[1] G. Barone, A. Buonomano, C. Forzano, A. Palombo, O. Panagopoulos, 2019, Experimentation, modelling and applications of a novel low-cost air-based photovoltaic thermal collector prototype, Energy Conversion and Management, 195, 1079-1097.
[2] H. Chen, Z. Li, Y. Xu, 2019, Evaluation and comparison of solar trigeneration systems based on photovoltaic thermal collectors for subtropical climates, Energy Conversion and Management, 199, 111959.
[3] P. Dupeyrat, C. Ménézo, M. Rommel, H.M. Henning, 2019, Efficient single glazed flat plate photovoltaic–thermal hybrid collector for domestic hot water system, Solar Energy, 85(7), 1457-1468.
[4] A. Tiwari, G. Tiwari, T.S. Bhatti, 2019, Performance evaluation of a semitransparent photovoltaic thermal (SPVT) inverted absorber flat plate collector (IAFPC) for constant collection temperature (CCT) mode, Solar Energy, 186, 382-391.
[5] S. Bhattarai, J.H. Oh, S.H. Euh, G.K. Kafle, D.H. Kim, 2012, Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states, Solar Energy Materials and Solar Cells, 103, 184- 193.
[6] M.R. Saffarian, M. Moravej, M.H. Doranehgard, 2020, Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid, Renewable Energy, 146, 2316-2329. 24 A. Esmaeilinasab/ JHMTR 7 (2020) 11-24
[7] A.R. Noghrehabadi, E. Hajidavalloo, M. Moravej, 2016, An experimental investigation of performance of a 3-D solar conical collector at different flow rates, Journal of Heat and Mass Transfer Research, 3(1), 57-66.
[8] D. Gürlich, A. Dalibard, U. Eicker, 2017, Photovoltaic-thermal hybrid collector performance for direct trigeneration in a European building retrofit case study, Energy and Buildings, 152, 701-717.
[9] H.A. Nasef, S. A. Nada, H. Hassan, 2019, Integrative passive and active cooling system using PCM and nanofluid for thermal regulation of concentrated photovoltaic solar cells, Energy Conversion and Management, 199, 112065.
[10] B. Bokor, H. Akhan, D. Eryener, L. Kajtár, 2017, Theoretical and experimental analysis on the passive cooling effect of transpired solar collectors, Energy and Buildings, 156, 109-120.
[11] T.T. Chow, W. He, J. Ji, 2007, An experimental study of facade-integrated photovoltaic/water-heating system, Applied thermal engineering, 27(1), 37-45. [12] M. Rezvanpour, D. Borooghani, F. Torabi, M. Pazoki, 2020, Using CaCl2· 6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation, Renewable Energy, 146, 1907- 1921.
[13] W. He, Y. Zhang, J. Ji, 2011, Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water, Applied Thermal Engineering, 31(16), 3369-3376.
[14] N. Abbas, M.B. Awan, M. Amer, S.M. Ammar, U. Sajjad, H.M. Ali & A.T. Jafry, 2019, Applications of nanofluids in photovoltaic thermal systems: a review of recent advances, Physica A: Statistical Mechanics and its Applications, 122513.
[15] A.R. Noghrehabadi, A. Esmaeilinasab, E. Hajidavalloo, 2014, The influence of urban water consumption on performance of domestic photovoltaic-thermal systems: an experimental investigation, International journal of energy & technology, 6 (22), 1–5. [16] N. Karami, M. Rahimi, 2014, Heat transfer enhancement in a hybrid microchannelphotovoltaic cell using Boehmite nanofluid, International Communications in Heat and Mass Transfer, 55, 45-52.
[17] M. Sardarabadi, M. Passandideh-Fard, S.Z. Heris, 2014, Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units), Energy, 66, 264-272.
[18] Z. Xu, C. Kleinstreuer, 2014, Computational analysis of nanofluid cooling of high concentration photovoltaic cells, Journal of Thermal Science and Engineering Applications, 6(3), 031009.
[19] S. Bhattarai, J.H. Oh, S. H. Euh, G.K. Kafle, D.H. Kim, 2012, Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states, Solar Energy Materials and Solar Cells, 103, 184- 193.
[20] C. Stanciu, D. Stanciu, 2014, Optimum tilt angle for flat plate collectors all over the World–A declination dependence formula and comparisons of three solar radiation models, Energy Conversion and Management, 81, 133-143.
[21] F.P. Incropera, A.S. Lavine, T.L. Bergman, D.P. Dewitt, 2007, Fundamentals of heat and mass transfer, Wiley.
[22] R.S. Vajjha, D.K. Das, 2012, A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power, International Journal of Heat and Mass Transfer, 55(15-16), 4063- 4078.
[23] B.C. Pak, Y.I. Cho, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, 11(2), 151-170.
[24] B. Ghasemi, S.M. Aminossadati, 2010, Brownian motion of nanoparticles in a triangular enclosure with natural convection, International Journal of Thermal Sciences, 49(6), 931-940. [25] J.H. Watmuff, W.W. Charters, D. Proctor, 1977, Solar and wind induced external coefficients-solar collectors, Cooperation Mediterraneenne pour l'Energie Solaire, 56.