[1]US DOE Nuclear Energy Research Advisory Committee and Generation IV International Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems, (2002).
[2]M.W. Shitsman, Heat transfer to SC helium, carbon dioxide, and water: Analysis of thermodynamic and transport properties and experimental data, Cryogenics, 14 (2), 77–83 (1974).
[3]H. Griem, A new procedure for the prediction of forced convection heat transfer at nearand SC pressure, Heat and Mass Transfer, 31 (5), 301–305 (1996).
[4]S.K. Yang and H.F. Khartabil, Normal and deteriorated heat transfer correlations for SC fluids, Transaction of the American Nuclear Society, November 13–17, Washington, D.C., USA, 93, 635–637 (2005).
[5]X. Lei, H. Li, W. Zhang, T. Dinh, Y. Guo, S. Yu, Experimental study on the difference of heat transfer characteristics between vertical and horizontal flows of supercritical pressure water, Applied Thermal Engineering, 113, 609–620 (2017).
[6]J J. Wang, H. Li, S. Yu, T. Chen, Comparison of the transfer characteristic of SC pressure water to that of subcritical pressure water in vertically-upward tubes, Int. J. Multiphase Flow, 37, 769–776 (2011).
[7]M. K. Rowinski, J. Zhao, T. J. White, Y. Ch. Soh, Numerical investigation of supercritical water flow in a vertical pipe under axially non-uniform heat flux, Progress in Nuclear Energy 97, 11-25 (2017).
[8]X. Cheng, T. Schulenberg, D. Bittermann, P. Rau, Design analysis of core assembly for supercritical pressure conditions. Nucl. Eng. Des. , 223, 279–294 (2003).
[9]R. B. Duffey, I. Pioro, X. Zhou, U. Zirn, S. Kuran, H. Khartabil, M. Naidin Supercritical WaterCooled Nuclear Reactors (SCWRs): current and future concepts – steam cycle options Icone 16, Proceeding of the 16th International Conference on Nuclear Engineering, 4, 469–477 (2008).
[10] S. Koshizuka, N.Takano, Y. Oka, Numerical analysis of deterioration phenomenon in heat transfer tosupercritical water. Int. J. Heat Mass Transfer, 38, 3077–3084 (1995).
[11] S. Mokry, I. Pioro, A. Farah, K. King,S. Gupta, W. Peimana, P. Kirillov, evelopment of supercritical water heat-transfer correlation for vertical bare tubes Nuclear Engineering and Design, 241, 1126–1136, (2011).
[12] Q. L. Wen, H. Y. Gu, Numerical simulation of heat transfer deterioration phenomenon in supercritical water through vertical tube. Annals of Nuclear Energy, 37, 1272–1280 (2010).
[13] Z. Shen, D. Yang, S.Wang, W.Wang,Y. Li, Experimental and numerical analysis of heat transfer towater at supercritical pressures, International Journal of Heat and Mass Transfer, 108, 1676–1688 (2017).
[14] S. Anand, S. Suresh, D. Santhoshkumar, Numerical study for the effect of heat and mass flux on heat transfer characteristics of supercritical water flows in a upward vertical tube Proceeding of the 24thNational and 2nd International ISHMT-ASTFE Heat and mass transfer conference (IHMTC2017)BITS Pilani, Hyderabad, India December, 27-30 (2017).
[15] S. Anand, S. Suresh, D. Santhoshkumar, Numerical study for the effect of diameter and pressure on heat transfer characteristics of supercritical water flows in a upward vertical tube International conference on Numerical Heat transfer and SL.NO Inside Diameter (mm) CASE I (q/G=0.27) CASE II (q/G=0.4) CASE III (q/G=0.67) Heat flux (q) kW/m2 Mass flux (G) (kg/ m2 s) Heat flux (q) kW/m2 Mass flux (G) (kg/ m2 s) Heat flux (q) kW/m2 Mass flux (G) (kg/ m2 s) 1 10 141 504 400 1000 334 499 2 15 141 504 400 1000 334 499 3 20 141 504 400 1000 334 499 S. Anand / JHMTR 6 (2019) 155-167 167 fluid flow NIT Warangal, India- Jan19-21 (2018).
