. Advani, “Experimental characterization of in-plane permeability of gas diffusion layers,” J. Power Sources, vol. 162, no. 2 SPEC. ISS., pp. 1226– 1231, (2006).
[27]A. Tamayol, F. McGregor, and M. Bahrami, “Single phase through-plane permeability of carbon paper gas diffusion layers,” J. Power Sources, vol. 204, pp. 94–99, (2012).
[28]P. Chippar, O. Kyeongmin, K. Kang, and H. Ju, “A numerical investigation of the effects of GDL compression and intrusion in polymer electrolyte fuel cells (PEFCs),” in International Journal of Hydrogen Energy, vol. 37, no. 7, pp. 6326–6338, (2012).
[29]T. Hottinen, O. Himanen, S. Karvonen, and I. Nitta, “Inhomogeneous compression of PEMFC gas diffusion layer. Part II. Modeling the effect,” J. Power Sources, vol. 171, no. 1, pp. 113–121, (2007).
[30]A. H. Mahmoudi, A. Ramiar, and Q. Esmaili, “Effect of inhomogeneous compression of gas diffusion layer on the performance of PEMFC with interdigitated flow field,” Energy Convers. Manag. , vol. 110, pp. 78–89, (2016).
[31]Z. Fishman, J. Hinebaugh, and A. Bazylak, “Microscale Tomography Investigations of Heterogeneous Porosity Distributions of PEMFC GDLs,” J. Electrochem. Soc., vol. 157, no. 11, p. B1643,( 2010).
[32]L. Chen, H. Luan, Y. Feng, C. Song, Y. L. He, and W. Q. Tao, “Coupling between finite volume method and lattice Boltzmann method and its application to fluid flow and mass transport in proton exchange membrane fuel cell,” Int. J. Heat Mass Transf., vol. 55, no. 13–14, pp. 3834–3848, (2012).
[33]G. R. Molaeimanesh and M. H. Akbari, “A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method,” Korean J. Chem. Eng., vol. 32, no. 3, pp. 397–405, (2015).
[34]Z. Fishman and A. Bazylak, “Heterogeneous Through-Plane Distributions of Tortuosity, Effective Diffusivity, and Permeability for PEMFC GDLs,” J. Electrochem. Soc., vol. 158, no. 2, p. B247, (2011).
[35]A. Nabovati, J. Hinebaugh, A. Bazylak, and C. H. Amon, “Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells,” J. Power Sources, vol. 248, pp. 83–90, (2014).
[36]J. Hinebaugh and A. Bazylak, “Stochastic modeling of polymer electrolyte membrane fuel cell gas diffusion layers – Part 1: Physical characterization,” Int. J. Hydrogen Energy, vol. 42, no. 24, pp. 15861–15871, (2017).
[37]A. A. Mohamad, Lattice Boltzmann Method. (2011).
[38]P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev., vol. 94, no. 3, pp. 511–525, (1954).
[39]S. Succi, “The lattice Boltzmann equation for Fluid Dynamics and Beyond,” Oxford University press. p. 299, (2001).
[40]M. C. Sukop and D. T. Thorne, Lattice boltzmann modeling: An introduction for geoscientists and engineers. (2006).
[41]X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multi phases and components,” Phys. Rev. E, vol. 47, no. 3, pp. 1815–1819, (1993).
[42]T. V. Nguyen, “A Gas Distributor Design for Proton-Exchange-Membrane Fuel Cells,” J. Electrochem. Soc., vol. 143, no. 5, p. L103, (1996).
[43]Y. Wang, C. Y. Wang, and K. S. Chen, “Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells,” Electrochim. Acta, vol. 52, no. 12, pp. 3965–3975, (2007).
[44]K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann, and J. Ohser, “Design of acoustic 116 R. Bahoosh / JHMTR 6 (2019) 105-116 trim based on geometric modeling and flow simulation for non-woven,” Comput. Mater. Sci., vol. 38, no. 1, pp. 56–66, (2006).
[45]V. P. Schulz, J. Becker, A. Wiegmann, P. P. Mukherjee, and C.-Y. Wang, “Modeling of TwoPhase Behavior in the Gas Diffusion Medium of PEFCs via Full Morphology Approach,” J. Electrochem. Soc., vol. 154, no. 4, p. B419,( 2007).
[46]D. A. Nield and A. Bejan, Convection in porous media. (2013).
[47]M. Kaviany, “Principles of Heat Transfer in Porous Media,” Mech. Eng. Ser., vol. 53, no. 9, p. 726, (1995).
[48]A. Koponen et al., “Permeability of threedimensional random fiber webs,” Phys. Rev. Lett., vol. 80, no. 4, pp. 716–719, (1998).
[49]C. N. Davies, “The Separation of Airborne Dust and Particles,” Proc. Inst. Mech. Eng. B, pp. 185–213, (1952).
[50]O. Filippova and D. Hänel, “Grid Refinement for Lattice-BGK Models,” J. Comput. Phys., vol. 147, no. 1, pp. 219–228, (1998). [51]A. Koponen, M. Kataja, and J. Timonen, “Permeability and effective porosity of porous media,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., vol. 56, no. 3, pp. 3319–3325, (1997).
[52]H. R. Ashorynejad, K. Javaherdeh, and H. E. A. Van den Akker, “The effect of pulsating pressure on the performance of a PEM fuel cell with a wavy cathode surface,” Int. J. Hydrogen Energy, vol. 41, no. 32, pp. 14239–14251, (2016).
[53]M. R. Kamali, S. Sundaresan, H. E. A. Van den Akker, and J. J. J. Gillissen, “A multi-component two-phase lattice Boltzmann method applied to a 1-D Fischer-Tropsch reactor,” Chem. Eng. J., vol. 207–208, pp. 587–595,(2012).
[54]Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids, vol. 9, no. 6, pp. 1591–1598, (1997).
[55]G. R. Molaeimanesh and M. H. Akbari, “Agglomerate modeling of cathode catalyst layer of a PEM fuel cell by the lattice Boltzmann method,” Int. J. Hydrogen Energy, vol. 40, no. 15, pp. 5169–5185, (2015)