[1] Turkyilmazoglu, M., 2020. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Computer methods and programs in biomedicine, 187, p.105171.
[2] Ahmad, R., Mustafa, M. and Turkyilmazoglu, M., 2017. Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-
plate: A numerical study. International Journal of Heat and Mass Transfer, 111, pp.827-835.
[3] Gholinia, M., Kiaeian Moosavi, S.A.H., Gholinia, S. and Ganji, D.D., 2019. Numerical simulation of nanoparticle shape and thermal ray on a CuO/C2H6O2–H2O hybrid base nanofluid inside a porous enclosure using Darcy's law. Heat Transfer—Asian Research, 48(7), pp.3278-3294.
[4] Turkyilmazoglu, M., 2019. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Computer methods and programs in biomedicine, 179, p.104997.
[5] Gholinia, M., Pourfallah, M. and Chamani, H.R., 2018. Numerical investigation of heat transfers in the water jacket of heavy duty diesel engine by considering boiling phenomenon. Case studies in thermal engineering, 12, pp.497-509.
[6] Ghadikolaei, S.S. and Gholinia, M., 2020. 3D mixed convection MHD flow of GO-MoS2 hybrid nanoparticles in H2O–(CH2OH)2 hybrid base fluid under the effect of H2 bond. International Communications in Heat and Mass Transfer, 110, p.104371.
[7] Dibaei, M. and Kargarsharifabad, H., 2017. New achievements in Fe3O4 nanofluid fully developed forced convection heat transfer under the effect of a magnetic field: An experimental study. Journal of Heat and Mass Transfer Research, 4(1), pp.1-11.
[8] Tajik, M., Dehghan, M. and Zamzamian, A., 2015. Analysis of variance of nanofluid heat transfer data for forced convection in horizontal spirally coiled tubes. Journal of Heat and Mass Transfer Research, 2(2), pp.45-50.
[9] Gholinia, M., Moosavi, S.K., Pourfallah, M., Gholinia, S. and Ganji, D.D., 2019. A numerical treatment of the TiO2/C2H6O2–H2O hybrid base nanofluid inside a porous cavity under the impact of shape factor in MHD flow. International Journal of Ambient Energy, pp.1-8. (Doi: 10.1080/01430750.2019.1614996).
[10] Gailitis, A., 1961. On the possibility to reduce the hydrodynamic drag of a plate in an electrolyte. Appl. Magnetohydrodynamics, Rep. Inst. Phys. Riga, 13, pp.143-146.
[11] Hakeem, A.K., Nayak, M.K. and Makinde, O.D., 2019. Effect of exponentially variable viscosity and permeability on Blasius flow of Carreau nano fluid over an electromagnetic plate through a porous medium. Journal of Applied and Computational Mechanics, 5(2), pp.390-401.
P. Ragupathi / JHMTR 8 (2021) 49- 60 59
[12] Ragupathi, P., Hakeem, A.A., Saranya, S. and Ganga, B., 2019. Non-Darcian three-dimensional flow of Fe3O4/Al2O3 nanoparticles with H2O/NaC6H9O7 base fluids past a Riga plate embedded in a porous medium. The European Physical Journal Special Topics, 228(12), pp.2571-2600.
[13] Ragupathi, P., Hakeem, A.A., Al-Mdallal, Q.M., Ganga, B. and Saranya, S., 2019. Non-uniform heat source/sink effects on the three-dimensional flow of Fe3O4/Al2O3 nanoparticles with different base fluids past a Riga plate. Case Studies in Thermal Engineering, 15, p.100521.
[14] Abdul Hakeem, A.K., Ragupathi, P., Saranya, S. and Ganga, B., 2020. Three dimensional non-linear radiative nanofluid flow over a Riga plate. Journal of Applied and Computational Mechanics, 6(4), pp.1012-1029.
[15] Nasir, N.A.A.M., Ishak, A. and Pop, I., 2019. Stagnation point flow and heat transfer past a permeable stretching/shrinking Riga plate with velocity slip and radiation effects. Journal of Zhejiang University-SCIENCE A, 20(4), pp.290-299.
