[1] C.A. Balaras, A.G. Gaglia, E. Georgopoulou, S.
Mirasgedis, Y. Sarafidis, D.P. Lalas, European
residential buildings and empirical
assessment of the Hellenic building stock,
energy consumption, emissions and
potential energy savings, Build. Environ,
42(3), 1298-1314, (2007).
[2] L. Gustavsson, R. Sathre, Variability in energy
and carbon dioxide balances of wood and
concrete building materials, Build. Environ,
41(7), 940-951, (2006).
[3] R. Moosavi, F. Gheybi, Office Buildings Glass
Facades Excitation under Hot and Dry
Climates: A Numerical and Experimental
Study, Iranian Journal of Energy, 20(4), 5-25,
(2018).
[4] L. Pérez-Lombard, J. Ortiz, C. Pout, A review
on buildings energy consumption
information, Energy and buildings, 40(3),
394-398, (2008).
[5] M.O. Silvia, C.G. Ignacio, Comparison of
hygro-thermal conditions in underground
wine cellars from a Spanish area, Build.
Environ, 40(10), 1384-1394, (2005).
[6] S.A. Alkaff, S.C. Sim, M.N. Ervina Efzan, A
review of underground building towards
thermal energy efficiency and sustainable
development, Renew. Sustain. Energy Rev,
60, 692-713, (2016).
[7] S. Martín Ocaña, I.C. Guerrero, Comparison of
10 R. Moosavi / JHMTR 8 (2021) 1- 11
analytical and on site temperature results on Spanish traditional wine cellars, Appl. Therm. Eng. 26(7), 700-708, (2006).
[8] F.R. Mazarrón, J. Cid-Falceto, I. Cañas, An assessment of using ground thermal inertia as passive thermal technique in the wine industry around the world, Appl. Therm. Eng. 33, 54-61, (2012).
[9] F. Tinti, A. Barbaresi, S. Benni, D. Torreggiani, R. Bruno, P. Tassinari, Experimental analysis of thermal interaction between wine cellar and underground, Energy Build. 104, 275-286, (2015).
[10] F. Tinti, A. Barbaresi, S. Benni, D. Torreggiani, R. Bruno, P. Tassinari, Experimental analysis of shallow underground temperature for the assessment of energy efficiency potential of underground wine cellars, Energy Build. 80, 451-460, (2014).
[11] M. Casals, M. Gangolells, N. Forcada, M. Macarulla, A. Giretti, A breakdown of energy consumption in an underground station, Energy Build. 78, 89-97, (2014).
[12] G. Scaglia, F. di Giorgio Martini, C. Maltese, L.M. Degrassi, Trattati di architettura ingegneria e arte militare, Art Bull, (1970).
[13] S. Andolsun, C.H. Culp, J. Haberl, M.J. Witte, EnergyPlus vs. DOE-2.1e: The effect of ground-coupling on energy use of a code house with basement in a hot-humid climate, Energy Build. 43(7), 1663-1675, (2011).
[14] K. Ip, A. Miller, Thermal behaviour of an earth-sheltered autonomous building - The Brighton Earthship, Renew. Energy. 34(9), 2037-2043, (2009).
[15] C.A. Balaras, K. Droutsa, E. Dascalaki, S. Kontoyiannidis, Heating energy consumption and resulting environmental impact of European apartment buildings, Energy Build. 37(5), 429-442, (2005).
[16] N.K. Garg, T. Oreszczyn, Energy efficiency in building envelopes through ground integration, Sol. Energy. 53(5), 427-430, (1994).
[17] Q. de Jong van Lier, A. Durigon, Soil thermal diffusivity estimated from data of soil temperature and single soil component properties, Rev. Bras. Ciência Do Solo. 37(1), 106-112, (2013).
[18] J.M.A. Márquez, M.Á.M. Bohórquez, S.G. Melgar, Ground thermal diffusivity calculation by direct soil temperature measurement. application to very low enthalpy geothermal energy systems, Sensors, 16(3), 306, (2016).
[19] A.A. Al-Temeemi, D.J. Harris, A guideline for assessing the suitability of earth-sheltered mass-housing in hot-arid climates, Energy Build. 36(3), 251-260, (2004).
