[1] P. Koullapis, S. Kassinos, M.P. Bivolarova, A.K. Melikov, Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flow rate and electrostatic charge, Journal of Biomechanics, 49, 2201–2212, (2016).
[2] N.L. Phuong, K. Ito, Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD, Building and Environment, 94, 504-515, (2015).
[3] A. Naseri, S. Shaghaghian, O. Abouali, G. Ahmadi, Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways, Respiratory Physiology and Neurobiology, 244, 56-72, (2017).
[4] Y. Wang, Y. Zhao, J. Yao, Large eddy simulation of particle deposition and resuspension in turbulent duct flows, Advanced powder technology, 30, 656-671, (2019).
[5] V.K. Srivastav, A.R. Paul, A. Jain, Capturing the wall turbulence in CFD simulation of human respiratory tract, Mathematics and computers in simulation, 160(C), 23-38, (2019).
[6] Y. Hemmati, R. Rafee, Effects of the shape and height of artificial 2D roughness elements on deposition of nano and microparticles in the turbulent gas flow inside a horizontal channel, Journal of aerosol science, 122, 45-58, (2018).
[7] H. Mirzaee, R. Rafee, G. Ahmadi, Inertial impaction of particles on a circular cylinder for a wide range of Reynolds and P numbers: A comparative study, Journal of aerosol science, 135, 86-102, (2019).
[8] M.H. Hamedi Estakhrsar, R. Rafee, Effects of wavelength and number of bends on the performance of zigzag demisters with drainage channels, Applied mathematical modeling, 40 (2), 685-699, (2016).
[9] P. Zamankhan, G. Ahmadi, Z. Wang, P.K. Hopke, W.C. Su, Y.S. Cheng, D. Leonard, Airflow and Deposition of Nano-Particles in human Nasal Cavity, Aerosol science and technology, 40, 463-476, (2006).
[10] K.T. Shanley, P. Zamankhan, G. Ahmadi, P.K. Hopke, Y.S. Cheng, Numerical Simulations Investigating the Regional and Overall Deposition Efficiency of the Human Nasal Cavity, Inhalation toxicology, 20, 1093-1100, (2008).
[11] E. Ghahramani, O. Abouali, H. Emdad, G. Ahmadi, Numerical Analysis of Stochastic Dispersion of Micro-Particles in Turbulent Flows in A Realistic Model of Human Nasal/Upper Airway, Journal of aerosol science, 67, 188-206, (2014).
[12] P.F. Ghalati, E. Keshavarzian, O. Abouali, A. Faramarzi, T. Jiyuan, A. Shakibafard,
190 R. Tabe / JHMTR 7 (2020) First 177-191
Numerical analysis of micro-and nano-particle deposition in a realistic human upper airway, Computers in biology and medicine, 42, 39–49, (2012).
[13] H. Nikookar, O. Abouali, M. Eghtesada, S. Sadrizadeh, G. Ahmadi, Enhancing drug delivery to human trachea through oral airway using magnetophoretic steering of microsphere carriers composed of aggregated superparamagnetic nanoparticles and nanomedicine: A numerical study, Journal of aerosol science, 127, 63–92, (2019).
[14] O. Abouali, E.E. Keshavarzian, P.F. Ghalati, A. Faramarzi, G. Ahmadi, M.H. Bagheri, Micro and Nanoparticle Deposition in Human Nasal Passage Pre and Post Virtual Maxillary Sinus Endoscopic Surgery, Respiratory physiology & neurobiology, 181, 335-345, (2010).
[15] A.A. Mofakham, G. Ahmadi, Particles dispersion and deposition in inhomogeneous turbulent flows using continuous random walk models, Physics of fluids, 31, 083301, (2019).
[16] E.M. Mina, G. Ghorbaniasl, C. Lacor, Study of nanoparticles deposition in a human upper airway model using a dynamic turbulent Schmidt number, AinShams engineer journal, 9 (4), (2017).
[17] K. Mohebbi, R. Rafee, F. Talebi, Effects of the rectangular groove dimensions on the thermal features of the turbulent Al2O3-water nanofluid flow in the grooved tubes, Journal of Heat and Mass Transfer Research, 2 (1), 59-70, (2015).
[18] R. Rafee, Entropy generation calculation for laminar fully developed forced flow and heat transfer of nanofluids inside annuli, Journal of Heat and Mass Transfer Research, 1 (1), 25-33, (2014).
[19] R. Tabe, R. Rafee, M.S. Valipour, G Ahmadi, Investigation of airflow at different activity conditions in a realistic model of human upper respiratory tract, Computer Methods in Biomechanics and Biomedical Engineering, (2020). doi: 10.1080/10255842.2020.1819256.
[20] M. Yousefi, O. Pourmehran, M. Gorji-Bandpy, K. Inthavong, L. Yeo, J. Tu, CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization, Biomechanics and modeling in mechanobiology, 16(6), 2035-2050, (2017).
[21] Y. Shang, J. Dong, L. Tian, K. Inthavong, J. Tu, Detailed computational analysis of flow dynamics in an extended respiratory airway model, Clinical biomechanics, 61, 105–111, (2019).