[16] K. Yamagata, K. Nishikawa, S. Hasegawa, Forced convective heat transfer to SC water flowing in tubes, Int. J.Heat Mass Transfer, 15 , 2575– 2593 (1972).
[17] J. W. Ackerman, Pseudo-boiling heat transferto supercritical pressure water in smooth and ribbed tubes, Trans. ASME, 490–498 (1970).
[18] R. A. Lee, K. H. Haller, SCwater heat transfer developments, and applications Proc. 5th International Heat Transfer Conference, Japan, 4(7), 335–339 (1974).
[19] J. H. Song, H.Y. Kim, H. Kim, Y.Y. Bae, Heat transfer characteristics of a SC fluid flow in a vertical pipe, J. Supercrit.Fluids, 44,164–171 (2008).
[20] M. J. Watts, C. T. Chou, Mixed convection heat transfer to SC pressure water, Proceedings of the 7th International Heat Transfer Conference, Munich, Germany, 495–500 (1982).
[21] T. Yamashita, S. Yoshida, H. Mori, S.Morooka, H. Komita, K. Nishida, Heat transfer study under SC pressure conditions, ENES4/ANP2003, Kyoto, JAPAN, 11-19 (2003).
[22] D. Jackson, W. D. Haller, Influences ofbuoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions, Turbulent Forced Convection in Channels and Rod Bundles, 2, 613–640 (1979).
[23] Y. Y. Bae, H. Y. Kim, D.J. Kang, Forced and mixed convection heat transfer to SC CO2 vertically flowing in a uniformly-heated circular tube, Exp. Thermal Fluid Sci., 34 , 1295–1308 (2010).
[24] S. Yildiz, Groeneveld Diameter effect on SC heat transfer International Communications in Heat and Mass Transfer, 54, 27–32 (2014).
[25] B. Zhu, Ch. Yang, An investigation on heat transfer characteristics of different pressure steam-water in vertical upward tube, Nuclear Engineering and Design, 239, 381– 388 (2009).
[26] B. Gang, W. Yang, H. Zhu, Experimental investigation of heat transfer for SC pressure water flowing in vertical annular channels, Nuclear Engineering and Design, 241, 4045– 4054 (2011).
[27] Shen, Xie, Nie, Liu, Wang. Flow and Heat transfer characteristics of high-pressure water flowing in a vertical upward smooth tube at low mass flux conditions, Applied Thermal Engineering, 102, 391–401 (2016).
[28] F. W. Dittus and L. M. K. Boelter, Heat Transfer in Automobile Radiators of the Tubular Type, 3rd ed. Publications in Engineering, Berkeley: University of California, 443 (1930).
[29] A. Bishop, R. O. Sandberg, and L. S. Tong, High Temperature Supercritical Pressure Water Loop. Part IV. Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures, Pittsburgh, USA: Westinghouse Electric Corp. (1964).
[30] P. Ornatskij, L. F. Glushchenko and S. I.Kalachev, “Heat transfer with rising and falling flows of water in tubes of small diameter at supercritical pressures,” Therm. Eng., 18(5), 137–141 (1971).
[31] J. D. Jackson, “Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors,” in: Proceedings of the 13th pacific Basin Nuclear Conference, Shenzhen City, China, October 21–25 (2002).
[32] X. Lei, Y. Guo, W. Zhang, H. Li and L. Li Development of Heat Transfer Correlation for Supercritical Water in Vertical Upward Tubes heat transfer engineering, (2018).
[33] M. F. Loewenberg, E. Laurien, A. Class, T. S. Berg, Supercritical water heat transfer in vertical tubes: A look-up table Progress in Nuclear Energy, 50, 532-538 (2008).
[34] M. Jaromin, H. Anglart, A numerical study of heat transfer to supercritical water flowing upward in vertical tubes under normal and deteriorated conditions. Nuclear Engineering and Design, 264, 61– 70 (2013).
[35] T. Zhi, Ch. Zeyuan, Z. Jianqin, L. Haiwang, Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure.Chinese Journal of Aeronautics, 29 (5), 1247–1261 (2016).
[36] M. Pioro, K. Gospodinov, SC water heat transfer in a vertical bare tube, Nuclear Engineering and Design, 240, 568–576 (2010). [37] M. Sharabi, W. Ambrosini, Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models, Annals of Nuclear Energy, 60-71 (2009).