[20] A. Buzăianu, I. Csáki, P. Moţoiu, G. Popescu, I. Thorbjornsson, K.R. Ragnarsodottir, S. Guðlaugsson, D. Goubmunson, Recent Advances of the Basic Concepts in Geothermal Turbines of Low and High Enthalpy, Adv. Mater. Res. 1114, 233-238, (2015).
[21] C. Carmo, B. Elmegaard, M.P. Nielsen, N. Detlefsen, Empirical platform data analysis to investigate how heat pumps operate in real-life conditions, In Proceedings of the 24th Iir International Congress of Refrigeration (ICR2015), Yokohama, Japan, 16-22, (2015).
[22] F. Droulia, S. Lykoudis, I. Tsiros, N. Alvertos, E. Akylas, I. Garofalakis, Ground temperature estimations using simplified analytical and semi-empirical approaches, Sol. Energy. 83(2), 211-219, (2009).
[23] S. Graf, F. Lanzerath, A. Sapienza, A. Frazzica, A. Freni, A. Bardow, Prediction of SCP and COP for adsorption heat pumps and chillers by combining the large-temperature-jump method and dynamic modeling, Appl. Therm. Eng. 98, 900-909, (2016).
[24] M.N. Bahadori, Passive Cooling Systems in Iranian Architecture, Sci. Am. 238(2), 144-155, (1978).
[25] F. Soflaei, M. Shokouhian, W. Zhu, Socio-environmental sustainability in traditional courtyard houses of Iran and China, Renew. Sustain. Energy Rev. 69, 1147-1169, (2017).
[26] M. Khalili, S. Amindeldar, Traditional solutions in low energy buildings of hot-arid regions of Iran, Sustain. Cities Soc. 13, 171-181, (2014).
[27] M.N. Bahadori, F. Haghighat, Long-term storage of chilled water in cisterns in hot, arid regions, Build. Environ. 23(1), 29-37, (1988).
[28] M.N. Bahadori, Natural production, storage, and utilization of ice in deep ponds for summer air conditioning, Sol. Energy. 23(1), 29-37, (1985).
[29] H. Samsam-Khayani, M. R. Tavakoli, S. Mohammadshahi, M. Nili-Ahmadabadi, Numerical study of effects of Shavadoon connections (a vernacular architectural pattern) on improvement of natural ventilation, Tunnelling and Underground Space Technology, 82, 170-181, (2018).
[30] A. Foruzanmehr, Basements of vernacular earth dwellings in Iran: prominent passive cooling systems or only storage spaces?, International Journal of Urban Sustainable Development, 7(2), 232-244, (2015).
[31] F. A. Tafti, M. Rezaeian, S. E. Razavi, Sunken courtyards as educational environments: Occupant's perception and environmental
R. Moosavi / JHMTR 8 (2021) 1- 11 11
satisfaction, Tunnelling and Underground Space Technology, 78, 124-134, (2018).
[32] A. H. Jørgensen, Ice houses of Iran: where, how, why. Mazda Publishers, Costa Mesa, California, (2012).
[33] R.K. Goel, B. Singh, J. Zhao, Underground infrastructures: planning, design, and construction. Butterworth-Heinemann, 2012.
[34] A. Foruzanmehr, M. Vellinga, Vernacular architecture: Questions of comfort and practicability, Build. Res. Inf. 39(3), 274-285 (2011).
[35] ISO, ISO 7730: Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, Management. (2005).
[36] H. Saffari, R. Moosavi, E. Gholami, and N. M. Nouri, The effect of bubble on pressure drop reduction in helical coil, Experimental
thermal and fluid science, 51, 251-256 (2013).
[37] K. Javaherdeh, A. Vaisi, R. Moosavi, and M. Esmaeilpour, Experimental and numerical investigations on louvered fin-and-tube heat exchanger with variable geometrical parameters, Journal of Thermal Science and Engineering Applications, 9 (2), 024501, (2017).
[38] A. Vaisi, R. Moosavi, M. Lashkari, and M. M. Soltani, Experimental investigation of perforated twisted tapes turbulator on thermal performance in double pipe heat exchangers, Chemical Engineering and Processing-Process Intensification, 154, 108028, (2020).
[39] X. Ma, B. Cheng, G. Peng, W. Liu, A numerical simulation of transient heat flow in double layer wall sticking lining envelope of shallow earth sheltered buildings, in: Proc. 2009 Int. Jt. Conf. Comput. Sci. Optim. CSO 2009, (2009).