[22] A. Haghnegahdar, J. Zhao, Y. Feng, Lung aerosol dynamics of airborne influenza A virus-laden droplets and the resultant immune system responses: An in silico study, Journal of aerosol science, 134, 34–55, (2019).
[23] F. Greifzu, C. Kratzsch, T. Forgber, F. Lindner, R. Schwarze, Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT, Engineering Applications of Computational Fluid Mechanics, 10 (1), 30-43, (2016).
[24] J. Tu, K. Inthavong, G. Ahmadi, Computational Fluid and Particle Dynamics in the Human Respiratory System, Springer Dordrecht Heidelberg London, NewYork, (2013).
[25] E.A. Cohen Hubal, J.S Kimbell, P.S. Fedkiw, Incorporation of nasal-lining mass transfer resistance into acfd model for prediction of ozone dosimetry in the upper respiratory tract, Inhalation Toxicology, 8, 831–857, (1996).
[26] K. Keyhani, P.W. Scherer, M.M. Mozell, A numerical model of nasal odorant transport for the analysis of human olfaction, Journal Theoretical Biology, 186, 279–301, (1997).
[27] G. Tian, P.W. Longest, Transient Absorption of Inhaled Vapors into a Multilayer Mucus-Tissue-Blood System, Annals of Biomedical Engineering, 38(2), 517–536, (2010).
[28] G. Tian, P.W. Longest, Development of a CFD boundary condition to model transient vapor absorption in the respiratory airways, Journal of Biomechanical Engineering, 132, 051003–051013, (2010).
[29] G. Tian, Vapor transport and aerosol dynamics in the respiratory airways, PhD Thesis, Virginia Commonwealth University, (2011).
[30] A.J. Hickey, H.M. Mansour, Inhalation Aerosols, Physical and Biological Basis for Therapy, third edition, New York, CRC Press, (2019).
[31] ICRP, Human Respiratory Tract Model for Radiological Protection, Elsevier Science, New York, (1994).
[32] A. Rygg, M. Hindle, P.W. Longest, Linking Suspension Nasal Spray Drug Deposition Patterns to Pharmacokinetic Profiles: A Proof-of Concept Study Using Computational Fluid Dynamics, Journal of Pharmaceutical Sciences, 105, 1995-2004, (2016).
[33] Y. Cu, W.M. Saltzman, Mathematical modeling of molecular diffusion through mucus, Advanced Drug Delivery Reviews, 61(2), 101-114, (2009).
R. Tabe / JHMTR 7 (2020) First 177-191 191
[34] J.S. Gulliver, Introduction to Chemical Transport in the Environment, Cambridge, UK University Press, (2007). [35] S.C. George, A.L. Babb, M.E. Deffebach, M.P. Hlastala, Diffusion of nonelectrolytes in the canine trachea: Effect of thigh junction, Journal of Applied Physiology, 80, 1687-1695, (1996).
[36] M.P. Hlastala, H.T. Robertson, Complexity in Structure and Function of the Lung, Informa Health Care, (1998).
[37] J.C. Anderson, A.L. Babb, M.P. Hlastala, Modeling soluble gas exchange in the airways and alveoli, Annals of Biomedical Engineering, 31, 1402-1422, (2003).
[38] D.Y.H. Pui , F. Romay-Novas, B.Y.H. Liu, Experimental Study of Particle Deposition in Bends of Circular Cross Section, Aerosol Science and Technology, 7(3), 301-315, (1987).
[39] R. Talhout, A. Opperhuizen, J.G.C. van Amsterdam, Role of Acetaldehyde in Tobacco Smoke Addiction, European Neuropsychopharmacology, 17, 627–636, (2007).
[40] S. Nickel, C.G. Clerkin, M.A. Selo, C. Ehrhardt, Transport mechanisms at the pulmonary mucosa: Implications for drug delivery, Expert Opinion on Drug Delivery, 13(5), 667–690, (2016).
[41] M. Gumbleton, G. Al-Jayyoussi, A. Crandon-Lewis, D. Francombe, K. Kreitmeyr, C.J. Morris, M.W. Smith, Spatial expression and functionality of drug transporters in the intact lung: Objectives for further research, Advanced Drug Delivery Reviews, 63(1–2), 110–118, (2011).
[42] C. A. Ruge, J. Kirch, C.M. Lehr, Pulmonary drug delivery: From generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges, Lancet Respiratory Medicine, 1(5), 402–413, (2013).
[43] M. Geiser, Update on macrophage clearance of inhaled microand nanoparticles, Journal of Aerosol Medicine and Pulmonary Drug Delivery, 23(4), 207–217, (2010).
[44] N.R. Labiris, M.B. Dolovich, Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications, British Journal of Clinical Pharmacology, 56(6), 588–599, (2003).
[45] M.B. Dolovich, Aerosols, In: P.J. Barnes, M.M. Grunstein, editors, Asthma, Philadelphia: Lippincott-Raven, 1349-65, (1997).