[16] Shafiq, A., Hammouch, Z. and Turab, A., 2018. Impact of radiation in a stagnation point flow of Walters’ B fluid towards a Riga plate. Thermal Science and Engineering Progress, 6, pp.27-33.
[17] Zaib, A., Haq, R.U., Chamkha, A.J. and Rashidi, M.M., 2019. Impact of partial slip on mixed convective flow towards a Riga plate comprising micropolar TiO2-kerosene/water nanoparticles. International Journal of Numerical Methods for Heat & Fluid Flow, 29(5), pp.1647-1662.
[18] Abbas, T., Bhatti, M.M. and Ayub, M., 2018. Aiding and opposing of mixed convection Casson nanofluid flow with chemical reactions through a porous Riga plate. Proceedings of the institution of mechanical engineers, part E: journal of process mechanical engineering, 232(5), pp.519-527.
[19] Iqbal, Z., Azhar, E., Mehmood, Z. and Maraj, E.N., 2018. Unique outcomes of internal heat generation and thermal deposition on viscous dissipative transport of viscoplastic fluid over a Riga-plate. Communications in Theoretical Physics, 69(1), p.68-76.
[20] Nayak, M.K., Shaw, S., Makinde, O.D. and Chamkha, A.J., 2018. Effects of homogenous–heterogeneous reactions on radiative NaCl-CNP nanofluid flow past a convectively heated vertical Riga plate. Journal of Nanofluids, 7(4), pp.657-667.
[21] Anjum, A., Mir, N.A., Farooq, M., Khan, M.I. and Hayat, T., 2018. Influence of thermal
stratification and slip conditions on stagnation point flow towards variable thicked Riga plate. Results in Physics, 9, pp.1021-1030.
[22] Shaw, S., Nayak, M.K. and Makinde, O.D., 2018. Transient rotational flow of radiative nanofluids over an impermeable Riga plate with variable properties, Defect and Diffusion Forum, 387, pp. 640-652.
[23] Hussain, A., Akbar, S., Sarwar, L., Nadeem, S. and Iqbal, Z., 2019. Effect of time dependent viscosity and radiation efficacy on a non-Newtonian fluid flow. Heliyon, 5(2), p.e01203.
[24] Hakeem, A.A., Saranya, S. and Ganga, B., 2017. Comparative study on Newtonian/non-Newtonian base fluids with magnetic/non-magnetic nanoparticles over a flat plate with uniform heat flux. Journal of Molecular Liquids, 230, pp.445-452.
[25] Rundora, L. and Makinde, O.D., 2018. Unsteady mhd flow of non-newtonian fluid in a channel filled with a saturated porous medium with asymmetric navier slip and convective heating, Applied Mathematics & Information Sciences, 12(3), 483-493, (2018).
[26] Bayareh, M. and Afshar, N., 2020. Forced convective heat transfer of non-Newtonian CMC-based CuO nanofluid in a tube. Journal of Heat and Mass Transfer Research, 7(2), pp.155-163.
[27] Saranya, S., Ragupathi, P., Ganga, B., Sharma, R.P. and Hakeem, A.A., 2018. Non-linear radiation effects on magnetic/non-magnetic nanoparticles with different base fluids over a flat plate. Advanced Powder Technology, 29(9), pp.1977-1990.
[28] Eid, M.R. and Mahny, K.L., 2017. Unsteady MHD heat and mass transfer of a non-Newtonian nanofluid flow of a two-phase model over a permeable stretching wall with heat generation/absorption. Advanced Powder Technology, 28(11), pp.3063-3073.
[29] Durgaprasad, P., Varma, S.V.K., Hoque, M.M. and Raju, C.S.K., 2019. Combined effects of Brownian motion and thermophoresis parameters on three-dimensional (3D) Casson nanofluid flow across the porous layers slendering sheet in a suspension of graphene nanoparticles. Neural Computing and Applications, 31(10), pp.6275-6286.
