Flow field and heat transfer in a channel with a permeable wall filled with Al2O3-Cu/water micropolar hybrid nanofluid, effects of chemical reaction and magnetic field

Document Type : Full Length Research Article

Authors

1 University of kashan

2 university of kashan

Abstract

In this study, flow field and heat transfer of Al2O3-Cu/water micropolar hybrid nanofluid is investigated in a permeable channel using the least square method. The channel is encountered to chemical reaction, and a constant magnetic field is also applied. The bottom wall is hot and coolant fluid is injected into the channel from the top wall. The effects of different parameters such as the Reynolds number, the Hartmann number, microrotation factor and nanoparticles concentration on flow field and heat transfer are examined. The results show that with increasing the Hartmann number and the Reynolds number, the Nusselt and Sherwood numbers increase. Furthermore, when the hybrid nanofluid is applied rather than pure nanofluid, the heat transfer coefficient will increase significantly. It is also observed that in the case of generative chemical reaction, the fluid concentration is more than the case of destructive chemical reaction. Moreover, the Nusselt number and Sherwood number when the micropolar model is used, is less than when it is not considered.

Keywords

Main Subjects


[1].             C. E. Mehmet, B. Elif, “Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls,” Fluid Dynamics Research, 38(8), (2006) pp. 564–590.
[2].             M. Pirmohammadi, M. Ghassemi, “Effect of magnetic field on convection heat transfer inside a tilted square enclosure,” International Communications in Heat and Mass Transfer, 36(7), (2009) pp. 776–780.
[3].             H. Nemati, M. Farhadi, K. Sedighi, H.R. Ashorynejad,  E. Fattahi, “Magnetic field effects on natural convection flow of nanofluid in a rectangular cavity using the Lattice Boltzmann model,” Scientia Iranica, 19(2), (2012) pp.   303–310.
[4].             H. Ashorynejad, A. A. Mohamadb, M. Sheikholeslami, “Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method,” International Journal of Thermal Sciences, 64, (2013) pp. 240–250.
[5].             M. M. Rashidi, N. Vishnu Ganesh, A.K. Abdul Hakeem, B. Ganga, “Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation,” Journal of Molecular Liquids, 198, (2014) pp. 234–238.
[6].             M. S. Valipour, S. Rashidi, R. Masoodi, “Magnetohydrodynamics flow and heat transfer around a solid cylinder wrapped with a porous ring,” Journal of Heat Transfer, 136(6), (2014) pp. 062601.
[7].             A. Aghaei, H. Khorasanizadeh, G. Sheikhzadeh, M. Abbaszadeh, “Numerical study of magnetic field on mixed convection and entropy generation of nanofluid in a trapezoidal enclosure,” Journal of Magnetism and Magnetic Materials, 403, (2016) pp. 133–145.
[8].             S. Rashidi, J. Abolfazli Esfahani, M. S. Valipour, M. Bovand, I. Pop, “Magnetohydrodynamic effects on flow structures and heat transfer over two cylinders wrapped with a porous layer in side,” International Journal of Numerical Methods for Heat & Fluid Flow, 26(5), (2016).
[9].             G.S. Seth, S.K. Ghosh, “Unsteady hydromagnetic flow in a rotating channel in the presence of inclined magnetic field,” International Journal of Engineering Science, 24(7), (1986) pp. 1183–1193.
[10].           K. Jha, “Effects of applied magnetic field on transient free-convective flow in a vertical channel,” Indian Journal of Pure and Applied Mathematics, 29(4), (1998) pp. 441-445.
[11].           O. D. Makinda, P. Y. Mhone, “Heat transfer to MHD oscillatory flow in a channel filled with porous medium,” Romanian Journal of physics, 50(9/10), (2005) pp. 931-938.
[12].           S.K. Parida, S. Panda, M. Acharya, “Magnetohydrodynamic (MHD) flow of a second grade fluid in a channel with porous wall,” Meccanica, 46(5), (2011) pp. 1093-1102.
[13].           R. Nouri, D. D. Ganji, M. Hatami, “MHD nanofluid flow analysis in a semi-porous channel by a combined series solution method,” Transport Phenomena in Nano and Micro Scales, 1(2), (2013) pp. 124-137.
[14].           M. Fakour, A. Vahabzadeh, D.D. Ganji, “Study of heat transfer and flow of nanofluid in permeable channel in the presence of magnetic field,” Propulsion and Power Research, 4(1), (2015) pp. 50–62.
[15].           M. Bovand, S. Rashidi, M. Dehghan, A. J. Esfahani, M. S. Valipour, “Control of wake and vortex shedding behind a porous circular obstacle by exerting an external magnetic field,” Journal of Magnetism and Magnetic Materials, 385, (2015) pp. 198-206.
[16].            M. Bovand, S. Rashidi, A. J. Esfahani, R. Masoodi, “Control of wake destructive behavior for different bluff bodies in channel flow by magnetohydrodynamics,” The European Physical Journal Plus, 131(6), (2016) pp. 1-13.
[17].           S.U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME-Publications-Fed, 231, (1995) pp. 99-106.
[18].           C.J. Ho, M.W. Chen, Z.W. Li, “Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity,” International Journal of Heat and Mass Transfer, 51(17), (2008) pp. 4506–4516.
[19].           M. Sheikholeslami , M. M. Rashidi, D.D. Ganji, “Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model,” Journal of Molecular Liquids, 212, (2015) pp. 117-126.
