[1] Sinha, A. and Misra, J. C. (2012) ‘Numerical study of flow and heat transfer during oscillatory blood flow in diseased arteries in presence of magnetic fields’, Applied Mathematics and Mechanics (English Edition), 33(5), pp. 649–662. doi: 10.1007/s10483-012-1577-8.
[2] Kardgar, A., Jafarian, A. and Arablu, M. (2016) ‘An Eulerian-Lagrangian model to study the operating mechanism of Stirling pulse tube refrigerators’, Scientia Iranica, 23(1), pp. 277–284. doi:10.24200/sci.2016.3833.
[3] Kardgar, A. and Jafarian, A. (2020) ‘Numerical simulation of turbulent oscillating flow in porous media’, Scientia Iranica. doi: 0.24200/SCI.2020.52521.2788.
[4] Yuan, H. et al. (2014) ‘Theoretical analysis of wall thermal inertial effects on heat transfer of pulsating laminar flow in a channel’, International Communications in Heat and A. Kardgar/ JHMTR 7 (2020) 85-94 93 Mass Transfer. Elsevier Ltd, 53, pp. 14–17. doi:10.1016/j.icheatmasstransfer.2014.02.0 03.
[5] Khosravi-Bizhaem, H., Abbassi, A. and Zivari Ravan, A. (2019) ‘Heat transfer enhancement and pressure drop by pulsating flow through helically coiled tube: An experimental study’, Applied Thermal Engineering. Elsevier, 160(April), p. 114012. doi: 0.1016/j.applthermaleng.2019.114012.
[6] Li, P., Guo, D. and Liu, R. (2019) ‘Mechanism analysis of heat transfer and flow structure of periodic pulsating nanofluids slot-jet impingement with different waveforms’, Applied Thermal Engineering, 152(July 2018), pp. 937–945. doi:10.1016/j.applthermaleng.2019.01.086.
[7] Martinelli, R. C. et al. (1943) ‘Heat transfer to a fluid flowing periodically at low frequencies in a vertical tube’, Trans. Asme, 65(7), pp. 789–798.
[8] Genin, L. G. et al. (1993) ‘Heat transfer and friction for pulsating water flow in a pipe’, Heat transfer research. Wiley, 25(2), pp. 193–195.
[9] Park, J. S., Taylor, M. F. and McEligot, D. M. (1982) ‘Heat transfer to pulsating, turbulent gas flow’, in Proceedings of the 7th International Heat Transfer Conference Digital Library, pp. 105–110.
[10] Karamercan, O. E. and Gainer, J. L. (1979) ‘The effect of pulsations on heat transfer’, Industrial & Engineering Chemistry Fundamentals. ACS Publications, 18(1), pp. 11–15.
[11] Kardgar, A. and Jafarian, A. (2016) ‘Numerical investigation of oscillating conjugate heat transfer in pulse tubes’, Applied Thermal Engineering. Elsevier Ltd, 105, pp. 557– 565.doi:10.1016/j.applthermaleng.2016.03. 045.
[12] Wang, X. and Zhang, N. (2005) ‘Numerical analysis of heat transfer in pulsating turbulent flow in a pipe’, International Journal of Heat and Mass Transfer, 48(19–20), pp. 3957–3970. doi:10.1016/j.ijheatmasstransfer.2005.04.0 11.
[13] Ellahi, R. et al.(2017) ‘On boundary layer nano-ferroliquid flow under the influence of low oscillating stretchable rotating disk’, Journal of Molecular Liquids, 229, pp. 339– 345. doi: 10.1016/j.molliq.2016.12.073.
[14] Jo, J. and Kim, S. J. (2017) ‘Conjugate heat transfer by oscillating flow in a parallel-plate channel subject to a sinusoidal wall temperature distribution’, Applied Thermal Engineering. Elsevier Ltd, 123, pp. 1462– 1472.doi:10.1016/j.applthermaleng.2017.0 5.155.
[15] Zhang, S. X. et al. (2010) ‘Numerical studies of simultaneously developing laminar flow and heat transfer in microtubes with thick wall and constant outside wall temperature’, International Journal of Heat and Mass Transfer. Elsevier Ltd, 53(19–20), pp. 3977–3989. doi:10.1016/j.ijheatmasstransfer.2010.05.0 17.
[16] Satish, N. and Venkatasubbaiah, K. (2016) ‘Conjugate heat transfer analysis of turbulent forced convection of moving plate in a channel flow’, Applied Thermal Engineering. Elsevier Ltd, 100, pp. 987–998. doi: 10.1016/j.applthermaleng.2016.02.076.
