[1] S. Barrault, M. Nemer, La F-GasII et son impact sur les émissions de fluides frigorigènes en France à l’Horizon 2035, Refrig. Sci. Technol. (2015) 2412–2419. https://doi.org/10.18462/iir.icr.2015.0058.
[2] B.I. Lee, M.G. Kesler, A generalized thermodynamic correlation based on three‐parameter corresponding states, AIChE J. 21 (1975) 510–527. https://doi.org/10.1002/aic.690210313.
[3] D.Y. Peng, D.B. Robinson, A New Two-Constant Equation of State, Ind. Eng. Chem. Fundam. 15 (1976) 59–64. https://doi.org/10.1021/i160057a011.
[4] H. Atalay, M.T. Coban, Modeling of Thermodynamic Properties for Pure Refrigerants and Refrigerant Mixtures by Using the Helmholtz Equation of State and Cubic Spline Curve Fitting Method, Univers. J. Mech. Eng. 3 (2015) 229–251. https://doi.org/10.13189/ujme.2015.030604.
[5] M.O. McLinden, E.W. Lemmon, R.T. Jacobsen, Thermodynamic properties for the alternative refrigerants, Int. J. Refrig. 21 (1998) 322–338. https://doi.org/10.1016/S0140-7007(97)00081-9.
[6] C. Coquelet, J. El Abbadi, C. Houriez, Prévision des propriétés thermodynamiques des fluides frigorigènes avec une nouvelle équation cubique d’état à trois paramètres, Int. J. Refrig. 69 (2016) 418–436. https://doi.org/10.1016/j.ijrefrig.2016.05.017.
[7] P. Stra̧k, S. Krukowski, Molecular nitrogen- N2 properties: The intermolecular potential and the equation of state, J. Chem. Phys. 126 (2007). https://doi.org/10.1063/1.2733651.
[8] C.G. Aimoli, E.J. Maginn, C.R.A. Abreu, Transport properties of carbon dioxide and methane from molecular dynamics simulations, J. Chem. Phys. 141 (2014). https://doi.org/10.1063/1.4896538.
[9] U.K. Deiters, R.J. Sadus, Ab Initio Interatomic Potentials and the Classical Molecular Simulation Prediction of the Thermophysical Properties of Helium, J. Phys. Chem. B. 124 (2020) 2268–2276. https://doi.org/10.1021/acs.jpcb.9b11108.
[10] M.R. Shirts, J.D. Chodera, Statistically optimal analysis of samples from multiple equilibrium states, J. Chem. Phys. 129 (2008). https://doi.org/10.1063/1.2978177.
[11] E.K. Goharshadi, M. Abbaspour, Determination of potential energy function of methane via the inversion of reduced viscosity collision integrals at zero pressure, Fluid Phase Equilib. 212 (2003) 53–65. https://doi.org/10.1016/S0378-3812(03)00262-0.
[12] M. Abbaspour, Computation of some thermodynamics, transport, structural properties, and new equation of state for fluid methane using two-body and three-body intermolecular potentials from molecular dynamics simulation, J. Mol. Liq. 161 (2011) 30–35. https://doi.org/10.1016/j.molliq.2011.04.002.
[13] S. MURAD, K.E. GUBBINS, Molecular Dynamics Simulation of Methane Using a Singularity-Free Algorithm, in: 1978: pp. 62–71. https://doi.org/10.1021/bk-1978-0086.ch005.
[14] M. Schoen, C. Hoheisel, O. Beyer, Liquid CH4, liquid CF4 and the partially miscible liquid mixture CH4/CF4: A molecular dynamics study based on both a spherically symmetric and a four-centre lennard-jones potential model, Mol. Phys. 58 (1986) 699–709. https://doi.org/10.1080/00268978600101511.
[15] H. Stassen, On the pair potential in dense fluid methane, J. Mol. Struct. THEOCHEM. 464 (1999) 107–119. https://doi.org/10.1016/S0166-1280(98)00540-5.
[16] R.L. Rowley, T. Pakkanen, Determination of a methane intermolecular potential model for use in molecular simulations from ab initio calculations, J. Chem. Phys. 110 (1999) 3368–3377. https://doi.org/10.1063/1.478203.
[17] E.A. Mason, W.E. Rice, The intermolecular potentials of helium and hydrogen, J. Chem. Phys. 22 (1954) 522–535. https://doi.org/10.1063/1.1740100.
[18] N. Tchouar, M. Benyettou, F.O. Kadour, Thermodynamic, Structural and Transport Properties of Lennard-Jones Liquid Systems. A Molecular Dynamics Simulations of Liquid Helium, Neon, Methane and Nitrogen, Int. J. Mol. Sci. 4 (2003) 595–606. www.mdpi.org/ijms/.
[19] T. Kristóf, G. Rutkai, L. Merényi, J. Liszi, Molecular simulation of the Joule-Thomson inversion curve of hydrogen sulphide, Mol. Phys. 103 (2005) 537–545. https://doi.org/10.1080/00268970413331319263.
[20] C.G. Aimoli, E.J. Maginn, C.R.A. Abreu, Force field comparison and thermodynamic
M. Abbasi / JHMTR 8 (2021) 61- 69 69
property calculation of supercritical CO2 and CH4 using molecular dynamics simulations, Fluid Phase Equilib. 368 (2014) 80–90. https://doi.org/10.1016/j.fluid.2014.02.001.
[21] M. Mafi, M. Amidpour, S.M.M. Naeynian, Comparison of low temperature mixed refrigerant cycles for separation systems, Int. J. Energy Res. 33 (2009) 358–377. https://doi.org/10.1002/er.1480.
[22] M.S. Alam, J.H. Jeong, Molecular dynamics simulations on homogeneous condensation of R600a refrigerant, J. Mol. Liq. 261 (2018) 492–502. https://doi.org/10.1016/j.molliq.2018.04.022.
[23] X. Wu, Z. Yang, Y. Duan, Evaporation of R32/R1234yf mixture nanodroplets on a smooth substrate: Molecular dynamics simulation, Chem. Phys. Lett. 733 (2019) 136672. https://doi.org/10.1016/j.cplett.2019.136672.
[24] G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides, J. Phys. Chem. B. 105 (2001) 6474–6487. https://doi.org/10.1021/jp003919d.
[25] S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472–6486. https://doi.org/10.1063/1.481208.
[26] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1–19. https://doi.org/10.1006/jcph.1995.1039.
[27] L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159 (1967) 98–103. https://doi.org/10.1103/PhysRev.159.98.
[28] A.I. Jewett, Z. Zhuang, J.-E. Shea, Moltemplate a Coarse-Grained Model Assembly Tool, 2013. https://doi.org/10.1016/j.bpj.2012.11.953.
[29] On the determination of molecular fields. —II. From the equation of state of a gas, Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character. 106 (1924) 463–477. https://doi.org/10.1098/rspa.1924.0082.
[30] R.K. Pathria, P.D. Beale, Statistical Mechanics, 2011. https://doi.org/10.1016/C2009-0-62310-2.
[31] P.J. Linstrom, W.G. Mallard, The NIST Chemistry WebBook: A chemical data resource on the Internet, J. Chem. Eng. Data. 46 (2001) 1059–1063. https://doi.org/10.1021/je000236i.