[1]. Choi, S.U.S.(1995) Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, in: D.A. Siginer, H.P. Wang (Eds.), FEDvol. 231/MDvol. 66, The American Society of Mechanical Engineers, New York, 99-105.
[2]. Xuan, Y., Li, Q., (2003). Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125, 151–155.
[3]. Lee, S., Choi, S.U.S., Li, S., & Eastman, J.A. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles". International Journal of Heat and Mass Transfer,.121, 280-289.
[4]. Xie, H.Q., Wang, J.C., Xi, T.G., Li, Y., & Ai, F., (2002). Dependence of the thermal conductivity of nanoparticle–fluid mixture on the base fluid. J. Mat. Sci. Let., 21, 1469–1471.
[5]. Patel, H.E., Pradeep, T., Sundararajan, T., Dasgupta, A., Dasgupta, N.,& Das, S.K., (2005). A micro convection model for thermal conductivity of nanofluid. Pramana-Journal of Physics, 65, 863–869.
[6]. Chang, H., Jwo, C.S., Lo, C.H., Tsung, T.T., Kao, M.J.,& Lin H.M., (2005). Rheology of CuO nanoparticle suspension prepared by ASNSS. Reviews on Advanced Materials Science, 10, 128–132.
[7]. Imberger, J., & Hamblin, P.F. (1982). Dynamics of lakes, reservoirs, and cooling ponds. Annual Rev. Fluid Mech. 14, 153–187.
[8]. Moallemi, M.K., & Jang, K.S. (1992). Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int. J. Heat Mass Transfer. 35, 1881– 1892.
[9]. Cha, C.K., & Jaluria, Y. (1984). Recirculating mixed convection flow for energy extraction. Int. J. Heat Mass Transfer. 27, 1801–1810.
[10]. Ideriah, F.J.K. (1980). Prediction of turbulent cavity flow driven by buoyancy and shear. J. Mech. Eng. Sci. 22, 287–295.
[11]. Pilkington, L.A.B. (1969). Review lecture: the float glass process. Proc. Roy. Soc. Lond A . 314, 1–25.
[12]. Talebi, F., Mahmoudi, A.H. & Shahi, M. (2010). Numerical study of mixed convection flows in a square lid–driven cavity utilizing nanofluid. Int. Commun. Heat Mass.37 79–90.
[13]. Abu–Nada, E., & Chamkha, A.J., (2010). Mixed convection flow in a lid driven square enclosure filled with a nanofluid. Eur. J. Mech. B-Fluid, 29, 472–482.
[14]. Mahmoodi, M., (2011). Mixed convection inside nanofluid filled rectangular enclosures with moving bottom wall. Thermal Science, 15, 889-903.
[15]. Saedodin, S., Hemmat Esfe, M., Noroozi, M.J. (2011). Numerical simulation of mixed convection of fluid flow and hea t transfer within car radiator with an inside obstacle filled with nanofluid, E-Modeling.; Vol. 9 (25), pp. 33-46.
[16]. Hemmat Esfe, M., Ghadak, F., Haghiri, A., Mirtalebi Esforjani, S.,(2012) Numerical Study of Mixed Convection Flows in a Two-sided Inclined Lid-driven Cavity Utilizing Nano-fluid with Various Inclination Angles and Ununiformed Temperature. Aerospace Mechanics Journal.; 8 (2) :69-83.
[17]. Abbasian Arani, A. A., Amani, J., Hemmat Esfe, M., (2012) Numerical simulation of mixed convection flows in a square double lid-driven cavity partially heated using nanofluid, Journal of nanostructure, 2 ,pp. 301-311.
[18]. Hemmat Esfe, M., Saedodin, S., (2012). Flow behavior and thermal performance of double lid-driven cavity subjected to nanofluid with variable properties , E-Modeling, 10(30): 43-60.
[19]. Fereidoon, A., Saedodin, S., Hemmat Esfe, M. and Noroozi, M.J., (2013)Evaluation of mixed convection in inclined square lid driven cavity filled with Al2O3/water nanofluid, Engineering Applications of Computational Fluid Mechanics, 7(1), pp. 55–65.
[20]. Zarei, H., Rostamian, S. H. and Hemmat Esfe, M., (2013) Heat transfer behavior of mixed convection flow in lid driven cavity containing hot obstacle subjected to Nanofluid with variable properties, J. Basic. Appl. Sci. Res., 3(2), pp.713-721.
[21]. Saedodin, S., Biglari, M., Hemmat Esfe, M., Noroozi, M.J., (2013). Mixed Convection Heat Transfer Performance in a Ventilated Inclined Cavity Containing Heated Blocks: Effect of Dispersing Al2O3 in Water and Aspect Ratio of the Block. Journal of Computational and Theoretical Nanoscience Vol. 10, 2663–2675.
[22]. Nikfar, M., & Mahmoodi, M.(2012). Meshless local Petrov–Galerkin analysis of free convection of nanofluid in a cavity with wavy side walls. Eng. Anal. Bound. Elem. 36 ,433–445.
[23]. Mahmoodi, M.,& Mazrouei Sebdani, S., (2012). Natural Convection in a Square Cavity Containing a Nanofluid and an Adiabatic Square Block at the Center. Superlattice Microst. 52, 261-275.
[24]. Mahmoodi, M. (2012). Mixed convection inside nanofluid filled rectangular enclosures with moving bottom wall, Thermal Science.
[25]. Mazrouei Sebdani, S., Mahmoodi, M., & Hashemi, S.M. (2012). Effect of nanofluid variable properties on mixed convection in a square cavity. Int. J. Thermal Sci. 52, 112–126
[26]. Jang, S.P., Lee, J.H., Hwang, K.S., & Choi, S.U.S.(2007). Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through micro- and minitubes. Appl. Phys. Lett. 91, 24-31.
[27]. Hamilton, R.L.,& Crosser, O.K.(1962). Thermal conductivity of heterogeneous two component systems. Indus. Eng. Chem. Fund. 1,187–191.
[28]. Xu, J., Yu, B., Zou, M., &Xu, P. (2006). A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. J. Phys. D 39, 4486–4490.
[30]. G.V. Hadjisophocleous, A.C.M. Sousa, J.E.S. Venart, Predicting the transient natural convection in enclosures of arbitrary geometry using a nonorthogonal numerical model, Numer. Heat Transfer: Part A 13 (1998) 373–392.
[31]. Tiwari, R.K.,& Das, M.K.(2007). Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. j. Heat Mass Trans. 50, 2002–2018.
[32]. T. Fusegi, K. Kuwahara, B. Farouk, A numerical study of threedimensional natural convection in a differentially heated cubic enclosure, Int. J. Heat Mass Transfer 34 (6) (1991) 1543–1557.
[33]. M.Y. Ha, M.J. Jung, A numerical study of three-dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat-generating cubic conducting body, Int. J. Heat Mass Transfer 43 (2000) 4229–4248.