[20].           X. Wang, X. Xu, S. Choi, “Thermal conductivity of nanoparticle–fluid mixture,” Journal of Thermophysics and Heat Transfer, 13(4), (1999) pp. 474–480.
[21].           S. Suresha, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, “Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388(1), (2011) pp.41– 48.
[22].           D. Madhesh, R. Parameshwaran, S. Kalaiselvam, “Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids,” Experimental Thermal and Fluid Science, 52, (2014) pp. 104–115.
[23].           M. Hemmat Esfe, S. Wongwises, A. Naderi, A. Asadi, M. R. Safaei, H. Rostamian, M. Dahari, A. Karimipour, “Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation,” International Communications in Heat and Mass Transfer, 66, (2015) pp. 100–104.
[24].           C.J. Ho, J.B. Huang, P.S. Tsai, Y.M. Yang, “Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid,” International Communications in Heat and Mass Transfer, 37(5), (2010) pp. 490–494.
[25].           S. M. Abbasia, A. Rashidib, A. Nematia, K. Arzania, “The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina,” Ceramics International, 39(4), (2013) pp. 3885–3891.
[26].           H. Balla, Sh. Abdullah, W. MohdFaizal, R. Zulkifli, K. Sopian, “Numerical Study of the Enhancement of Heat Transfer for Hybrid CuO-Cu Nanofluids Flowing in a Circular Pipe,” Journal of Oleo Science, 62(7), (2013) pp. 533-539.
[27].           B. Takabi, S. Salehi, “Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid Nanofluid,” Advances in Mechanical Engineering, 6, (2014) pp. 147059.
[28].           A. C. Eringen, “Theory of micropolar fluids,” Journal of Mathematics and Mechanics, 16, (1966) pp. 1-16.
[29].           M. Sheikholeslami, M. Hatami, D.D. Ganji, “Micropolar fluid flow and heat transfer in a permeable channel using analytical method,” Journal of Molecular Liquids, 194, (2014) pp. 30-36.
[30].           S. Mosayebidorcheh, “Analytical investigation of the micropolar flow through a porous channel with changing walls,” Journal of Molecular Liquids, 196, (2014) pp.    113–119.
[31].           G. C. Bourantas, V.C. Loukopoulos, “MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid,” International Journal of Heat and Mass Transfer, 79, (2014) pp. 930–944.
[32].           M. Fakour, A. Vahabzadeh, D.D. Ganji, M. Hatami, “Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls,” Journal of Molecular Liquids, 204, (2015) pp. 198–204.
[33].           G.C. Bourantas, V.C. Loukopoulos, “Modeling the natural convective flow of micropolar nanofluids,” International Journal of Heat and Mass Transfer, 68, (2014) pp. 35–41.
[34].           S.T. Hussain, S. Nadeem, R. U. Haq, “Model-based analysis of micropolar nanofluid flow over a stretching surface,” The European Physical Journal Plus, 129(8), (2014) pp. 161-171.
[35].           M. Turkyilmazoglu, “A note on micropolar fluid flow and heat transfer over a porous shrinking sheet,” International Journal of Heat and Mass Transfer, 72, (2014) pp. 388–391.
[36].           E. A. Sameh, M. A. Mansour, A. K. Hussein, S. Sivasankaran, “Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids,” Engineering Science and Technology, an International Journal, 19(1), (2016) pp.  364-376.
[37].           K. J. Sofen, K. M. Laxman, K. M. Swarup, A. J. Chamkha, “Transient buoyancy-opposed double diffusive convection of micropolar fluids in a square enclosure,” International Journal of Heat and Mass Transfer, 81, (2015) pp. 681–694.
[38].           Borrelli, G. Giantesio, M.C. Patria, “Magnetoconvection of a micropolar fluid in a vertical channel,” International Journal of Heat and Mass Transfer, 80, (2015) pp. 614–625.
[39].           M. Sheikholeslami, M. Hatami, D.D. Ganji, “Analytical investigation of MHD nanofluid flow in a semi porous channel,” Powder Technology, 246, (2013) pp. 327-336.
[40].           M. Hatami, M. Sheikholeslami, D.D. Ganji, “Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall,” Journal of Molecular Liquids, 195, (2014) pp. 230-239.
[41].           M. Hatami, M. Sheikholeslami, D.D. Ganji, “Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method,” Powder Techonology, 253, (2014) pp. 769-779.
[42].           A. Arefmanesh, M. Mahmoodi, “Effects of uncertainties of viscosity models for Al2O3-water nanofluid on mixed convection numerical simulations,” International Journal of Thermal Sciences, 50, (2011) pp. 1706-1719.
[43].           S.K. Das, S.U.S. Choi, W. Yu, T. Predeep, “Nanofluids Science and Technology,” John Wiley & sons, (2008).
[44].           Y. Xuan, W. Roetzel, “Conceptions for heat transfer correlations of nanofluids,” International Journal of Heat and Mass Transfer, 43, (2000) pp. 3701-3707.
[45].           AE. Jery, N. Hidouri, M. Magherbi, AB. Brahim, “Effect of an external oriented magnetic field on entropy generation in natural convection,” Entropy, 12(6), (2010) pp. 1391–1417.
[46].           C. Zhang, L. Zheng, X. Zhang, G. Chen, “MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction,” Applied Mathematical Modelling, 19(1), (2015) pp. 165-181.
[47].           J.C. Maxwell, “A Treatise on Electricity and magnetism,” second ed., clarendon press, (1881).
H.C. Brinkman, “The viscosity of concentrated suspensions and solutions,” The Journal of Chemical al Physic, 20(4), (1952) 571-571