[30] Raju, C.S., Sandeep, N., Ali, M.E. and Nuhait, A.O., 2019. Heat and mass transfer in 3-D MHD Williamson-Casson fluids flow over a stretching surface with non-uniform heat source/sink. Thermal Science, 23(1), pp.281-293.
60 P. Ragupathi/ JHMTR 8 (2021) 49- 60
[31] Zia, Q.Z., Ullah, I., Waqas, M., Alsaedi, A. and Hayat, T., 2018. Cross diffusion and exponential space dependent heat source impacts in radiated three-dimensional (3D) flow of Casson fluid by heated surface. Results in physics, 8, pp.1275-1282.
[32] Prashu and Nandkeolyar, R., 2018. A numerical treatment of unsteady three-dimensional hydromagnetic flow of a Casson fluid with Hall and radiation effects. Results in Physics, 11, pp.966-974.
[33] Muhammad, T., Hayat, T., Shehzad, S.A. and Alsaedi, A., 2018. Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes. Results in physics, 8, pp.365-371.
[34] Kumar, K.G., Ramesh, G.K., Gireesha, B.J. and Gorla, R.S.R., 2018. Characteristics of Joule heating and viscous dissipation on three-dimensional flow of Oldroyd B nanofluid with thermal radiation. Alexandria Engineering Journal, 57(3), pp.2139-2149.
[35] Saleem, S., Nadeem, S., Rashidi, M.M. and Raju, C.S.K., 2019. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsystem Technologies, 25(2), pp.683-689.
[36] Nayak, M.K., Shaw, S., Makinde, O.D. and Chamkha, A.J., 2019. Investigation of partial slip and viscous dissipation effects on the radiative tangent hyperbolic nanofluid flow past a vertical permeable Riga plate with internal heating: Bungiorno model. Journal of Nanofluids, 8(1), pp.51-62.
[37] Mahanthesh, B. and Gireesha, B.J., 2018. Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid-particle suspension. Results in physics, 8, pp.869-878.
[38] Upreti, H., Pandey, A.K. and Kumar, M., 2018. MHD flow of Ag-water nanofluid over a flat porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption. Alexandria engineering journal, 57(3), pp.1839-1847.
[39] Hussanan, A., Salleh, M.Z., Khan, I. and Shafie, S., 2018. Analytical solution for suction and injection flow of a viscoplastic Casson fluid past a stretching surface in the presence of viscous dissipation. Neural computing and applications, 29(12), pp.1507-1515.
[40] Ramandevi, B., Reddy, J.R., Sugunamma, V. and Sandeep, N., 2018. Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux. Alexandria Engineering Journal, 57(2), pp.1009-1018.
[41] Ghaffarpasand, O., 2018. Characterization of unsteady double-diffusive mixed convection flow with soret and dufour effects in a square enclosure with top moving lid. Journal of Heat and Mass Transfer Research, 5(1), pp.51-68.
[42] Hassanzadeh, R. and Nasrollahzadeh, S., 2020. Heat transfer enhancement in a spiral plate heat exchanger model using continuous rods. Journal of Heat and Mass Transfer Research, 7(1), pp.39-53.
[43] Noghrehabadi, A., Hajidavalloo, E. and Moravej, M., 2016. An experimental investigation of performance of a 3-D solar conical collector at different flow rates. Journal of Heat and Mass Transfer Research, 3(1), pp.57-66.
[44] Wang, C.Y., 1984. The three-dimensional flow due to a stretching flat surface. The physics of fluids, 27(8), pp.1915-1917.
[45] Hayat, T., Shehzad, S.A. and Alsaedi, A., 2013. Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation. Applied Mathematics and Mechanics, 34(7), pp.823-832.
[46] Kumar, K.G., Rudraswamy, N.G. and Gireesha, B.J., 2017. Effects of mass transfer on MHD three dimensional flow of a Prandtl liquid over a flat plate in the presence of chemical reaction. Results in Physics, 7, pp.3465-3471