[17] Meng, F., Wang, M. and Li, Z. (2008) ‘Lattice Boltzmann simulations of conjugate heat transfer in high-frequency oscillating flows’, International Journal of Heat and Fluid Flow, 29(4), pp. 1203–1210. doi: 10.1016/j.ijheatfluidflow.2008.03.001.
[18] Mathie, R., Nakamura, H. and Markides, C. N. (2013) ‘Heat transfer augmentation in unsteady conjugate thermal systems - Part II: Applications’, International Journal of Heat and Mass Transfer. Elsevier Ltd, 56(1– 2), pp. 819– 833.doi:10.1016/j.ijheatmasstransfer.2012. 09.017.
[19] Sheikholeslami, M., Kataria, H. R. and Mittal, A. S. (2018) ‘Effect of thermal diffusion and heat-generation on MHD nanofluid flow past an oscillating vertical plate through porous medium’, Journal of Molecular Liquids, pp. 12–25. doi: 10.1016/j.molliq.2018.02.079.
[20] Mohd Zin, N. A., Khan, I. and Shafie, S. (2016) ‘The impact silver nanoparticles on MHD free convection flow of Jeffrey fluid over an oscillating vertical plate embedded in a porous medium’, Journal of Molecular Liquids, 222, pp. 138–150. doi: 10.1016/j.molliq.2016.06.098.
[21] Zhang, S., Zhao, X. and Bayyuk, S. (2014) ‘Generalized formulations for the rhie-chow interpolation’, Journal of Computational Physics. Elsevier Inc., 258, pp. 880–914. doi: 10.1016/j.jcp.2013.11.006.
[22] Kardgar, A. (2020) ‘Numerical investigation of conjugate heat transfer and entropy generation of MHD natural convection of nanofluid in an inclined enclosure’, International Journal of Numerical Methods for Heat & Fluid Flow. Emerald Publishing Limited. [23] Rezaei, M., Jafarian, A. and Kardgar, A. (2017) ‘Numerical investigation of real gas 94 A. Kardgar/ JHMTR 7 (2020) 85-94 effects on a two-stage pulse tube cryocooler performance’, International Journal of Refrigeration, 82, pp. 106–118. doi: 10.1016/j.ijrefrig.2017.06.008.
[24] Khosla, P. K. and Rubin, S. G. (1974) ‘A diagonally dominant second-order accurate implicit scheme’, Computers & Fluids. Elsevier, 2(2), pp. 207–209.
[25] Ferziger, J. H. and Peric, M. (2001) Computational Methods for Fluid Dynamics. Springer Berlin Heidelberg. Available at: https://books.google.com/books?id=1D3E QgAACAAJ.
[26] Zhao, T. and Cheng, P. (1995) ‘A numerical solution of laminar forced convection in a heated pipe subjected to a reciprocating flow’, International Journal of Heat and Mass Transfer, 38(16), pp. 3011–3022. doi: 10.1016/0017-9310(95)00017-4.
[27] Mathie, R. and Markides, C. N. (2013) ‘International Journal of Heat and Mass Transfer Heat transfer augmentation in unsteady conjugate thermal systems – Part I : Semi-analytical 1-D framework’, International Journal of Heat and Mass Transfer. Elsevier Ltd, 56(1–2), pp. 802–818. doi:10.1016/j.ijheatmasstransfer.2012.08.0 23.
[28] E. M. Sparrow and S. V. Patankar (1977) ‘Relationships among boundary conditions and nusselt numbers for thermally developed duct flows’, Journal of Heat Transfer. American Society of Mechanical Engineers(ASME), 99, pp. 483--485. doi: 10.1115/1.3450722.
[29] Guo, Z. and Li, Z. (2003) ‘Size effect on singlephase channel flow and heat transfer at microscale’, 24, pp. 284–298. doi: 10.1016/S0142-727X(03)00019-5.
[30] Maranzana, G., Perry, I. and Maillet, D. (2004) ‘Mini- and micro-channels: influence of axial conduction in the walls’, International Journal of Heat and Mass Transfer, 47, pp. 3993–4004. doi: 10.1016/j.ijheatmasstransfer.2004.04.016.
[31] Cotton, M. A. and Jackson, J. D. (1985) ‘The effect of heat conduction in a tube wall upon forced convection heat transfer in the thermal entry region’, Numerical Methods in Thermal Problems, Pineridge Press, Swansea, 4, pp. 504–515.
[32] Faghri, M. and Sparrow, E. M. (1980) ‘Simultaneous wall and fluid axial conduction in laminar pipe-flow heat transfer’, Journal of Heat Transfer, 102(1), pp. 58–63.